JPS61250482A - Method of preventing heat intrusion of he liquefying refrigerator - Google Patents

Method of preventing heat intrusion of he liquefying refrigerator

Info

Publication number
JPS61250482A
JPS61250482A JP9166985A JP9166985A JPS61250482A JP S61250482 A JPS61250482 A JP S61250482A JP 9166985 A JP9166985 A JP 9166985A JP 9166985 A JP9166985 A JP 9166985A JP S61250482 A JPS61250482 A JP S61250482A
Authority
JP
Japan
Prior art keywords
heat
cryogenic
section
flow path
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9166985A
Other languages
Japanese (ja)
Other versions
JPH0522832B2 (en
Inventor
正明 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9166985A priority Critical patent/JPS61250482A/en
Publication of JPS61250482A publication Critical patent/JPS61250482A/en
Publication of JPH0522832B2 publication Critical patent/JPH0522832B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はH’e液化冷凍装置の極低温環境部や極低温冷
媒移送管の様に極低温であるが故に8佼人を受は易い部
位における熱侵入を、設備コストならびにランニングコ
ストをできる限りかけることなく防+卜する方υ、に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to extremely low temperatures such as the cryogenic environment part of the H'e liquefaction refrigeration system and the cryogenic refrigerant transfer pipe, so it is easy to apply to many people. The present invention relates to a method for preventing heat intrusion at a site without incurring equipment costs and running costs as much as possible.

He液化冷凍機においては極低温部と室温部の温度差が
大きいため放射又は伝導により室温部から極低温部へ侵
入するという構造を不可避の問題がある。そこで室温部
と極低温部との中間に熱シールド部を設けて熱シールド
部へ寒冷を供給することにより、極低温部への熱侵入を
できる限り防1.することが行なわれている0例えば放
射伝熱に関していえば熱シールド部の温度をloo’K
に保持すると、極低温部への放射入熱量を室温部からの
放射人熟騒の1/Zoo程度に軽減できることが知られ
ている。ところで熱シールド部への寒冷供給方法として
は下記の様な方法が提案又は実施されている。
In He liquefaction refrigerators, there is a large temperature difference between the cryogenic part and the room temperature part, so there is an unavoidable problem in the structure in which helium enters the cryogenic part from the room temperature part by radiation or conduction. Therefore, by providing a heat shield section between the room temperature section and the extremely low temperature section and supplying cold to the heat shield section, heat intrusion into the extremely low temperature section is prevented as much as possible. For example, in terms of radiation heat transfer, the temperature of the heat shield part is loo'K.
It is known that the amount of radiant heat input to the extremely low temperature section can be reduced to about 1/Zoo of the amount of radiation from the room temperature section. By the way, as a method of supplying cold to the heat shield section, the following methods have been proposed or implemented.

(液体窒素を供給する方法) クロードサイクル又はブライトンサイクルの熱力学的原
理を応用した極低温装置の典型例であるHe冷凍装置に
ついて図説すれば、次の通りである、第3図はHe冷凍
装置を例示する概略説明図で、He冷凍装M1は、熱交
換器5a〜5e、膨張機7a、7b、ジュールトムソン
(以下JTという)弁6、等及びこれらを内蔵する真空
断熱容器4より構成されるHe液化冷凍機2、該冷凍機
2人口側に連結された圧縮機3.該冷凍a2の出口側に
連結された極低温環境m10を中心に構成されている。
(Method of Supplying Liquid Nitrogen) A He refrigerator, which is a typical example of a cryogenic device that applies the thermodynamic principles of the Claude cycle or Brighton cycle, is illustrated as follows. Figure 3 shows the He refrigerator. In the schematic explanatory diagram illustrating, the He refrigeration system M1 is composed of heat exchangers 5a to 5e, expanders 7a and 7b, a Joule-Thompson (hereinafter referred to as JT) valve 6, etc., and a vacuum insulation container 4 containing these. a He liquefaction refrigerator 2, a compressor connected to the population side of the refrigerator 2; It is mainly composed of a cryogenic environment m10 connected to the outlet side of the refrigerator a2.

そしてHeガスは圧li1機3で加圧された後、第1〜
第5の熱交換器5a〜5eを降下(以下この降下流路を
「高圧側流路」という)して熱交換を受けつつ膨張機7
a、7bで発生した寒冷により冷却され、更にJTTe
3大気圧近くまで等エンタルピー膨張することにより一
部液化してHeの気液混合状態、即ちHeミストとなっ
た後、極低温冷媒移送管8から極低温環境部lO内へ送
られ、該環境部10内におかれた被冷却体9を極低温ま
で冷却する。尚極低温環境部10の具体的な用途として
は1例えば極低温下における、tfl電導現象を利用し
た超電導コイルの冷却を代表的に挙げることができる。
After the He gas is pressurized by Li1 machine 3,
The expander 7 is lowered through the fifth heat exchangers 5a to 5e (hereinafter, this descending flow path is referred to as the "high pressure side flow path") and receives heat exchange.
It is cooled by the cold generated in a and 7b, and further JTTe
After being partially liquefied by isenthalpic expansion to nearly 3 atmospheric pressure and becoming a gas-liquid mixture of He, that is, He mist, the cryogenic refrigerant is sent from the cryogenic refrigerant transfer pipe 8 into the cryogenic environment IO, and the The object to be cooled 9 placed in the section 10 is cooled to an extremely low temperature. A typical example of a specific use of the cryogenic environment section 10 is, for example, cooling of a superconducting coil using the TFL conduction phenomenon at a cryogenic temperature.

さて極低温環境部10内に存在する被冷却体9の熱を奪
って気化したHeミストは、Heガスとなってflfび
液化冷凍機2の熱交換器5a〜5eを逆方向に上昇(以
)°このL!A、流路を「低圧側流路」という)し、対
向流の高圧側流路を流れるHeガスを冷却した後、自ら
は略常温常圧のHeガスとなって圧縮fi3に戻る。そ
してHeガスがこの波路を循環することによって極低温
環境部lO内の被冷却体9を継続して極低温に保つ様に
なっている。
Now, the He mist that has been vaporized by absorbing the heat of the object to be cooled 9 existing in the cryogenic environment section 10 turns into He gas and rises through the heat exchangers 5a to 5e of the liquefaction refrigerator 2 in the opposite direction (hereinafter referred to as He mist). )°This L! A, the flow path is referred to as a "low pressure side flow path"), and after cooling the He gas flowing through the counterflow high pressure side flow path, it becomes He gas at approximately normal temperature and normal pressure and returns to compression fi3. By circulating the He gas through this wave path, the object to be cooled 9 in the cryogenic environment section IO is continuously kept at a cryogenic temperature.

この様なHe液化冷凍装置lにおいて極低温環境部10
並びに極低温冷媒移送管8は真空断熱容器4内に収納さ
れず、しかも極低温冷媒が貯留若しくは流れるので室温
部との温度前が大きく、その為室温部から多くの熱侵入
をうけ、液化冷凍能力が無駄に消費されてしまう。
In such a He liquefaction refrigeration system, the cryogenic environment section 10
In addition, the cryogenic refrigerant transfer pipe 8 is not housed in the vacuum insulation container 4, and since the cryogenic refrigerant is stored or flows, the temperature difference between the cryogenic refrigerant transfer pipe 8 and the room temperature part is large. Ability is wasted.

従って熱侵入を防止することを目的として極低温冷媒移
送部8aおよび極低温環境部lOに夫々輻射熱をシール
ドする機構を設ける必要があると考えられる。A体重に
は第4.5図に示される様に極低温環境部lOの周囲に
あるいは極低温冷媒移送管8に沿って冷媒管11a、l
lbを配設し、ここに液化N2等の冷媒を供給して熱シ
ールドする方法を利用することができる。
Therefore, for the purpose of preventing heat intrusion, it is considered necessary to provide a mechanism for shielding radiant heat in the cryogenic refrigerant transfer section 8a and the cryogenic environment section IO, respectively. As shown in FIG.
It is possible to use a method of providing heat shielding by disposing a lb. lb and supplying a refrigerant such as liquefied N2 thereto.

しかるに第4.5図に示す方法は液体N2の供給設備な
らびに供給量制御設備を設置しなければならず、そのた
めに設備費が高腸するという欠点があり、またHe液化
冷凍Ia2は液体N2の供給がなければ所要の能力を発
揮できない為運転の自由度が低くまた液体N2を消費す
る為多額のランニングコストを要するという問題がある
ゆ一方極低温環境部lOの熱シールド方法としては第6
図に示す様に極低温液の蒸発ガスの寒冷を利用する方法
も考えられるが、この方法はデユワ−びんの如く容器の
口が小さくその首長さが長い場合でないと有効に作用さ
せることができないので、口径の大きい一般の極低温環
境部には応用しがたい。
However, the method shown in Figure 4.5 requires the installation of liquid N2 supply equipment and supply amount control equipment, which has the disadvantage of high equipment costs. If there is no supply, the required capacity cannot be demonstrated, so there is a problem that the degree of freedom in operation is low, and a large amount of running cost is required because liquid N2 is consumed.
As shown in the figure, it is possible to use the cooling of the evaporated gas of cryogenic liquid, but this method cannot work effectively unless the container has a small mouth and a long length, such as a dewar bottle. Therefore, it is difficult to apply it to general cryogenic environment parts with large diameters.

[発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたちのであって
、設備コストやランニングコストを抑えつつ極低温冷奴
移送管並びに極低温環境部への熱侵入を防止することの
できる方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made with attention to these circumstances, and aims to prevent heat intrusion into the cryogenic chilled tofu transfer pipe and the cryogenic environment while suppressing equipment costs and running costs. This is intended to provide a method that can be used.

[問題点を解決するための手段] 」―記L1的を達成した本発明は、極低温環境部および
極低温冷媒移送管の回りに熱シールド部を設け、任意の
膨張機の排気管又は高圧側流路を流れる冷却ガスを前記
熱シールド部へ供給する点に要旨を有するものである。
[Means for Solving the Problems] The present invention, which has achieved objective L1, provides a heat shield section around the cryogenic environment section and the cryogenic refrigerant transfer pipe, and connects it to the exhaust pipe or high pressure of any expander. The gist is that the cooling gas flowing through the side flow path is supplied to the heat shield section.

[作用] 前述の如く熟シールド部に100’に程度の寒冷を供給
すれば熱侵入は1/100まで低減することができ、熱
侵入は殆ど問題ではなくなる。そこで本発明では一応の
目安としてHe液化冷凍機内で100’に程度の冷媒が
流れる部位を選択し、そこから引き出した冷奴ガスを極
低温冷媒移送管および極低温環境部の熱シールド部へ供
給することとした。即ち熱シールド部へHe液化冷凍機
自身でつくり出した冷媒ガスを供給するので系外に液体
N2貯留タンクや液体N2供給ラインを設ける必要がな
く、設備コストを低減することができ、しかも供給され
た冷媒ガスは熱シールド部を通過した後He液化冷凍機
の低圧側流路へ戻されるので冷媒ガスが消費されること
がない、即ち液体N2等の別途用意した冷媒を使用する
場合の様に使用済の冷媒ガスを空気中へ放散することが
ないので冷媒コストが不要であり、ランニングコストは
格段に少なくて済む。
[Function] As described above, by supplying a cold temperature of about 100' to the mature shield part, the heat intrusion can be reduced to 1/100, and the heat intrusion becomes almost no problem. Therefore, in the present invention, as a rough guide, we select a part in the He liquefaction refrigerator where a refrigerant of about 100' flows, and supply the cold gas extracted from there to the cryogenic refrigerant transfer pipe and the heat shield part of the cryogenic environment part. I decided to do so. In other words, since the refrigerant gas produced by the He liquefied refrigerator itself is supplied to the heat shield part, there is no need to provide a liquid N2 storage tank or a liquid N2 supply line outside the system, which reduces equipment costs, and also reduces the amount of gas supplied. After passing through the heat shield, the refrigerant gas is returned to the low-pressure side flow path of the He liquefaction refrigerator, so the refrigerant gas is not consumed. In other words, the refrigerant gas is not used like when using a separately prepared refrigerant such as liquid N2. Since there is no need to dissipate the refrigerant gas into the air, there is no need for refrigerant costs, and running costs can be significantly reduced.

尚熱シールド部へ供給する冷却ガスの取出し部としては
高温側膨張機の排気管あるいは高温側膨張機で作られた
寒冷によって冷却された高圧ガスが流れる高圧側流路が
好ましいけれども、冷却ガス温度が上記(100’に程
度)より低くても問題がある訳ではないので他の膨張機
の排気管あるいはより低温の冷却ガスが流れる高圧側流
路から冷却ガスをとり出すこととしても構わない。
Although it is preferable to use the exhaust pipe of the high-temperature side expander or the high-pressure side flow path through which the high-pressure gas cooled by the refrigeration generated by the high-temperature side expander flows as the outlet for the cooling gas supplied to the heat shield, the cooling gas temperature Since there is no problem even if the temperature is lower than the above (approximately 100'), the cooling gas may be taken out from the exhaust pipe of another expander or the high-pressure side passage through which the cooling gas at a lower temperature flows.

[実施例] 第1図は本発明方法の実施態様を示すフロー説#J図で
、極低温冷媒移送管8.極低温環境部10および真空断
熱容器4内に夫々熱シールド部11、lla、llb、
llc、lidを設置している。そして高温側の膨張機
7aの排気部から冷却ガス抜出管20を分岐し、熱シー
ルド部11゜11a−1idの順に冷却ガスが流れる様
に流路を接続し、さらにこれら熱シールド部を通過した
ガスは、高温側膨張機7aからの冷却ガスが低圧側流路
りへ導入する流路11へ戻している。尚流路11には絞
り12を介設し、熱シールド部11等へ流れる冷却ガス
の流量を調整している。
[Example] Fig. 1 is a flow diagram #J showing an embodiment of the method of the present invention, in which cryogenic refrigerant transfer pipe 8. Heat shield parts 11, lla, llb,
LLC and lid are installed. Then, the cooling gas extraction pipe 20 is branched from the exhaust part of the expander 7a on the high temperature side, and a flow path is connected so that the cooling gas flows in the order of the heat shield parts 11, 11a-1id, and then passes through these heat shield parts. The cooled gas is returned to the flow path 11 through which the cooling gas from the high-temperature side expander 7a is introduced into the low-pressure side flow path. Note that a throttle 12 is interposed in the flow path 11 to adjust the flow rate of the cooling gas flowing to the heat shield portion 11 and the like.

上記実施態様において極低温冷媒移送管8および極低温
環境部lOは熱シールド部11a〜lidによって熱的
に保護されているので室温部からの熱侵入が防止される
。また真空断熱容器4内は熱シールド部11によって冷
却されるので熱交換器特に低温側熱交換器5e 、5d
への熱侵入が防止される。尚熱侵入防止に当たり液体N
2供給設備等を必要としないので設備コストが小さくて
済む、さらにこれら熱シールド部11゜11a〜lid
を通過した冷却ガスは流路21を経て低圧側流路りへ戻
されるので冷媒ガスが喪失されることがなく、熱侵入を
経済的に防止することができる。第2図は他の実施態様
を示すフロー説明図で、装置の大略は第1図と同様であ
り、特に熟シールド部11.lla〜1lclを前記と
同様の箇所に設けている。但しこれら熟シールド部11
、lla〜lidへ供給する冷却ガスは熱交換器5bと
50の間の高圧側流路Hから引出している。また熱シー
ルド部11,1la−11cfを通過したガスは減圧弁
19を介して熱交換器5cと5bの間の低圧側流路りへ
戻している。
In the embodiment described above, the cryogenic refrigerant transfer pipe 8 and the cryogenic environment section 1O are thermally protected by the heat shield sections 11a to 11lid, so that heat intrusion from the room temperature section is prevented. Also, since the inside of the vacuum insulated container 4 is cooled by the heat shield part 11, the heat exchanger, especially the low temperature side heat exchanger 5e, 5d
This prevents heat from entering. In addition, liquid N is used to prevent heat intrusion.
2. Since no supply equipment is required, the equipment cost is small.
Since the cooling gas that has passed through is returned to the low-pressure side flow path via the flow path 21, the refrigerant gas is not lost, and heat intrusion can be economically prevented. FIG. 2 is a flow explanatory diagram showing another embodiment, in which the apparatus is roughly the same as that in FIG. 1, and in particular, the mature shield section 11. lla to 1lcl are provided at the same locations as above. However, these mature shield parts 11
, lla to lid is drawn out from the high pressure side passage H between the heat exchangers 5b and 50. Further, the gas that has passed through the heat shield portions 11, 1la-11cf is returned to the low-pressure side flow path between the heat exchangers 5c and 5b via the pressure reducing valve 19.

本実施態様において前記と同様の作用効果を得ることが
できる。
In this embodiment, the same effects as described above can be obtained.

[発明の効果] 本発明は以北の様に構成されており、設備コスト及びラ
ンニングコストを大幅に低減しつつ熱侵入を防止するこ
とができる。
[Effects of the Invention] The present invention is configured as described above, and can prevent heat intrusion while significantly reducing equipment costs and running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明の実施態様を示すフロー説明図、第
3〜6図は従来の熱侵入防止方法を説明するための模式
図である。 l・・・He液化冷凍装置 2・・・He液化冷凍機3
・・・圧縮機      4・・・真空断熱容器5a〜
5e熱交換器    6・・・JT弁?a、7b・・・
膨張機    8・・・極低温冷媒移送管lO・・・極
低温環境部
FIGS. 1 and 2 are flow explanatory diagrams showing embodiments of the present invention, and FIGS. 3 to 6 are schematic diagrams for explaining a conventional heat intrusion prevention method. l...He liquefaction refrigerator 2...He liquefaction refrigerator 3
...Compressor 4...Vacuum insulation container 5a~
5e heat exchanger 6...JT valve? a, 7b...
Expander 8... Cryogenic refrigerant transfer pipe lO... Cryogenic environment section

Claims (1)

【特許請求の範囲】[Claims] 圧縮器で得た高圧Heガスを複数の膨張機によつて得ら
れた寒冷を利用して熱交換作用により段階的に予冷した
後ジュールトムソン弁に通すことによつて液体Heを発
生させ、極低温環境部へ供給する様にしたHe液化冷凍
装置における熱侵入防止方法であつて、極低温環境部お
よび極低温冷媒移送管の回りに熱シールド部を設け、任
意の膨張機の排気管又は高圧側流路を流れる冷却ガスを
前記熱シールド部へ供給すると共に、熱シールド部を通
過した冷却ガスを低圧側流路へ戻すことを特徴とするH
e液化冷凍装置の熱侵入防止方法。
The high-pressure He gas obtained by the compressor is precooled in stages by heat exchange using the cold obtained by multiple expanders, and then passed through a Joule-Thomson valve to generate liquid He. A method for preventing heat intrusion in a He liquefaction refrigeration system that is supplied to a low-temperature environment section, in which a heat shield section is provided around the cryogenic environment section and the cryogenic refrigerant transfer pipe, and the exhaust pipe of any expander or high pressure The cooling gas flowing through the side flow path is supplied to the heat shield part, and the cooling gas that has passed through the heat shield part is returned to the low pressure side flow path.
Method for preventing heat intrusion into e-liquefaction refrigeration equipment.
JP9166985A 1985-04-26 1985-04-26 Method of preventing heat intrusion of he liquefying refrigerator Granted JPS61250482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9166985A JPS61250482A (en) 1985-04-26 1985-04-26 Method of preventing heat intrusion of he liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9166985A JPS61250482A (en) 1985-04-26 1985-04-26 Method of preventing heat intrusion of he liquefying refrigerator

Publications (2)

Publication Number Publication Date
JPS61250482A true JPS61250482A (en) 1986-11-07
JPH0522832B2 JPH0522832B2 (en) 1993-03-30

Family

ID=14032885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9166985A Granted JPS61250482A (en) 1985-04-26 1985-04-26 Method of preventing heat intrusion of he liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS61250482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484051A (en) * 1987-09-24 1989-03-29 Hitachi Ltd Cryogenic refrigerator
JP2010048452A (en) * 2008-08-21 2010-03-04 Kanazawa Inst Of Technology Cryogenic cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484051A (en) * 1987-09-24 1989-03-29 Hitachi Ltd Cryogenic refrigerator
JP2010048452A (en) * 2008-08-21 2010-03-04 Kanazawa Inst Of Technology Cryogenic cooling device

Also Published As

Publication number Publication date
JPH0522832B2 (en) 1993-03-30

Similar Documents

Publication Publication Date Title
RU2362099C2 (en) Method for cryogenic liquefaction/cooling and system for method realisation
JPS5880474A (en) Cryogenic cooling device
CN1336530A (en) Operation system for low temp. liquid storage tank
GB1217236A (en) Method and apparatus for continuously supplying refrigeration below 4.2°k
JP3123126B2 (en) Vacuum container with cooler
KR102305156B1 (en) Apparatus for hydrogen liquefaction
JPS61250482A (en) Method of preventing heat intrusion of he liquefying refrigerator
JPH10246524A (en) Freezing device
JPS60178260A (en) Cryogenic refrigerator
JP2945806B2 (en) Pre-cooling device for refrigeration load installed in liquefaction refrigeration system
JP2574815B2 (en) Cryogenic refrigeration equipment
JPS60240965A (en) Method and device for preventing intrusion of heat to cryostat with refrigerator
JPS61140777A (en) Manufacture of liquid h2 and gas natural gas
JPS60117059A (en) Method of preventing heat intrusion of he liquefying refrigerator
JPS61116250A (en) Superconductive device and cooling method thereof
RU2159911C1 (en) Self-contained system of nitrogen refrigeration for thermostatting of special transport facilities
JPH0350950B2 (en)
JPS6317360A (en) Cryogenic refrigerating method
JPS62261868A (en) Helium cooling device
JPS61110851A (en) Joule-thomson refrigerator
JPS62280571A (en) Method and device for precooling liquefying refrigerator
Pyarali Helium Inventory Management For LHC Cryogenics
JPH04161770A (en) Liquefaction machine
CN115420034A (en) Superconducting magnet extremely-low temperature refrigerator and control method thereof
JPS5821186B2 (en) cryogenic freezing equipment