JPH0350950B2 - - Google Patents

Info

Publication number
JPH0350950B2
JPH0350950B2 JP60228608A JP22860885A JPH0350950B2 JP H0350950 B2 JPH0350950 B2 JP H0350950B2 JP 60228608 A JP60228608 A JP 60228608A JP 22860885 A JP22860885 A JP 22860885A JP H0350950 B2 JPH0350950 B2 JP H0350950B2
Authority
JP
Japan
Prior art keywords
cryogenic
cryostat
gas
line
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60228608A
Other languages
Japanese (ja)
Other versions
JPS6291757A (en
Inventor
Kozo Matsumoto
Nobuyuki Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22860885A priority Critical patent/JPS6291757A/en
Publication of JPS6291757A publication Critical patent/JPS6291757A/en
Publication of JPH0350950B2 publication Critical patent/JPH0350950B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、極低温冷凍方法及び装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryogenic refrigeration method and apparatus.

〔発明の背景〕[Background of the invention]

極低温冷凍装置において、被冷却体として超電
導マグネツトを考えた場合、極低温冷媒としてヘ
リウムが使用される。以下、極低温液化ガスとし
て液体ヘリウムの場合を例にとり説明する。
In a cryogenic refrigeration system, when a superconducting magnet is considered as an object to be cooled, helium is used as a cryogenic refrigerant. Hereinafter, the case of liquid helium as the cryogenic liquefied gas will be explained as an example.

ヘリウム冷凍装置においては、液体ヘリウム温
度(−269℃)レベルへの熱負荷を低減するため
に液体窒素温度レベルの熱シールド板を設けるこ
とが一般的に行なわれている。更に、液体ヘリウ
ム温度レベルへの熱負荷を低減するために液体窒
素温度レベルと液体ヘリウム温度レベルの間に中
間熱シールド板を設けることがある。
In helium refrigeration systems, it is common practice to provide a heat shield plate at the liquid nitrogen temperature level in order to reduce the heat load on the liquid helium temperature level (-269°C). Furthermore, an intermediate heat shield plate may be provided between the liquid nitrogen temperature level and the liquid helium temperature level to reduce the heat load on the liquid helium temperature level.

従来の極低温冷凍装置での中間熱シールド板の
冷却方法としては、中間熱シールド板を冷却する
ための極低温冷凍機を設ける方法、中間熱シール
ド板温度レベルの冷媒供給管、および冷媒戻り管
を設ける方法、蒸発した極低温ヘリウムガスで冷
却し、常温レベルの圧縮機の吸入側に戻す液化モ
ードでの冷却方法が採用されていたが、いずれ
も、高価にあつたり、システムが複雑になつた
り、システムの効率が向上しないといつた問題が
ある。
Methods for cooling the intermediate heat shield plate in conventional cryogenic refrigeration equipment include a method of providing a cryogenic refrigerator to cool the intermediate heat shield plate, a refrigerant supply pipe at the intermediate heat shield plate temperature level, and a refrigerant return pipe. A cooling method using vaporized cryogenic helium gas and returning it to the suction side of the compressor at room temperature was used, but both methods were expensive and complicated the system. There are problems such as problems such as failure to improve the efficiency of the system.

なお、この種の装置として関連するものには、
例えば、特公昭54−30139号等が挙げられる。
In addition, related devices of this type include:
For example, Japanese Patent Publication No. 54-30139 can be mentioned.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、極低温容器内で蒸発したガス
が有する寒冷を有効に回収するとともに、クライ
オスタツト内の予冷を容易にし、システムの効率
を向上できる極低温冷凍方法及び装置を提供する
ことにある。
An object of the present invention is to provide a cryogenic freezing method and apparatus that can effectively recover the cold contained in the gas evaporated in the cryogenic container, facilitate pre-cooling in the cryostat, and improve the efficiency of the system. be.

〔発明の概要〕[Summary of the invention]

本発明は、極低温冷凍方法を、極低温冷凍機に
よつて生成された極低温液化ガスをクライオスタ
ツト内の極低温容器に貯蔵し、該極低温容器内で
蒸発したガスを極低温冷凍機の低圧ラインに戻す
とともに、極低温容器を囲んでクライオスタツト
内に設けた熱シールド板を介して極低温冷凍機の
低圧ラインの中間に合流・帰還させて回収し、ク
ライオスタツトを予冷する際に極低温容器内で蒸
発したガスの大部分を熱シールド板側を介して回
収する方法とし、 極低温冷凍装置を、ガスを圧縮・循環し圧縮さ
れたガスを冷却・断熱膨張させて極低温液化ガス
を生成する極低温冷凍機と、該極低温冷凍機から
移送された前記極低温液化ガスを貯蔵する極低温
容器を内設したクライオスタツトとを具備して成
り、該クライオスタツトと極低温冷凍機との間
に、極低温容器内で蒸発したガスを極低温冷凍機
の低圧ラインに戻す第1のラインと、極低温容器
内で蒸発したガスを極低温容器を囲んでクライオ
スタツト内に設けた熱シールド板を介して極低温
冷凍機の低圧ラインの中間に戻す第2のラインと
を設け、これらのラインに弁を設けて、クライオ
スタツトの予冷時に第1のラインの弁を絞り第2
のラインに蒸発したガスの大部分を移送可能とし
た装置とすることにより、極低温容器内で蒸発し
たガスが有する寒冷を有効に回収するとともに、
クライオスタツト内の予冷を容易にし、システム
の効率を向上できるようにしたものである。
The present invention provides a cryogenic freezing method in which cryogenic liquefied gas produced by a cryogenic refrigerator is stored in a cryogenic container in a cryostat, and the gas evaporated in the cryogenic container is transferred to a cryogenic refrigerator. At the same time, it is returned to the middle of the low pressure line of the cryocooler through a heat shield plate installed inside the cryostat surrounding the cryocontainer, and is collected.When precooling the cryostat, Most of the gas evaporated in the cryogenic container is recovered through the heat shield plate, and the cryogenic refrigeration equipment is used to compress and circulate the gas, cool the compressed gas, and adiabatically expand it to liquefy it at a cryogenic temperature. The cryostat is equipped with a cryogenic refrigerator that generates gas, and a cryostat that is equipped with a cryogenic container that stores the cryogenic liquefied gas transferred from the cryogenic refrigerator. A first line is installed between the cryostat and the cryostat to return the gas evaporated in the cryostat to the low pressure line of the cryocooler, and a line is installed in the cryostat surrounding the cryostat to transport the gas evaporated in the cryostat. A second line that returns to the middle of the low pressure line of the cryocooler via a heat shield plate is provided, and valves are provided in these lines so that the valve of the first line is throttled and the second line is
By creating a device that can transfer most of the evaporated gas to the cryogenic container, the cold contained in the evaporated gas in the cryogenic container can be effectively recovered, and
This makes pre-cooling inside the cryostat easier and improves system efficiency.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面によつて説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

図面で、1は圧縮機、2はコールドボツクス、
3a〜3fは熱交換器、4は膨張機入口弁、5a
および5bは膨張機、6はジユールトルソン弁
(以下、JT弁)、8は液化窒素供給管、9は液体
窒素供給弁、10は冷媒供給管、11は冷媒戻り
管、20はクライオスタツト、21は極低温容
器、22は被冷却体、例えば、超電導マグネツ
ト、23は熱シールド板、24は熱シールド用液
体窒素供給管、25は熱シールド用液体窒素出口
管、26は熱シールド用液体窒素供給弁、30は
中間熱シールド弁、31は第2の冷媒戻り管、3
2はシールド用冷媒調整弁、33は戻り冷媒調整
弁である。なお、この場合、極低温冷凍機は、圧
縮機1とコールドボツクス2とから成る。
In the drawing, 1 is a compressor, 2 is a cold box,
3a to 3f are heat exchangers, 4 is an expander inlet valve, 5a
and 5b is an expander, 6 is a Joel Thorson valve (hereinafter referred to as JT valve), 8 is a liquid nitrogen supply pipe, 9 is a liquid nitrogen supply valve, 10 is a refrigerant supply pipe, 11 is a refrigerant return pipe, 20 is a cryostat, and 21 is a 22 is a cryogenic container, 22 is an object to be cooled, such as a superconducting magnet, 23 is a heat shield plate, 24 is a liquid nitrogen supply pipe for heat shield, 25 is a liquid nitrogen outlet pipe for heat shield, and 26 is a liquid nitrogen supply valve for heat shield. , 30 is an intermediate heat shield valve, 31 is a second refrigerant return pipe, 3
2 is a shield refrigerant adjustment valve, and 33 is a return refrigerant adjustment valve. In this case, the cryogenic refrigerator consists of a compressor 1 and a cold box 2.

次に、以上のように構成された極低温冷凍装置
の動作について説明する。圧縮機1で圧縮された
ガス、例えば、ヘリウムガスはコールドボツクス
2に導入され、第1の熱交換器3a、第2の熱交
換器3bで冷却された後、膨張機ラインと液化ラ
インとに分岐される。膨張機ラインの高圧ヘリウ
ムは膨張機入口弁4を通り第1の膨張機5aで断
熱膨張仕事を行なうことにより温度降下して、第
4の熱交換器3dで冷却され第2の膨張機5bで
再び断熱膨張仕事を行ない温度降下して低圧ライ
ンに合流する。一方、液化ラインに分岐した高圧
ヘリウムは、第3〜第6の熱交換器3c〜3fで
逆転温度まで冷却され、JT弁6で断熱膨張して
一部液体ヘリウムとなり、冷媒供給管10を通り
クライオスタツト20内の極低温容器21へ送ら
れる。極低温容器21へ送られた液体ヘリウムは
超電導マグネツト22を冷却すると共に、常温部
からの熱侵入を吸収しガス化される。このガスの
一部は冷媒戻り管11を通りコールドボツクス2
に戻り、戻り冷媒調整弁33を通り第6〜第1の
熱交換器3f〜3aで寒冷回収された後、圧縮機
1に戻される。極低温容器21の残りのガスは中
間熱シールド板30を冷却し、第2の冷媒戻り管
31を通りコールドボツクス2に戻り、シールド
用冷媒調整弁32を通り、第2の熱交換器3bと
第3の熱交換器3cの中間の低圧ラインに合流す
る。中間熱シールド板30冷却用冷媒は、シール
ド用冷媒調整弁32で調整され、中間熱シールド
板30の温度を熱シールド板23と極低温容器2
1の中間の所定値に保持する。なお、戻り冷媒調
整弁33は、超電導マグネツト22の予冷時、冷
媒供給弁10で供給され超電導マグネツト22を
冷却した冷媒の大部分を中間熱シールド板30の
冷却ラインの方にバイパスさせるための調整弁で
ある。補助冷媒である液体窒素は、コールドボツ
クス2へ液体窒素供給管8、液体窒素供給弁9を
介して供給され、クライオスタツト20へは、熱
シールド用液体窒素供給管24、熱シールド用液
体窒素供給弁26を通り供給され、熱シールド板
23を液体窒素温度に冷却し、熱シールド用液体
窒素出口管25を通り流出する。
Next, the operation of the cryogenic refrigeration apparatus configured as above will be explained. Gas compressed by the compressor 1, for example, helium gas, is introduced into the cold box 2, cooled by the first heat exchanger 3a and the second heat exchanger 3b, and then transferred to the expander line and the liquefaction line. Branched out. The high-pressure helium in the expander line passes through the expander inlet valve 4 and performs adiabatic expansion work in the first expander 5a, resulting in a temperature drop, is cooled in the fourth heat exchanger 3d, and is then transferred to the second expander 5b. It performs adiabatic expansion work again, lowers its temperature, and joins the low-pressure line. On the other hand, the high-pressure helium branched into the liquefaction line is cooled to the inversion temperature in the third to sixth heat exchangers 3c to 3f, adiabatically expanded in the JT valve 6, becomes partially liquid helium, and passes through the refrigerant supply pipe 10. It is sent to the cryogenic container 21 within the cryostat 20. The liquid helium sent to the cryogenic container 21 cools the superconducting magnet 22, absorbs heat entering from the normal temperature part, and is gasified. A part of this gas passes through the refrigerant return pipe 11 to the cold box 2.
The refrigerant returns to the compressor 1 after passing through the return refrigerant regulating valve 33 and being cooled and recovered by the sixth to first heat exchangers 3f to 3a. The remaining gas in the cryogenic container 21 cools the intermediate heat shield plate 30, returns to the cold box 2 through the second refrigerant return pipe 31, passes through the shielding refrigerant regulating valve 32, and is transferred to the second heat exchanger 3b. It joins the intermediate low pressure line of the third heat exchanger 3c. The refrigerant for cooling the intermediate heat shield plate 30 is adjusted by the shield refrigerant adjustment valve 32, and the temperature of the intermediate heat shield plate 30 is adjusted between the heat shield plate 23 and the cryogenic container 2.
It is held at a predetermined value between 1 and 1. The return refrigerant adjustment valve 33 is an adjustment valve for bypassing most of the refrigerant supplied by the refrigerant supply valve 10 and cooling the superconducting magnet 22 to the cooling line of the intermediate heat shield plate 30 when the superconducting magnet 22 is precooled. It is a valve. Liquid nitrogen, which is an auxiliary refrigerant, is supplied to the cold box 2 via a liquid nitrogen supply pipe 8 and a liquid nitrogen supply valve 9, and to the cryostat 20, a liquid nitrogen supply pipe 24 for heat shielding and a liquid nitrogen supply pipe for heat shielding are supplied to the cryostat 20. It is supplied through the valve 26, cools the heat shield plate 23 to liquid nitrogen temperature, and exits through the heat shield liquid nitrogen outlet pipe 25.

以上、本実施例によれば、極低温容器内で液体
ヘリウムから蒸発したヘリウムガスが有する寒冷
を、中間熱シールド板の冷却と極低温冷凍機のコ
ールドボツクスに導入されたヘリウムガスの予冷
とによつて有効に回収できるとともに、超電導マ
グネツトの予冷時に冷媒戻り管の戻り冷媒調整弁
を調整、すなわち、絞る方向に調整することによ
り、温度の高くなつた冷媒の大部分を中間熱シー
ルド板の冷却ラインの方にバイパスさせてコール
ドボツクス内に戻すことができ、極低温冷凍機の
システムを効率よく形成できて容易になるので、
システムの効率向上を図れるという効果がある。
As described above, according to this embodiment, the cold contained in the helium gas evaporated from liquid helium in the cryogenic container is used to cool the intermediate heat shield plate and pre-cool the helium gas introduced into the cold box of the cryogenic refrigerator. By adjusting the return refrigerant regulating valve of the refrigerant return pipe during precooling of the superconducting magnet, in other words, by adjusting it in the direction of narrowing down, most of the refrigerant that has become high in temperature can be cooled by cooling the intermediate heat shield plate. It can be bypassed to the line and returned to the cold box, making it easier and more efficient to form a cryogenic refrigerator system.
This has the effect of improving system efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極低温容器内で蒸発したガス
が有する寒冷を有効に回収できるとともに、クラ
イオスタツト内の予冷が容易になり、システムの
効率を向上できるという効果がある。
According to the present invention, the cold contained in the gas evaporated in the cryogenic container can be effectively recovered, and the cryostat can be easily precooled, thereby improving the efficiency of the system.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明を実施した極低温冷凍装置の一
例を示すブロツク構成図である。 1……圧縮機、2……コールドボツクス、21
……極低温容器、30……中間熱シールド板、3
1……第2の冷媒戻り管。
The drawing is a block diagram showing an example of a cryogenic refrigeration system embodying the present invention. 1...Compressor, 2...Cold box, 21
... Cryogenic container, 30 ... Intermediate heat shield plate, 3
1...Second refrigerant return pipe.

Claims (1)

【特許請求の範囲】 1 極低温冷凍機によつて生成された極低温液化
ガスをクライオスタツト内の極低温容器に貯蔵す
る工程と、 該極低温容器内で蒸発したガスを前記極低温冷
凍機の低圧ラインに戻すとともに、前記極低温容
器を囲んで前記クライオスタツト内に設けた熱シ
ールド板を介して前記極低温冷凍機の低圧ライン
の中間に合流・帰還させて回収する工程と、 前記クライオスタツトを予冷する際に前記極低
温容器内で蒸発したガスの大部分を前記熱シール
ド板側を介して回収する工程とを有することを特
徴とする極低温冷凍方法。 2 ガスを圧縮・循環し圧縮されたガスを冷却・
断熱膨張させて極低温液化ガスを生成する極低温
冷凍機と、該極低温冷凍機から移送された前記極
低温液化ガスを貯蔵する極低温容器を内設したク
ライオスタツトとを具備して成り、 該クライオスタツトと前記極低温冷凍機との間
に、前記極低温容器内で蒸発したガスを前記極低
温冷凍機の低圧ラインに戻す第1のラインと、前
記極低温容器内で蒸発したガスを前記極低温容器
を囲んで前記クライオスタツト内に設けた熱シー
ルド板を介して前記極低温冷凍機の低圧ラインの
中間に戻す第2のラインとを設け、 前記これらのラインに弁を設けて、前記クライ
オスタツトの予冷時に前記第1のラインの弁を絞
り前記第2のラインに前記蒸発したガスの大部分
を移送可能としたことを特徴とする極低温冷凍装
置。
[Scope of Claims] 1. A step of storing cryogenic liquefied gas produced by a cryogenic refrigerator in a cryogenic container in a cryostat, and storing the gas evaporated in the cryogenic container in the cryogenic refrigerator. a step of recovering the cryostat by returning it to the low pressure line of the cryocooler and returning it to the middle of the low pressure line of the cryocooler via a heat shield plate surrounding the cryostat and provided in the cryostat; A cryogenic freezing method characterized by comprising the step of recovering most of the gas evaporated in the cryogenic container through the heat shield plate side when precooling the tatsuto. 2 Compress and circulate gas and cool and cool the compressed gas.
It is equipped with a cryogenic refrigerator that generates cryogenic liquefied gas through adiabatic expansion, and a cryostat equipped with a cryogenic container that stores the cryogenic liquefied gas transferred from the cryogenic refrigerator, Between the cryostat and the cryocooler, there is a first line for returning the gas evaporated in the cryocontainer to the low pressure line of the cryocooler; a second line that surrounds the cryogenic container and returns to the middle of the low pressure line of the cryogenic refrigerator via a heat shield plate provided in the cryostat, and a valve is provided in these lines; A cryogenic refrigeration system characterized in that, during precooling of the cryostat, a valve in the first line is throttled so that most of the evaporated gas can be transferred to the second line.
JP22860885A 1985-10-16 1985-10-16 Cryogenic refrigerating method and device Granted JPS6291757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22860885A JPS6291757A (en) 1985-10-16 1985-10-16 Cryogenic refrigerating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22860885A JPS6291757A (en) 1985-10-16 1985-10-16 Cryogenic refrigerating method and device

Publications (2)

Publication Number Publication Date
JPS6291757A JPS6291757A (en) 1987-04-27
JPH0350950B2 true JPH0350950B2 (en) 1991-08-05

Family

ID=16879013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22860885A Granted JPS6291757A (en) 1985-10-16 1985-10-16 Cryogenic refrigerating method and device

Country Status (1)

Country Link
JP (1) JPS6291757A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522846A (en) * 1978-08-05 1980-02-18 Mitsubishi Electric Corp Super conductivity device
JPS60117059A (en) * 1983-11-28 1985-06-24 株式会社神戸製鋼所 Method of preventing heat intrusion of he liquefying refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522846A (en) * 1978-08-05 1980-02-18 Mitsubishi Electric Corp Super conductivity device
JPS60117059A (en) * 1983-11-28 1985-06-24 株式会社神戸製鋼所 Method of preventing heat intrusion of he liquefying refrigerator

Also Published As

Publication number Publication date
JPS6291757A (en) 1987-04-27

Similar Documents

Publication Publication Date Title
US3323315A (en) Gas liquefaction employing an evaporating and gas expansion refrigerant cycles
US4048814A (en) Refrigerating plant using helium as a refrigerant
KR101357720B1 (en) Refrigeration system and refrigeration method for liquefying natural gas
JPH0350950B2 (en)
JPH08128745A (en) Supercritical helium cooling system and method for operating the same
JP2574815B2 (en) Cryogenic refrigeration equipment
JP4409828B2 (en) Gas liquefaction equipment
JP2617172B2 (en) Cryogenic cooling device
JPS6317360A (en) Cryogenic refrigerating method
JPS62280571A (en) Method and device for precooling liquefying refrigerator
JPH01150757A (en) Method and device for precooling cryogenic refrigerator
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JPS61250482A (en) Method of preventing heat intrusion of he liquefying refrigerator
JPH0250381B2 (en)
JPS62785A (en) Precooling method of cryogenic device
JP2837096B2 (en) Cryogenic liquefaction equipment
JPS6240291Y2 (en)
JPS62129676A (en) Gas liquefying refrigerator
JPS63187066A (en) Cryogenic refrigerator
JPH0411784B2 (en)
JPS629171A (en) He liquefying refrigerator
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPH04188B2 (en)
JPH09236340A (en) Cryogenic refrigerating device
JPH04189B2 (en)