JPS62785A - Precooling method of cryogenic device - Google Patents

Precooling method of cryogenic device

Info

Publication number
JPS62785A
JPS62785A JP13982085A JP13982085A JPS62785A JP S62785 A JPS62785 A JP S62785A JP 13982085 A JP13982085 A JP 13982085A JP 13982085 A JP13982085 A JP 13982085A JP S62785 A JPS62785 A JP S62785A
Authority
JP
Japan
Prior art keywords
cooling
precooling
temperature
low
cryogenic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13982085A
Other languages
Japanese (ja)
Inventor
哲也 大谷
浅原 一彦
光一 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13982085A priority Critical patent/JPS62785A/en
Publication of JPS62785A publication Critical patent/JPS62785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超電導利用機器等に利用する極低温装置の予冷
方法に関し、詳細には液体窒素の寒冷によって前記装置
の予冷を行なう方法であり、特にヘリウム液化冷凍機に
よって代表される極低温装置の予冷方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for precooling a cryogenic device used in superconducting equipment, etc., and specifically, a method for precooling the device by cooling liquid nitrogen. In particular, the present invention relates to a precooling method for a cryogenic device typified by a helium liquefaction refrigerator.

[従来の技術] 極低温装置の例としてヘリウム液化機をとりあげ以下に
説明する。第2図は複数の熱交換器4a、4b、5〜9
.3つcn[張a121.10゜11及び膨張弁12(
ジュールトムソン弁)等をコールトポ7りl内に配設し
、圧縮la2及び液体ヘリウム貯留槽15をコールドボ
ックス1の外側に設けたヘリウム液化機を示すものであ
る。低圧管16から循環的に供給されるHeガスを圧m
m2によって加圧し、高圧管3へ導入する。導入された
Heガスは膨張fi21,10.11によって断熱膨張
させ1発生した寒冷により順次冷却され、さらに膨張弁
工2でジュールトムソン効果によって一部液化され生成
した液体Heは貯留槽15へ貯められる。
[Prior Art] A helium liquefier will be described below as an example of a cryogenic device. Figure 2 shows a plurality of heat exchangers 4a, 4b, 5 to 9.
.. 3 cn [Zhang a121.10°11 and expansion valve 12 (
This shows a helium liquefaction machine in which a Joule-Thompson valve and the like are disposed inside the coal topo 7, and a compressed la2 and liquid helium storage tank 15 are disposed outside the cold box 1. The He gas cyclically supplied from the low pressure pipe 16 is
m2 and introduced into the high pressure pipe 3. The introduced He gas is adiabatically expanded by the expansion fi21, 10.11, and is sequentially cooled by the generated cold.Furthermore, it is partially liquefied by the Joule-Thomson effect in the expansion valve 2, and the generated liquid He is stored in the storage tank 15. .

[発明が解決しようとする問題点] 第2図に示す様なHe液化機ではコールドボックス1の
運転開始と同時に液体Heが得られるわけではなく、液
体Heを得るためには数十分から数時間の予冷運転を行
なわなければならなかった。予冷運転を効果的に行なう
目的でコールドボックス1内には補助冷凍機として熱交
換器4a、4b及び膨張機21を配設している。ところ
が膨張機21は低温下で長時間使用される為、運転に対
する信頼性の欠陥及び機械設備コストの高騰を引き起こ
し易く、これを回避するため、近年はもっばら第3図に
示す様な装置が汎用されている。即ちコールドボックス
21内に設ける補助冷凍機として液体窒素(以下単にL
N2と記す)供給管13及び熱交換器4を装備し、でき
るだ(す機械的稼動部を少なくしたものである。この様
な装置であれば大型LN2タンクより直接熱交換器4へ
LN2を供給するだけでなく、機械的稼動部及び付属設
備が少なくて済み、前記第2図で示したHe液化機に比
べて運転の安定性及び設備コストの点で優れている。
[Problems to be Solved by the Invention] In the He liquefaction machine as shown in FIG. A pre-cooling operation had to be carried out for several hours. Heat exchangers 4a, 4b and an expander 21 are provided in the cold box 1 as auxiliary refrigerators for the purpose of effectively performing precooling operation. However, since the expander 21 is used at low temperatures for long periods of time, it tends to cause defects in operational reliability and a rise in the cost of machinery and equipment.In order to avoid this, in recent years, devices such as the one shown in Fig. It is commonly used. That is, liquid nitrogen (hereinafter simply L) is used as an auxiliary refrigerator installed in the cold box 21.
It is equipped with a supply pipe 13 (denoted as N2) and a heat exchanger 4, and has as few mechanical moving parts as possible.With such a device, LN2 can be supplied directly from a large LN2 tank to the heat exchanger 4. In addition to supplying the Helium, it requires fewer mechanical moving parts and attached equipment, and is superior to the He liquefier shown in FIG. 2 in terms of operational stability and equipment cost.

しかしながらLN2を利用する予冷方法では、予冷に使
用する寒冷は、LN2が蒸発する際の潜熱が主であり、
得られる寒冷の温度はLN2の沸点温度である約77.
4″Kが下限であり、熱交換器4を使う場合には、有効
利用される寒冷温度は80’に以上となってしまい、こ
れが液化機の予冷効果向上における隘路となっている。
However, in the precooling method using LN2, the cold used for precooling is mainly the latent heat when LN2 evaporates,
The temperature of the resulting refrigeration is approximately 77.7 mm, which is the boiling point temperature of LN2.
The lower limit is 4''K, and if the heat exchanger 4 is used, the effective cooling temperature will be 80' or more, which is a bottleneck in improving the precooling effect of the liquefier.

そこで本発明者らは極低温装置に利用されるLN2の有
効利用温度を80′により低く保つことによって予冷効
果を向上させることを目的に種々研究を績み重ねた結果
、本発明を完成するに至った。
Therefore, the present inventors have conducted various studies aimed at improving the precooling effect by keeping the effective utilization temperature of LN2 used in cryogenic equipment as low as 80', and as a result, they have completed the present invention. It's arrived.

[問題点を解決するための手段] LN2を使って予冷を行なうに当たり、本発明では低圧
雰囲気に形成した予冷部に液体窒素を供給し、該液体窒
素の沸点が低くなる条件下で寒冷を発生させる点に要旨
が存在する。
[Means for solving the problem] When performing precooling using LN2, in the present invention, liquid nitrogen is supplied to a precooling section formed in a low-pressure atmosphere, and cooling is generated under conditions where the boiling point of the liquid nitrogen is low. The gist lies in the fact that

[作用] LN2を使用する通常の熱交換器や熱シールド部では大
気圧下でLN2が供給され、当該LN2の沸点温度近く
まで夫々の機器を冷却した後、N2ガスとして系外へ排
出される。LN2の沸点温度は1気圧で約77.4”K
であるが、低圧雰囲気下で(1気圧以下)の状態では沸
点が下るという原理に着目しLN2を真空下に供給すれ
ば、例えば圧力が約100↑orrではLN2沸点は約
65′Kまで下げることができる。ただし減圧の程度は
液体N2が凝固しない圧力まででなければならない。
[Function] In ordinary heat exchangers and heat shields that use LN2, LN2 is supplied under atmospheric pressure, and after cooling each device to near the boiling point temperature of the LN2, it is discharged from the system as N2 gas. . The boiling point temperature of LN2 is approximately 77.4”K at 1 atm.
However, if we focus on the principle that the boiling point decreases in a low-pressure atmosphere (below 1 atm) and supply LN2 under vacuum, for example, at a pressure of about 100↑orr, the boiling point of LN2 will drop to about 65'K. be able to. However, the degree of pressure reduction must be such that the liquid N2 does not solidify.

従ってLN2が供給される熱交換器や熱シールド部を真
空ポンプ等で低圧雰囲気に保てば、常圧時よりも低い温
度まで冷却することができるようになる。しかしこれに
よって真空ポンプ等の機械稼動部が追加されることにな
るが、該装置はコールドボックス外の常温部に設置する
ことが可能なので、低温稼動におけるトラブルを考慮す
る必要は全くない。
Therefore, if the heat exchanger and heat shield section to which LN2 is supplied are kept in a low-pressure atmosphere using a vacuum pump or the like, it becomes possible to cool them to a temperature lower than that at normal pressure. However, this requires the addition of a mechanical operating part such as a vacuum pump, but since this device can be installed outside the cold box in a normal temperature area, there is no need to consider troubles during low-temperature operation.

[実施例] 本発明方法が利用される代表的なHe液化機の例を第1
図に示す、コールドボックスl内には熱交換器4〜9.
膨張機10.11及び膨張弁12を配設し、予冷装置と
してLN2供給管13とN2排出管14そして該排出管
14に接続された真空ポンプ17を設ける。尚真空ポン
プ17はコールドボックスl外へ常温雰囲気下に設置さ
れる。
[Example] The first example of a typical He liquefaction machine in which the method of the present invention is utilized is as follows.
As shown in the figure, there are heat exchangers 4 to 9 in the cold box l.
An expander 10.11 and an expansion valve 12 are provided, and an LN2 supply pipe 13, a N2 discharge pipe 14, and a vacuum pump 17 connected to the discharge pipe 14 are provided as pre-cooling devices. Incidentally, the vacuum pump 17 is installed outside the cold box l under a normal temperature atmosphere.

He液化機の起動時には、真空ポンプ17によってLN
2が凝固しない圧力まで減圧しLN2供給管13からL
N2を供給する。同時に圧m機2を稼動させてHeガス
をコールドボックス1内へ圧入循環させ、まず熱交器4
によって冷却すると共に一部を分岐させて膨張機io、
itに送り、ここで寒冷を得て、コールドボックス1全
体の予冷を行なう、この予冷段階では約70″Kまで降
下した(但し減圧条件は約100Torrとした)時点
でLN2の供給を止めてHeガスだけで運転を!1続し
、その後膨張弁12によってHeガスの液化を開始し貯
留槽15内にLHeを貯留させる。
When starting up the He liquefaction machine, LN is supplied by the vacuum pump 17.
2 is depressurized to a pressure that does not solidify, and the LN2 supply pipe 13 to L
Supply N2. At the same time, the pressurizer 2 is operated to pressurize and circulate He gas into the cold box 1, and first the heat exchanger 4
The expansion machine io is cooled by branching a part of the expansion machine io,
In this pre-cooling stage, the LN2 supply is stopped and the He The operation continues for one hour using only gas, and then the expansion valve 12 starts to liquefy the He gas to store LHe in the storage tank 15.

上記した様にLN2の有効利用温度を80″により低く
下げることによって予冷に要するLN2量は少なくて済
むようになり、ざらに予冷が効果的に行なわれるのでH
e循環系における圧縮機2の流量は約20%削減するこ
とができる様になった。
As mentioned above, by lowering the effective utilization temperature of LN2 to 80", the amount of LN2 required for precooling can be reduced, and precooling can be performed more effectively, so H
The flow rate of the compressor 2 in the e-circulation system can now be reduced by about 20%.

本発明は予冷の為の熱交換器だけに利用されるものでは
なく、第4図に示す様にコールドボックス内の熱シール
ド部を冷却するときやクライオペンプの熱シールド板を
冷却するときにも適用することができる。第4図は液体
He冷凍機を示す実施例であり、クライオスタット19
内のLHe中に浸漬させた被冷却部体(a電導マグネッ
ト等)を極低温に保つための冷凍機であるが、これは本
発明を制限する趣旨のものではない。
The present invention is not only applicable to heat exchangers for pre-cooling, but also to cooling the heat shield part in a cold box or the heat shield plate of a cryo-pen, as shown in Figure 4. Can be applied. FIG. 4 shows an embodiment of a liquid He refrigerator, with cryostat 19
Although this is a refrigerator for keeping a cooled member (such as an a conductive magnet) immersed in LHe at an extremely low temperature, this is not intended to limit the present invention.

[発明の効果] 極低温装置の冷却や予冷に本発明方法を利用することに
よってLN2の有効温度を下げることが可能になり、冷
却効果を高めることができる。これに伴ない極低温装置
に用いられる圧縮機や熱交換器の容量を小さく抑えるこ
とができ、極低温装置自体を小型化させることが可能と
なった。
[Effects of the Invention] By utilizing the method of the present invention for cooling or pre-cooling a cryogenic device, it becomes possible to lower the effective temperature of LN2 and increase the cooling effect. This has made it possible to reduce the capacity of the compressor and heat exchanger used in cryogenic equipment, making it possible to downsize the cryogenic equipment itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に用いるHe液化機の代表的な実施
例を示す説明図、第2,3図は従来のHe液化方法に用
いる液化機を示す説明図、第4図は、本発明に用いる液
化He冷凍機の例を示す説明図である。 1・・・コールドボックス 2・・・圧縮a      3・・・He高圧管4.4
a、4b、5,8,7,8.9 ・=熱交°換器10.
11・・・膨張機    12・・・膨張弁13・・・
液体N2供給v14・・・N2排出管!5・・・液体H
e貯留槽  18・・・He低圧管17・・・真空ポン
プ    18・・・熱シールド部18・・・クライオ
スタット 20・・・被冷却体
Fig. 1 is an explanatory diagram showing a typical embodiment of a He liquefaction machine used in the method of the present invention, Figs. 2 and 3 are explanatory diagrams showing a liquefaction machine used in a conventional He liquefaction method, and Fig. 4 is an explanatory diagram showing a typical embodiment of a He liquefaction machine used in the method of the present invention. FIG. 2 is an explanatory diagram showing an example of a liquefied He refrigerator used for. 1...Cold box 2...Compression a 3...He high pressure pipe 4.4
a, 4b, 5, 8, 7, 8.9 = heat exchanger 10.
11... Expander 12... Expansion valve 13...
Liquid N2 supply v14...N2 discharge pipe! 5...Liquid H
e storage tank 18... He low pressure pipe 17... vacuum pump 18... heat shield section 18... cryostat 20... object to be cooled

Claims (1)

【特許請求の範囲】[Claims] 極低温装置を液体窒素で予冷する方法であって、低圧雰
囲気に形成した予冷部に液体窒素を供給し、該液体窒素
の沸点が低くなる条件下で寒冷を発生させることを特徴
とする極低温装置の予冷方法。
A method of pre-cooling a cryogenic device with liquid nitrogen, characterized in that liquid nitrogen is supplied to a pre-cooling section formed in a low-pressure atmosphere, and cooling is generated under conditions that lower the boiling point of the liquid nitrogen. How to pre-cool the device.
JP13982085A 1985-06-25 1985-06-25 Precooling method of cryogenic device Pending JPS62785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13982085A JPS62785A (en) 1985-06-25 1985-06-25 Precooling method of cryogenic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13982085A JPS62785A (en) 1985-06-25 1985-06-25 Precooling method of cryogenic device

Publications (1)

Publication Number Publication Date
JPS62785A true JPS62785A (en) 1987-01-06

Family

ID=15254223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13982085A Pending JPS62785A (en) 1985-06-25 1985-06-25 Precooling method of cryogenic device

Country Status (1)

Country Link
JP (1) JPS62785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169780A (en) * 1990-10-15 1992-06-17 Univ Kyoto Solid hydrogen generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169780A (en) * 1990-10-15 1992-06-17 Univ Kyoto Solid hydrogen generator

Similar Documents

Publication Publication Date Title
JPS5880474A (en) Cryogenic cooling device
US3323315A (en) Gas liquefaction employing an evaporating and gas expansion refrigerant cycles
JPH0212349B2 (en)
JPS62785A (en) Precooling method of cryogenic device
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
JP7189039B2 (en) Cryogenic cooling device and its operation method
JPH02176386A (en) Helium liquefier
JP2617172B2 (en) Cryogenic cooling device
JP2574815B2 (en) Cryogenic refrigeration equipment
JPS61116250A (en) Superconductive device and cooling method thereof
JPS6317360A (en) Cryogenic refrigerating method
JPH0694199A (en) Transport method, liquefying terminal, and receiving terminal for liquefied natural gas
JPS6291757A (en) Cryogenic refrigerating method and device
JPS62280571A (en) Method and device for precooling liquefying refrigerator
JPS6138363A (en) Helium refrigerator
JPS62786A (en) Precooling method of cryogenic generator
JPS62129676A (en) Gas liquefying refrigerator
JP3287237B2 (en) Cryogenic refrigerator
JPS62261868A (en) Helium cooling device
JPS61250482A (en) Method of preventing heat intrusion of he liquefying refrigerator
JPH01137166A (en) Cryogenic helium refrigerator
KR20240078337A (en) Hydrogen liquefaction system without pre-cooling and intergrated lossless liquid hydrogen storage system
JPS63302280A (en) Method of liquefying helium
Pyarali Helium Inventory Management For LHC Cryogenics
JPS63176985A (en) Reliquefier for low-temperature liquefied gas