JPS5819414A - Sliding member and its manufacture - Google Patents
Sliding member and its manufactureInfo
- Publication number
- JPS5819414A JPS5819414A JP11717281A JP11717281A JPS5819414A JP S5819414 A JPS5819414 A JP S5819414A JP 11717281 A JP11717281 A JP 11717281A JP 11717281 A JP11717281 A JP 11717281A JP S5819414 A JPS5819414 A JP S5819414A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- wear resistance
- nitriding
- pores
- surface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は耐摩耗性に優れた鉄基焼結合金製摺動部材及び
その製造方法に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sliding member made of an iron-based sintered alloy having excellent wear resistance and a method for manufacturing the same.
例えば内燃機関のカム、タペット、オイルポンプのへウ
ジング等の苛酷な使用条件下で使用される摺動部品の材
料は耐摩耗性に優れていることが要求され、従来からチ
ル鋳鉄や合金鋳鉄に熱処理を施して少なくとも摺動表面
層を硬化させたものが使用されている。ところが、一般
の鋳造品唸寸法精度が良好ではなく、切削加工を施さね
ばならないが、上記の鋳鉄祉被剛性が良好でなく、加工
コストが嵩むという問題点を有している。For example, materials for sliding parts used under harsh operating conditions, such as internal combustion engine cams, tappets, and oil pump housings, are required to have excellent wear resistance, and traditionally chill cast iron and alloy cast iron have been used. Those that have been heat treated to harden at least the sliding surface layer are used. However, the dimensional accuracy of general cast parts is not good, and cutting work must be performed, but the above-mentioned cast iron rigidity is not good, and there are problems in that the machining cost increases.
粉末冶金法によって製造される焼結体は寸法精度が良好
で、歩留りも高く、内在する気孔の故に良好な保油性を
備えているところから、焼結合金は機械部品の材料とし
て広く使用されるようになってきており、耐摩耗性を改
善するために種々の合金元素を添加した鉄基焼結合金が
試みられているが、苛酷な使用条件の下で蝶その耐摩耗
性蝶チル鋳鉄や耐摩耗合金鋳鉄のそれKa及ばない。ま
た鉄鋼材料の耐摩耗性を改善する有効な手段として窒化
処理があるが、焼結合金は内在する気孔の念めに窒化の
進行が速く、窒化用鋼のように窒素との親和力が強いア
ルRニウムやり四ムを鉄基焼結合金に含有させると、窒
化処理に際して膨張を起して寸法変化が大きくなるので
、これらの合金元素を含有させることができな−。その
ため充分な硬さを有する窒化層が得られず、窒化処理に
よる鉄基焼結合金の耐摩耗性改善に轄大きな効果を期待
することができない。Sintered bodies manufactured by powder metallurgy have good dimensional accuracy, high yields, and have good oil retention due to their inherent pores, so sintered alloys are widely used as materials for machine parts. In order to improve wear resistance, iron-based sintered alloys with various alloying elements added have been tried, but under severe usage conditions, the wear resistance of chilled cast iron and It is not as good as that of wear-resistant alloy cast iron. In addition, nitriding is an effective means of improving the wear resistance of steel materials, but nitriding progresses quickly in sintered alloys due to the inherent pores. If R or Ni is added to an iron-based sintered alloy, it will expand during the nitriding process and cause a large dimensional change, so it is not possible to include these alloying elements. Therefore, a nitrided layer having sufficient hardness cannot be obtained, and no significant effect can be expected in improving the wear resistance of iron-based sintered alloys through nitriding treatment.
本発明は上記のような問題点を解消し、寸法精度の良好
な焼結合金製であって、耐摩耗性の改善された摺動部材
及びその製造方法を提供することを目的としており、そ
の第1の発明は炭素0.3〜.2.0重量%、残部が実
質的に鉄からなる鉄基焼結合金を母材とし9、少なくと
も摺動表面層が気孔の周囲に四三酸化鉄と窒化鉄とが共
存する組織を有する耐摩耗性に優れた摺動部材に係り、
その第コ“の発明は炭素0.3〜2.0重量%、残部が
実質的に鉄からな9.6.0−A、lrg/ am”の
密度を有する鉄基焼結合金に蒸気処理を施して少なくと
も摺動表面層の気孔の周囲に四三酸化鉄を形成させ、次
アガスからなる混合ガス雰囲気中でガス軟窒化処理を施
すことを特徴とする上記第1の発明に係る摺動部材の製
造方法に係る。The present invention solves the above-mentioned problems, and aims to provide a sliding member made of a sintered alloy with good dimensional accuracy and improved wear resistance, and a method for manufacturing the same. The first invention is carbon 0.3~. The base material is an iron-based sintered alloy consisting of 2.0% by weight and the remainder substantially iron9, and at least the sliding surface layer has a structure in which triiron tetroxide and iron nitride coexist around the pores. Regarding sliding parts with excellent wear resistance,
The third invention is a method of steam-treating an iron-based sintered alloy having a density of 9.6.0-A, lrg/am, containing 0.3 to 2.0% by weight of carbon and the remainder being substantially iron. The sliding device according to the first aspect of the present invention is characterized in that triiron tetroxide is formed at least around the pores of the sliding surface layer, and then gas nitrocarburizing treatment is performed in a mixed gas atmosphere consisting of agas. It relates to a method of manufacturing a member.
発明者は研究の結果、鉄基焼結合金の窒化処理に先立っ
て水蒸気処理を施して気孔の周1!IK四三酸化鉄(1
・304)の皮膜を形成させ、次いで適量の二酸化炭素
(002)を含有する吸熱型ガスとアンモニア(liH
3)ガスとの混合ガス雰囲気中でガス軟窒化処理を施す
ととkよって、過度に深く窒化さ(ることなく、また甚
しい寸法変化を起すことなく、而も著しく耐摩耗性の改
善されな窒化表面層が得られることを見出した。その理
由は次のように考えられる。即ち、蒸気処理により気孔
の周囲に四三醗化鉄皮膜が形成されて焼結合金の耐摩耗
性と機械的強度、特に疲れ強さと衝撃値が改善され、次
の窒化処理に際して気孔中に侵入した前記混合ガスによ
って先ず上記四三酸化鉄が還元され、還元され丸鉄から
窒化が進行することによって、或−轄上記還元と窒化と
が同時に進行することによって原料粉粒子間の結合が強
化され、更に窒化によって生t&される高硬度の窒化鉄
の耐摩耗性改善作用及び未還元の四三酸化鉄の耐摩耗性
改善作用並びに両者の相乗作用によって苛酷な使用条件
下でも優れた耐摩耗性が発揮されるものと考えられる。As a result of research, the inventor conducted steam treatment prior to nitriding the iron-based sintered alloy to reduce the circumference of the pores. IK triiron tetroxide (1
・304) is formed, and then an endothermic gas containing an appropriate amount of carbon dioxide (002) and ammonia (liH) are formed.
3) When the gas nitrocarburizing treatment is performed in a mixed gas atmosphere, the wear resistance is significantly improved without excessively deep nitriding and without causing severe dimensional changes. The reason for this is thought to be as follows: the steam treatment forms a nitride film around the pores, which improves the wear resistance and mechanical properties of the sintered alloy. The mechanical strength, especially the fatigue strength and impact value, are improved, and during the next nitriding treatment, the mixed gas that has entered the pores first reduces the triiron tetroxide, and nitriding progresses from the reduced round iron. - By the above-mentioned reduction and nitriding proceeding simultaneously, the bond between the raw material powder particles is strengthened, and the wear resistance of the highly hard iron nitride produced by nitriding is improved, and the unreduced triiron tetroxide is It is thought that excellent abrasion resistance is exhibited even under severe usage conditions due to the abrasion resistance improving effect and the synergistic effect of both.
本発明摺動部材の母材の化学組成につ―て言えば、炭素
が0.3重量%未満では焼結合金の組織が大部分軟質の
フェライトとなって機械的強度が不足し、2.0重量%
を超えると遊離セメンタイトが多゛〈なって脆化するよ
うになるので、その含有量を゛0.3〜2.0重量%の
範囲とするのが良−0炭素以外の合金元素としては、銅
、ニッケル、クロム、モリブデン、バナジウム、チタン
及びニオブが焼結合金母材の!Is械的強度の改善と、
窒化層の硬さを上昇させて耐摩耗性の一層の改善に有効
である。Regarding the chemical composition of the base material of the sliding member of the present invention, if the carbon content is less than 0.3% by weight, the structure of the sintered alloy becomes mostly soft ferrite, resulting in insufficient mechanical strength. 0% by weight
If the content exceeds 0.3%, the amount of free cementite increases and becomes brittle, so it is best to keep the content within the range of 0.3 to 2.0% by weight.For alloying elements other than carbon, Copper, nickel, chromium, molybdenum, vanadium, titanium and niobium are sintered alloy base materials! Improving mechanical strength,
This is effective in increasing the hardness of the nitrided layer and further improving wear resistance.
本発明摺動部材の製造に供する鉄基焼結合金の密度はA
、0B10−未満で社高負荷の摺動条件下での使用に耐
えられない程に母材の機械的強度が不足するようになり
、ls、t g/ am’を超えると蒸気処理によって
生成される四三酸化鉄の量が少なくなって耐摩耗性改善
の効果が顕著ではないので、その範囲を6.0〜6.I
g/am’とするのが良い。The density of the iron-based sintered alloy used for manufacturing the sliding member of the present invention is A
, 0B10-, the mechanical strength of the base material becomes insufficient to the extent that it cannot withstand use under high-load sliding conditions; Since the amount of triiron tetroxide is small and the effect of improving wear resistance is not significant, the range is set to 6.0 to 6. I
It is better to set it as g/am'.
但し、焼結合金中の気孔社互に連なっており、蒸気処理
によって焼結合金の中心部迄四三酸化鉄が生成されるの
で、本発明摺動部材の母材の密度はこれよりも高い密度
となる。However, the pores in the sintered alloy are interconnected, and the steam treatment produces triiron tetroxide up to the center of the sintered alloy, so the density of the base material of the sliding member of the present invention is higher than this. becomes the density.
蒸気処理は水蒸気中で被処理材を320〜too”oに
加熱して行なうのが良い。この温度範囲内で処理すると
気孔の周HKIEIEf!I!化鉄(P・304)の皮
膜が形成されるのであるが、この温度範囲以外の温度に
加熱するとPeOやア・ZOSが生成されるようになっ
て前記のような効果が得られなくなる。処理時間は75
分間〜3時間で充分である。Steam treatment is preferably carried out by heating the material to be treated in water vapor to a temperature of 320 to 304 degrees. If the treatment is carried out within this temperature range, a film of iron oxide (P-304) will be formed around the pores. However, if heated to a temperature outside this temperature range, PeO and A-ZOS will be generated, making it impossible to obtain the above-mentioned effects.The processing time is 75%.
Minutes to 3 hours is sufficient.
窒化処理は二酸化炭素(00,)を0.≠〜/、1容穆
弧含有する吸熱型ガスとアンモニア(MH3)ガスとの
混合ガス雰囲気中で加熱し、気孔の周囲に生成されて−
る四三酸化鉄を還元しながら表面及び気孔の内壁面から
窒化させて―〈のであるが、吸熱型ガス中の二酸化炭素
が0.弘容積%未満では四三酸化鉄の還元が進行しすぎ
て四三酸化鉄が共存する窒化層が得られなくなり、また
遊離のフェライトが生成されて硬さが著しく低下し、耐
摩耗性を損なうようになる。また吸熱型ガス中の二酸化
炭素が1.j容積%を超えると四三酸化鉄を還元する能
力が低下し、四三酸化鉄皮膜が窒化の進行を阻止してそ
の結果、同一表面層中で窒化の進行した個所と窒化の進
行してψない個所とが局部的に共存する不均一な組織と
なって耐摩耗性の改善が不充分となる0従って吸熱型ガ
ス中の二酸化炭素の量はO0参〜1.!容積襲とするの
が良−のであるが、二酸化炭素の含有量は吸熱型ガス変
成に際して混合する空気の量を制御することによって制
御できる。また、窒化処理の雰囲気ガスは通例のガス軟
窒化に於ける吸熱型ガスとアンモニアガスとの比率と同
様に、上記ニー化炭素を含有する吸熱型ガスを容積比で
3θ〜70%、残部アンモニアガスとなるように混合し
た混合ガスを使用すれば良い。Nitriding treatment reduces carbon dioxide (00,) to 0. ≠~/, heated in a mixed gas atmosphere of endothermic gas and ammonia (MH3) gas containing 1 volume of phthalate, and generated around the pores -
While reducing triiron tetroxide, it is nitrided from the surface and the inner wall of the pores.However, carbon dioxide in the endothermic gas is reduced to 0. If it is less than 3% by volume, the reduction of triiron tetroxide will proceed too much, making it impossible to obtain a nitrided layer in which triiron tetroxide coexists, and free ferrite will be generated, resulting in a significant decrease in hardness and impairing wear resistance. It becomes like this. Also, carbon dioxide in endothermic gas is 1. If the amount exceeds J volume %, the ability to reduce triiron tetroxide decreases, and the triiron tetroxide film prevents the progress of nitriding. This results in a non-uniform structure in which areas with no ψ coexist locally, resulting in insufficient improvement in wear resistance. Therefore, the amount of carbon dioxide in the endothermic gas ranges from 0 to 1. ! Although it is better to increase the volume, the carbon dioxide content can be controlled by controlling the amount of air mixed during endothermic gas conversion. In addition, the atmosphere gas for the nitriding treatment is similar to the ratio of endothermic gas and ammonia gas in ordinary gas soft nitriding, and the endothermic gas containing the above carbon nitride is used in a volume ratio of 3θ to 70%, with the balance being ammonia gas. It is sufficient to use a mixed gas that is mixed to form a gas.
次に実験例について説明する。Next, an experimental example will be explained.
平均粒度107t’の天然黒鉛粉を40重量%、残部−
700メツシユの噴霧鉄粉となるように配合した原料粉
に潤滑剤としてステアリン醗亜鉛/重量弧を添加し、混
合した混合粉を金型中で夕i / o−の成形圧で圧縮
成形して圧粉体とし、該圧粉体をAX(アンモニア分解
)ガス中テ1iso’oにり0分間加熱して厚さ/(7
mmの板状焼結体とした。該焼結体の密度はlp、7
g/ a m”、炭素含有ilは分析の結果、0.♂j
重量外であった。40% by weight of natural graphite powder with an average particle size of 107t', the balance -
Zinc stearin/weight arc was added as a lubricant to the raw material powder blended to make 700 mesh of atomized iron powder, and the mixed powder was compression molded in a mold at a molding pressure of 1/2 o-. The green compact is heated in AX (ammonia decomposition) gas for 0 minutes to a thickness of 7
It was made into a plate-shaped sintered body of mm. The density of the sintered body is lp, 7
g/am”, carbon-containing il is 0.♂j as a result of analysis
It was overweight.
この焼結体を水蒸気中で370’Ot/C2時間加熱し
て蒸気処理を行い、次−で二酸化炭素o、を容積弧を含
むPX(プレパン変成)ガスとアンモニアガスを容積比
で等量混合した混合ガス雰囲気中で370′Oに120
分間加熱のガス軟窒化処理を施し、以下の試験を行った
。比較材きしてRXガス中の二酸化炭素含有量を0.2
容積%とし、その他は上記本発明摺動部材(以下、本発
明材と呼為)と同様にして製作したものについて同様の
試験を行った。This sintered body is heated in water vapor at 370'Ot/C for 2 hours to perform steam treatment, and then carbon dioxide o, PX (prepan metamorphosed) gas containing a volume arc and ammonia gas are mixed in equal amounts by volume. 120 to 370'O in a mixed gas atmosphere
Gas nitrocarburizing treatment was performed by heating for a minute, and the following tests were conducted. Using comparative materials, the carbon dioxide content in the RX gas was 0.2.
The same test was conducted on a product manufactured in the same manner as the above-mentioned sliding member of the present invention (hereinafter referred to as the present invention material) except for the volume%.
組織観察
表面から内部に向って顕微鏡組織を観察した結果は第2
図社第1図に示す通りである。第1図は本発明材の表面
層の表面に垂直の断面の組織を示す倍率100倍の顕微
鏡写真、第2図社第1図に示す表面から0./龜〜Q、
3京ramの深さの範囲の倍率≠OO倍の顕微鏡写真、
第3図は表面から0.2mm研削除去した位置の表面に
平行な面の組織を示す倍率ダOO倍の顕微鏡写真である
。図中、CI)FA衣表面(2社気孔、■は四三酸化鉄
、(財)はε(162〜3N)相、(!!’5tjパー
ライトである。Tissue observation The results of microscopic structure observation from the surface to the inside are shown in the second
It is as shown in Figure 1 of Zusha. FIG. 1 is a micrograph at a magnification of 100 times showing the structure of a cross section perpendicular to the surface of the surface layer of the material of the present invention. /龜〜Q、
A micrograph with a magnification of ≠ OO times in a depth range of 3 trillion rams,
FIG. 3 is a micrograph at a magnification of 0.00 to 0.0 times showing the structure of a plane parallel to the surface at a position where 0.2 mm from the surface has been removed by polishing. In the figure, CI) FA coating surface (2 companies pores, ■ indicates triiron tetroxide, (I) indicates ε (162-3N) phase, (!!'5tj pearlite).
第1図から本発明材は表面から約0.3mmの深さにε
相(ロ)が多量に生成されていることが、第2図から表
面から少なくとも0./’@〜0.3Lmの深さの間圧
で岐西三酸化鉄■とε相(ロ)とが共存してψることが
判る。ε相(ロ)の中にFi極めて微細な黒点が散在し
ているものが見られるが、この黒点は四三酸化鉄が還元
される際に分離した酸素が外部に放出した跡と考えられ
る。第3図から、表面からO42amの深さの位置では
気孔@、四三酸化鉄■、ε相に)及びパーライト■が共
存していることが判る。From Figure 1, the material of the present invention has a depth of about 0.3 mm from the surface.
From FIG. 2, it can be seen that a large amount of phase (b) is generated at least 0.0 mm from the surface. It can be seen that Gisai iron trioxide (■) and ε phase (B) coexist and ψ at a depth of /'@~0.3Lm. Very fine black spots of Fi can be seen scattered in the ε phase (b), and these black spots are thought to be traces of oxygen released to the outside when triiron tetroxide is reduced. From FIG. 3, it can be seen that at a depth of O42 am from the surface, pores @, triiron tetroxide (2), ε phase) and pearlite (2) coexist.
第≠図は比較材の表面層の表面に垂直の断面の組織を示
す倍率10O倍の顕微鏡写真、第5図は第μ図に示す表
面から0. OA −0,211m mの深さの範囲の
倍率弘OO倍の顕微鏡写真である・図中、(/ハは表面
、(/のは気孔、(/→はε相、(#)はパーライトで
ある。比較材では表面層にε相(/4Qが生成されてい
るが、本発明材とは異なり、表面層中に四三酸化鉄が詔
められず、第5図には遊離の7エライト(/J)が僅か
乍ら詔められる。Figure ≠ is a micrograph at a magnification of 100 times showing the structure of a cross section perpendicular to the surface of the surface layer of the comparative material, and Figure 5 is a micrograph showing the structure of the surface layer of the comparative material at a magnification of 100 times from the surface shown in Figure μ. This is a micrograph with a magnification of 0.00 times in the depth range of OA -0.211 mm.In the figure, (/Ha is the surface, (/ is the pores, (/→ is the ε phase, and (#) is the pearlite. In the comparative material, the ε phase (/4Q) is generated in the surface layer, but unlike the present invention material, triiron tetroxide is not present in the surface layer, and Figure 5 shows free 7-elite. (/J) is slightly criticized.
これらの相は後述するX1m回折試験によって夫々の成
分が確認された。The respective components of these phases were confirmed by the X1m diffraction test described below.
X@回折試験
表面から内部に向って成分相をXI#回折によつて調べ
たところ、第1表に示す結果が得られた。X@ Diffraction Test The component phases were examined by XI# diffraction from the surface toward the inside, and the results shown in Table 1 were obtained.
表中εFi1・2〜3Msαはフェライトである。a
(7エライト)蝶パーライト中のフェライトと遊離のフ
ェライトとが合計されて検出されるので、表には前記顕
微鏡による組織観察での遊離7エライトの有無が併記し
である。◎印は多量に検出されたことを、○印は少量で
あるが検出されたことを、X印社検出されなかったこと
を夫々示す。In the table, εFi1.2 to 3Msα is ferrite. a
(7-Elite) Since ferrite in butterfly pearlite and free ferrite are detected in total, the table also shows the presence or absence of free 7-Elite as observed in the microscopic structure observation. The mark ◎ indicates that a large amount was detected, the mark ○ indicates that a small amount was detected, and the mark X indicates that it was not detected.
表から、本発明材、比較材共に表面から0.1mmの深
さ迄の範囲では四三酸化鉄が窒化時に還元され尽されて
認められなくなっていて殆どε相からなっており、ε相
は表面から0.2vnrn迄の深さの範囲で多量に生成
されていることが判る。From the table, it can be seen that in the range from the surface to a depth of 0.1 mm for both the inventive material and the comparative material, triiron tetroxide is reduced and exhausted during nitriding and is no longer observed, and is almost composed of the ε phase. It can be seen that a large amount is generated in a depth range of 0.2vnrn from the surface.
また、本発明材で社表面からOl、2〜0.1mm、の
深さの範囲でε相と四三酸化鉄が共存してお鰺、遊離フ
ェライトが認められないのに対し、比較材では四三酸化
鉄が表面から0.jwrwaの位置でようやく検出され
、四三酸化鉄と共存して−るの轄避離フェライトである
。本発明材と比較材との上記の差異は前述の顕微鏡によ
る組織観察によっても認められるところである。In addition, in the inventive material, the ε phase and triiron tetroxide coexist in the depth range of 2 to 0.1 mm from the surface, and no free ferrite is observed, whereas in the comparative material, Triiron tetroxide is 0.0% from the surface. Finally, it was detected at the location of JWRWA, and it is the ferrite that coexists with triiron tetroxide. The above-mentioned difference between the material of the present invention and the comparative material is also recognized by the above-mentioned microscopic observation of the structure.
硬さ試験
表面から内部へ向って200gの荷重で!イクpビッカ
ース硬さを測走し、硬さの変化を求めたところ、第6図
に示す結果が得られた。Hardness test with a load of 200g from the surface to the inside! When the Vickers hardness was measured and the change in hardness was determined, the results shown in FIG. 6 were obtained.
同図から、本発明材は表面から0.3mmの深さ迄硬さ
の低下が僅少であり、比較材は表面から0.2myaの
深さの位置で硬さの急激な低下を示しており、本発明材
が耐摩耗性に優れていることが理解できる。From the same figure, the hardness of the inventive material shows a slight decrease up to a depth of 0.3 mm from the surface, while the comparative material exhibits a sharp decrease in hardness at a depth of 0.2 mya from the surface. , it can be seen that the material of the present invention has excellent wear resistance.
摩耗試験
前記本発明材、前記比較材及び他の比較材として鋳鉄1
030を冷し金を使用して強制チルさせて製作した従来
の摺動部材について厚さJmmの試験片を採取し、大越
式迅速摩耗試験機を使用して表面層の摩耗試験を行った
。なお、本発明材については窒化処理のままのもの及び
表面層を002mm研削除去して四三酸化鉄とε相とが
共存する層を表面としたものの両者について試験した。Wear test The present invention material, the comparative material, and cast iron 1 as another comparative material.
A test piece with a thickness of Jmm was taken from a conventional sliding member manufactured by forcibly chilling 030 using a cold metal, and a wear test on the surface layer was performed using an Okoshi type rapid wear tester. The materials of the present invention were tested both as-is as nitrided and after the surface layer was ground by 002 mm to form a layer in which triiron tetroxide and ε phase coexisted on the surface.
試験条件は以下の通りである。最終荷重+4.Jkp、
摩擦速度:/、/4’m/sea、摩擦距離’ Aoo
rn。The test conditions are as follows. Final load +4. Jkp,
Friction speed: /, /4'm/sea, friction distance' Aoo
rn.
潤滑油:AO”oのモーターオイル4130を/滴/s
ea供給、相手ローター材、+HHOJOの硬さを有す
るクロムモリブデン鋼80M≠3j。Lubricating oil: AO”o motor oil 4130/drop/s
ea supply, mating rotor material, chrome molybdenum steel 80M≠3j with hardness of +HHOJO.
試験結果は第7図に示す通りである。0.2容積%の二
酸化炭素を含む吸熱型ガスを混合した混合ガス中で窒化
した比較焼結合金材は摩耗量が最も多く、窒化処理のま
まの本発明材はこれに比べて大幅に摩耗量が少なくなっ
ており、耐摩耗性が著しく改善され、従来のチル鋳鉄に
比べても優れた耐摩耗性を有してφることが判る。更に
表面層をO0λIll!!1研削除来した本発明材は窒
化処理のままの本発明材に比べて更に耐摩耗性が改善さ
れている。以上の結果から、四三酸化鉄と窒化鉄とが共
存する組織とすることが耐摩耗性改@に大きく寄与する
ことが理解できよう。The test results are shown in FIG. The comparison sintered alloy material nitrided in a mixed gas containing an endothermic gas containing 0.2% by volume of carbon dioxide had the highest amount of wear, and the inventive material as nitrided showed significantly more wear than this. It can be seen that the wear resistance is significantly improved, and the wear resistance is superior to that of conventional chilled cast iron. Furthermore, the surface layer is O0λIll! ! The wear resistance of the material of the present invention which has undergone one grinding process is further improved compared to the material of the present invention which has been subjected to nitriding treatment. From the above results, it can be understood that creating a structure in which triiron tetroxide and iron nitride coexist greatly contributes to improved wear resistance.
以上説明したように、本発明摺動部付置苛酷な使用条件
下でも優れた耐摩耗性を有しており、而も焼結合金に特
有の良好な寸法精度と気孔の存在による良好な保油性を
備えており、またその製造方法は焼結合金に蒸気処理と
所定の雰囲気ガスによる窒化処理を施すだけであって、
特殊な設備を必要とせず、工業上の利用価値は大きい。As explained above, the sliding part of the present invention has excellent wear resistance even under severe usage conditions, and also has good dimensional accuracy and good oil retention due to the presence of pores, which are unique to sintered alloys. The manufacturing method is simply to subject the sintered alloy to steam treatment and nitriding treatment with a specified atmospheric gas,
It does not require special equipment and has great industrial utility value.
第1図〜第3図は本発明摺動部材の表面層の組織を示す
顕微鏡写真、第≠図及び第5図は比較材の表面層の組織
を示す顕微鏡写真である。
■及び(/必は気孔、(J)は四三酸化鉄、に)及び(
/4Qはε(y・2〜3N)相である。
11h乙図は窒化層の表面から内部へ向っての硬さの変
化を示すグラフ、第7図は大越式迅速摩耗試験機による
摩耗試験の結果を示すグラフである。
第
第
x4すυ
第6図
jllT図1 to 3 are microscopic photographs showing the structure of the surface layer of the sliding member of the present invention, and FIGS. 1 and 5 are microscopic photographs showing the structure of the surface layer of the comparative material. ■ and (/must means stomata, (J) means triiron tetroxide) and (
/4Q is the ε(y·2-3N) phase. Figure 11h is a graph showing the change in hardness from the surface of the nitrided layer toward the inside, and Figure 7 is a graph showing the results of an abrasion test using an Okoshi rapid abrasion tester. Figure x4th υ Figure 6 jllT figure
Claims (1)
らなる鉄基焼結合金を母材とし、少なくとも摺動表面層
が気孔の肩m!に四三拳化鉄と窒化鉄とが共存する組輪
を有する耐摩耗性に優れた摺動部材。 2 炭素0.3〜20重量襲重量部が実質船に鉄からな
り、6.0〜6、Ig/ omlの密度を有する鉄基焼
結合金に蒸気処理を施して少なくとも摺動表面層の気孔
の周囲に四三酸化鉄を形成させ、ンモエアガスからなる
混合ガス零囲気中でガス軟窒化処理を施すことを特徴と
する、炭素0.3〜20重量襲重量部が実質的に鉄から
なる鉄基焼結合金を母材とし、少なくとも摺動表面層が
気孔の周囲に四三酸化鉄と窒化鉄とが共存する組織を有
する耐摩耗性に優れた摺動部材の製造方法0[Claims] / The base material is an iron-based sintered alloy consisting of 0.3 to 2.0% by weight of carbon and the remainder substantially iron, and at least the sliding surface layer has pore shoulders m! A sliding member with excellent wear resistance that has a combination ring in which four-three-layered iron and iron nitride coexist. 2. Steam treatment is applied to an iron-based sintered alloy containing 0.3 to 20 parts by weight of carbon and having a density of 6.0 to 6,000 g/oml to remove at least the pores of the sliding surface layer. iron tetroxide is formed around the iron tetroxide, and gas nitrocarburizing treatment is performed in a zero atmosphere of a mixed gas consisting of nimoair gas. Method for producing a sliding member with excellent wear resistance, using a base sintered alloy as a base material and having at least a sliding surface layer having a structure in which triiron tetroxide and iron nitride coexist around pores 0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11717281A JPS5819414A (en) | 1981-07-28 | 1981-07-28 | Sliding member and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11717281A JPS5819414A (en) | 1981-07-28 | 1981-07-28 | Sliding member and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5819414A true JPS5819414A (en) | 1983-02-04 |
Family
ID=14705218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11717281A Pending JPS5819414A (en) | 1981-07-28 | 1981-07-28 | Sliding member and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5819414A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186489A (en) * | 1984-03-02 | 1985-09-21 | 同和鉱業株式会社 | Soft nitration for sintered part and device therefor |
US5087181A (en) * | 1989-03-06 | 1992-02-11 | Hitachi, Ltd. | Sliding structure such as compressor or the like |
US7862238B2 (en) * | 2006-03-31 | 2011-01-04 | Panasonic Corporation | Hydrodynamic bearing rotary device and information apparatus |
JP2020018730A (en) * | 2018-08-03 | 2020-02-06 | 錦見鋳造株式会社 | Kitchenware manufacturing method and kitchenware |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5312735A (en) * | 1976-07-22 | 1978-02-04 | Midland Ross Corp | Surface hardening of metallic sintered compacts |
-
1981
- 1981-07-28 JP JP11717281A patent/JPS5819414A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5312735A (en) * | 1976-07-22 | 1978-02-04 | Midland Ross Corp | Surface hardening of metallic sintered compacts |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186489A (en) * | 1984-03-02 | 1985-09-21 | 同和鉱業株式会社 | Soft nitration for sintered part and device therefor |
JPH0470391B2 (en) * | 1984-03-02 | 1992-11-10 | Dowa Mining Co | |
US5087181A (en) * | 1989-03-06 | 1992-02-11 | Hitachi, Ltd. | Sliding structure such as compressor or the like |
US7862238B2 (en) * | 2006-03-31 | 2011-01-04 | Panasonic Corporation | Hydrodynamic bearing rotary device and information apparatus |
JP2020018730A (en) * | 2018-08-03 | 2020-02-06 | 錦見鋳造株式会社 | Kitchenware manufacturing method and kitchenware |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2322768T3 (en) | IRONED BASED IRON WHEELS PRODUCED BY A PROCESS THAT INCLUDES UNIAXIAL COMPRESSION, SINTERIZATION AND SURFACE DENSIFICATION. | |
JP4891421B2 (en) | Powder metallurgy mixture and method for producing powder metallurgy parts using the same | |
US4970049A (en) | Sintered materials | |
JP2687125B2 (en) | Sintered metal compact used for engine valve parts and its manufacturing method. | |
JP5992402B2 (en) | Manufacturing method of nitrided sintered component | |
JP2000510909A (en) | Gear | |
JPS583901A (en) | Manufacture of sliding member | |
JPS59104454A (en) | Anti-wear sintered alloy | |
CN109604611A (en) | A kind of powder metallurgy prepares the forming method of wear-and corrosion-resistant high-entropy alloy gear | |
JP6431012B2 (en) | Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy | |
JPS5819414A (en) | Sliding member and its manufacture | |
JP2001295915A (en) | Sintered sprocket for silent chain and method of manufacturing the same | |
JP3572078B2 (en) | Method of manufacturing sintered parts | |
US4909843A (en) | Highly wear-resistant iron-nickel-copper-molybdenum sintered alloy with addition of phosphorous | |
Riofano et al. | Study of the wear behavior of ion nitrided steels with different vanadium contents | |
Predki et al. | Influence of hardening on the microstructure and the wear capacity of gears made of Fe1. 5Cr0. 2Mo sintered steel | |
JPS62164850A (en) | Wear resistant ferrous sintered alloy and its production | |
JPS58171562A (en) | Treatment of heavy alloy to enhance oxidation resistance at high temperature | |
JP3795402B2 (en) | Cast iron-based sintered sliding member and manufacturing method thereof | |
JPS6111309B2 (en) | ||
JPH0114985B2 (en) | ||
JPS5811762A (en) | Sliding member | |
JPS59118859A (en) | Sliding member | |
JPH11140603A (en) | Wear resistant sintered alloy material for part of compressor | |
Whittle et al. | Sliding-wear evaluation of boronized austenitic alloys |