JPS58171562A - Treatment of heavy alloy to enhance oxidation resistance at high temperature - Google Patents
Treatment of heavy alloy to enhance oxidation resistance at high temperatureInfo
- Publication number
- JPS58171562A JPS58171562A JP19962582A JP19962582A JPS58171562A JP S58171562 A JPS58171562 A JP S58171562A JP 19962582 A JP19962582 A JP 19962582A JP 19962582 A JP19962582 A JP 19962582A JP S58171562 A JPS58171562 A JP S58171562A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- oxidation resistance
- heavy
- alloy
- heavy alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C12/00—Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は重合金(90重量%タングステン残り鉄および
ニッケルまたは90iii%タングステン残り銅および
二ッケルノの大気中における耐高温酸化性全向上させる
とともに1重合金の表面硬さを増す方法に関する。Detailed Description of the Invention The present invention improves the high temperature oxidation resistance of heavy alloys (90% by weight tungsten residual iron and nickel or 90iii% tungsten residual copper and nickel) in the atmosphere and also increases the surface hardness of the single heavy alloy. Regarding how to increase.
重合金はその密度が約179/c−と大きく、またタン
グステンに比べて機械加工性も良好であるので、ジャイ
ロ・コンパスの回転子や計器のクランクのカウンター・
ウェイト、原子力用材料など。Heavy alloys have a high density of about 179/c-, and are easier to machine than tungsten, so they are used for counters and counters in rotors of gyro compasses and instrument cranks.
Weights, materials for nuclear power, etc.
とくに小容積で高重量全要求される部分に使用されてい
る。また(タングステン−30クロム)−5珪素からな
る焼結体はきわめて耐高温酸化性にすぐれており、大気
中1200℃の高温でも酸化しないが機械IJDT性が
困難であるという欠点がある。本発明はこの(タングス
テン−30クロム)−5珪素焼結体の欠点全改良するた
めに1機械加工性の良い重合金にクロム、シリコン全同
時拡散させて。It is especially used in parts that require small volume and high weight. Further, a sintered body made of (tungsten-30chromium)-5 silicon has extremely high temperature oxidation resistance and does not oxidize even in the atmosphere at a high temperature of 1200°C, but has the disadvantage that mechanical IJDT properties are difficult. The present invention aims to improve all the drawbacks of this (tungsten-30chromium)-5 silicon sintered body by simultaneously diffusing chromium and silicon into a heavy alloy with good machinability.
その表面に(タングステン−30クロム)−s珪mの組
成に近似な相全形成させ、その後さらに窒化処理全行な
うことにより窒化珪素(Si、N4J の高硬度物質
の生成、窒化クロム(CrN )の析出硬化により耐摩
耗性全もたせたものである。本発明Gこよる処理を施し
た重合金は上述の利点の他に、鋳鉄、アルミニウム基合
金とのぬれ性が悪いという特徴音もっている。従って本
発明による処理音節された重合金は、その耐高温酸化性
、耐摩耗性がすぐれていること、鋳鉄、アルミニウム基
合金とのぬれ性が悪いという特徴を有するので、ダイキ
ャスト用工具として有効であり、溶湯による酸化摩耗、
浸蝕全防ぐことができる。その池高温、摩耗部分に用い
られる部品として有効である。クロム、珪素の重合金へ
の拡散により耐高温酸化性が増すのはクロム、珪素の緻
密な酸化皮膜が形成されるので、それ以上の酸化の進行
舎防ぐためであり、同時に酸性溶液に対する耐蝕性も増
加させる。A phase with a composition similar to that of (tungsten-30 chromium)-s silicon is completely formed on the surface, and then a complete nitriding treatment is performed to form highly hard materials such as silicon nitride (Si, N4J) and chromium nitride (CrN). It has complete wear resistance due to precipitation hardening.In addition to the above-mentioned advantages, the heavy alloy treated according to the method of the present invention also has the characteristic sound of poor wettability with cast iron and aluminum-based alloys. The treated heavy alloy according to the present invention is effective as a die-casting tool because it has excellent high-temperature oxidation resistance, excellent wear resistance, and poor wettability with cast iron and aluminum-based alloys. Yes, oxidation wear due to molten metal,
Erosion can be completely prevented. It is effective as a part used in high temperature and wear parts. The reason why high temperature oxidation resistance increases due to the diffusion of chromium and silicon into heavy alloys is that a dense oxide film of chromium and silicon is formed, which prevents further oxidation, and at the same time improves corrosion resistance against acidic solutions. Also increases.
従って重量感のある装蝕部品などにも用いられる。Therefore, it is also used for decorative parts that have a heavy feel.
以下実施例により詳細に説明する。This will be explained in detail below using examples.
実施例1
平均粒子径1.5μmのタングステン粉末全重量比で9
0%、3μmのカーボニル・ニッケル粉末を7%および
3μmのカーボニル・鉄粉t−3%ボールミルで48時
時間式混合?行ない、乾燥させた後渭滑剤としてパラフ
ィン全重量比で1%添加した。Example 1 Total weight ratio of tungsten powder with an average particle size of 1.5 μm is 9
0%, 3μm carbonyl/nickel powder mixed with 7% and 3μm carbonyl/iron powder T-3% in a ball mill for 48 hours? After drying, paraffin was added in an amount of 1% by total weight as a lubricant.
混合粉末は1m/e+dの加圧力で圧縮成形し、水素中
800℃1時間の加熱処理を行なψ、パラフィン全完全
に除去した後、水素中で1450℃、1時間焼結全行な
った。焼結体は手品研削全行ない9表面粗さk Ra
−5μmに仕上げ、クロム、珪素全粉末拡・散性により
拡散させた。拡散用粉末は一250メツシュのクロム粉
末全重量比で60%、 −300メツシュ■珪素粉末全
20%、および焼結阻害剤として一150メツシュのア
ルミナ粉末ヲ20%混合した後、拡散促進剤として塩化
アンセン05%全添加混合した。The mixed powder was compression molded under a pressure of 1 m/e+d, heat treated in hydrogen at 800°C for 1 hour to completely remove all paraffin, and then sintered in hydrogen at 1450°C for 1 hour. The sintered body undergoes complete magic grinding to achieve a surface roughness of 9.
It was finished to -5 μm and diffused using the chromium and silicon whole powder dispersibility. The diffusion powder was mixed with 1250 mesh chromium powder (60% by weight), -300 mesh silicon powder (20%), and 1150 mesh alumina powder (20%) as a sintering inhibitor, and then as a diffusion promoter. Anthene chloride (05%) was added and mixed.
焼結した重合金試料全黒鉛るつぼ内に入れた拡散用粉末
中に埋没させ、真空(1O−3Torr )中で、12
00℃、4時間加熱しクロムおよび珪素全拡散させた後
、アンモニアガス全台む窒素ガス気流中において、 1
100℃、2時間加熱し表面の窒化処理全行なった。The sintered heavy alloy sample was immersed in a diffusion powder placed in an all-graphite crucible and heated for 12 hours in a vacuum (10-3 Torr).
After heating at 00°C for 4 hours to completely diffuse chromium and silicon, in a nitrogen gas stream containing ammonia gas, 1
The entire surface was nitrided by heating at 100° C. for 2 hours.
クロム、珪素の拡散処理全行なったものおよび無処理の
ものについて、大気中において酸化試験を行なった結果
全表1に示す。Table 1 shows the results of an oxidation test conducted in the atmosphere on the specimens that were subjected to chromium and silicon diffusion treatment and those that were not treated.
表1 酸化増量
無処理のものに比較して、クロム、珪素全拡散させたW
−7Ni −3Fe重合金は高温における耐酸化性に
関して非常にすぐれた結果?示した。次に無機酸に対す
る腐蝕試験の結果を表2に示fO表2 腐蝕試験結果
温度:20℃
無処理のものに比較してクロム、珪素全拡散させたもの
は′、とくに塩酸、硫酸に対してすぐれた耐食性全示し
た。Table 1 Compared to that without oxidation weight increase treatment, W with chromium and silicon fully diffused
-7Ni -3Fe heavy alloy has very good results in terms of oxidation resistance at high temperatures? Indicated. Next, the results of the corrosion test against inorganic acids are shown in Table 2. Corrosion test results Temperature: 20°C Compared to the untreated one, the one in which chromium and silicon were fully diffused was particularly resistant to hydrochloric acid and sulfuric acid. All exhibited excellent corrosion resistance.
拡散処理後、窒化処理全行なった試料について、表面硬
さを測定した結果全表3に示す。Table 3 shows the results of measuring the surface hardness of the samples which were completely nitrided after the diffusion treatment.
表3 硬さ測定結果(Hv、 100#J拡散処理
後、窒化処理全行したものは1表面の硬さが窒化物生成
により増加している。Table 3 Hardness measurement results (Hv, 100 #J After the diffusion treatment, the hardness of the surface of the specimens that were completely nitrided increased due to the formation of nitrides.
次に溶融した鋳鉄およびアルミ合金(JIS :AC4
B)に対するぬれ性をみるために、ぬれ角度を測定した
。鋳鉄の場合120°、アルミ合金の場合135゜であ
った。このことからぬれ性が悪くダイキャスト用金型な
どに適することが判った。Next, melted cast iron and aluminum alloy (JIS: AC4
In order to examine the wettability for B), the wetting angle was measured. The angle was 120° for cast iron and 135° for aluminum alloy. This indicates that it has poor wettability and is suitable for die casting molds.
実施例2
平均粒子径15μmのタングステン粉末7重量比で90
%、6μmのカーボニル・ニッケル粉末全6%および4
μmの銅粉全4%、ボールミルで48時時間式混合全行
ない乾燥させた後、実施例1と同様にしてW 6Ni
−4Cu重合金を製造し、クロム、珪素の拡散処理後、
窒化処理全行なった。得られた試料について測定した結
果、クロム、珪素の拡散処理後の高温耐酸化については
、実施例1におけるW 7Ni−3p’e合金に関す
るものと同様良好であった。無機酸溶液中における腐蝕
試験の結果全表4に示す。Example 2 Tungsten powder with an average particle size of 15 μm at a weight ratio of 7 to 90
%, 6 μm carbonyl nickel powder total 6% and 4
A total of 4% of μm copper powder was mixed in a ball mill for 48 hours and dried, and then W 6Ni was mixed in the same manner as in Example 1.
-4Cu heavy alloy is manufactured, and after chromium and silicon diffusion treatment,
All nitriding treatments were performed. As a result of measurements on the obtained sample, the high-temperature oxidation resistance after the chromium and silicon diffusion treatment was as good as that for the W7Ni-3p'e alloy in Example 1. The complete results of the corrosion test in an inorganic acid solution are shown in Table 4.
表4 腐蝕試験結果
表4では硝酸溶液中における耐蝕性がとくに向上してψ
る。Table 4 Corrosion test results Table 4 shows that the corrosion resistance in nitric acid solution was particularly improved.
Ru.
拡散処理後、実施例1と同様な方法で窒化処理を行なっ
た試料の表面の硬さを測定した結果は表5に示されるよ
うに硬さの向上がみられた。After the diffusion treatment, the surface hardness of the sample was nitrided in the same manner as in Example 1. As shown in Table 5, the hardness was improved.
またこの試料に対する鋳鉄、アルミ合金のぬれ性は実施
例1と同様な結果全示した。Furthermore, the wettability of cast iron and aluminum alloy for this sample showed all the same results as in Example 1.
Claims (1)
ニッケルまたは90iii%タングステン、残り銅およ
びニッケルフにクロムおよび珪素全同時拡散させた後、
窒化処理を行ない、大気中における耐高温酸化性の向上
および表面硬さをも増すことを特徴とする重合金の耐高
温酸化処理法/, Heavy alloy (90% by weight tungsten, remaining iron and nickel or 90iii% tungsten, remaining copper and nickel) after all simultaneous diffusion of chromium and silicon,
A high-temperature oxidation-resistant treatment method for heavy alloys, which is characterized by performing nitriding treatment to improve high-temperature oxidation resistance in the atmosphere and also increase surface hardness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19962582A JPS58171562A (en) | 1982-11-12 | 1982-11-12 | Treatment of heavy alloy to enhance oxidation resistance at high temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19962582A JPS58171562A (en) | 1982-11-12 | 1982-11-12 | Treatment of heavy alloy to enhance oxidation resistance at high temperature |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51050173A Division JPS5814502B2 (en) | 1976-04-30 | 1976-04-30 | High temperature oxidation treatment method for heavy alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58171562A true JPS58171562A (en) | 1983-10-08 |
JPS61424B2 JPS61424B2 (en) | 1986-01-08 |
Family
ID=16410958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19962582A Granted JPS58171562A (en) | 1982-11-12 | 1982-11-12 | Treatment of heavy alloy to enhance oxidation resistance at high temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58171562A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2408752A (en) * | 2001-07-03 | 2005-06-08 | Honda Motor Co Ltd | Multicomponent sintered body and ceramic powder made therefrom |
US7326273B2 (en) | 2001-07-03 | 2008-02-05 | Honda Giken Kogyo Kabushiki Kaisha | Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof |
CN104630724A (en) * | 2013-11-07 | 2015-05-20 | 中国科学院兰州化学物理研究所 | CrN/Cr/Si3N4/Cr multi-layer wear-resistant corrosion-resistant thin film material and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03112310A (en) * | 1989-09-25 | 1991-05-13 | Tohoku Electric Power Co Inc | Simultaneous laying of electric cable and optical cable receiving tube into conduit line |
-
1982
- 1982-11-12 JP JP19962582A patent/JPS58171562A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2408752A (en) * | 2001-07-03 | 2005-06-08 | Honda Motor Co Ltd | Multicomponent sintered body and ceramic powder made therefrom |
GB2408752B (en) * | 2001-07-03 | 2005-07-20 | Honda Motor Co Ltd | Method of maunfacturing multicomponent ceramics powder or sintered body thereof |
US7326273B2 (en) | 2001-07-03 | 2008-02-05 | Honda Giken Kogyo Kabushiki Kaisha | Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof |
US7615185B2 (en) | 2001-07-03 | 2009-11-10 | Honda Giken Kogyo Kabushiki Kaisha | Multicomponent ceramics powder, method of manufacturing multicomponent ceramics powder, sintered body, and method of manufacturing sintered body |
CN104630724A (en) * | 2013-11-07 | 2015-05-20 | 中国科学院兰州化学物理研究所 | CrN/Cr/Si3N4/Cr multi-layer wear-resistant corrosion-resistant thin film material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS61424B2 (en) | 1986-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3191665B2 (en) | Metal sintered body composite material and method for producing the same | |
US20090314448A1 (en) | Method for production of metal material | |
JPS58171562A (en) | Treatment of heavy alloy to enhance oxidation resistance at high temperature | |
Pettersson et al. | Cyclic oxidation performance of silicon-alloyed stainless steels in dry and moist air | |
JPH09263906A (en) | Iron-nickel-chrome-alum. ferritic alloy and its production | |
JP2010105022A (en) | Surface-modified steel and precision casting method for casting having modified surface | |
JP3154403B2 (en) | Coating mold | |
WO2018198913A1 (en) | Metal matrix composite | |
US2994600A (en) | Iron powder for making sintered iron articles | |
JPS5819414A (en) | Sliding member and its manufacture | |
JP3195497B2 (en) | Surface treatment method for tungsten heavy alloy and weight treated with the method | |
JPS5814502B2 (en) | High temperature oxidation treatment method for heavy alloys | |
JPH06179938A (en) | High strength and low expansion cast iron and production thereof | |
JPS60165339A (en) | W-base sintered alloy for die cast mold member | |
JP3175589B2 (en) | Coating material for iron-based casting, iron-based casting provided with coating layer using the same, and method of forming coating layer therefor | |
JPH06122957A (en) | Surface treatment ferritic stainless steel | |
CN110863172A (en) | Cr-Si-Zr-B permeating agent and application method thereof on tantalum and tantalum alloy surface | |
JP6897798B2 (en) | Heat resistant cast steel and turbocharger parts | |
JP2922248B2 (en) | Manufacturing method of sintered alloy with excellent corrosion resistance | |
JP2643741B2 (en) | Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines | |
JPH04131352A (en) | Al-si-mg sintered alloy having excellent wear resistance | |
JPS59118859A (en) | Sliding member | |
JP2022063501A (en) | Hard particle, sliding member, and production method for sintered alloy | |
JPS63153245A (en) | Die for zn and zn-alloy die casting made of dispersion-strengthened-type sintered alloy steel | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same |