JPS6111309B2 - - Google Patents

Info

Publication number
JPS6111309B2
JPS6111309B2 JP13404881A JP13404881A JPS6111309B2 JP S6111309 B2 JPS6111309 B2 JP S6111309B2 JP 13404881 A JP13404881 A JP 13404881A JP 13404881 A JP13404881 A JP 13404881A JP S6111309 B2 JPS6111309 B2 JP S6111309B2
Authority
JP
Japan
Prior art keywords
pores
nitriding
sample
phase
nitrided layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13404881A
Other languages
Japanese (ja)
Other versions
JPS5837155A (en
Inventor
Masaharu Myano
Motoaki Shibano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP13404881A priority Critical patent/JPS5837155A/en
Publication of JPS5837155A publication Critical patent/JPS5837155A/en
Publication of JPS6111309B2 publication Critical patent/JPS6111309B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性に優れた鉄基焼結合金製摺動
部材に関する。 例えば内燃機関のカム、タベツト、オイルポン
プのハウジング等の苛酷な使用条件下で使用され
る摺動部品の材料は耐摩耗性に優れていることが
要求され、従来からチル鋳鉄や合金鋳鉄に熱処理
を施して少なくとも摺動表面層を硬化させたもの
が使用されている。ところが、一般の鋳造品は寸
法精度が良好ではなく、切削加工を施さねばなら
ないが、上記の鋳鉄は被削性が良好でなく、加工
コストが嵩むという問題点を有している。 粉末治金法によつて製造される焼結体は寸法精
度が良好で、歩留りも高く、内在する気孔の故に
良好な保油性を備えているところから、焼結合金
は機械部品の材料として広く使用されるようにな
つてきており、耐摩耗性を改善するために種々の
合金元素を添加した鉄基焼結合金が試みられてい
るが、苛酷な使用条件の下ではその耐摩耗性はチ
ル鋳鉄や耐摩耗合金鋳鉄のそれには及ばない。ま
た鉄鋼材料の耐摩耗性を改善する有効な手段とし
て窒化処理があるが、焼結合金は内在する気孔の
ために窒化の進行が速く、窒化用鋼のように窒素
との親和力が強いアルミニウムやクロムを鉄基焼
結合金に含有させると、窒化処理に際して膨張を
起して寸法変化が大きくなるので、これらの合金
元素を含有させることができない。そのため充分
な硬さを有する窒化層が得られず、窒化処理によ
る鉄基焼結合金の耐摩耗性改善には大きな効果を
期待することができない。 本発明は上記のような問題点を解消し、寸法精
度の良好な焼結合金製であつて、耐摩耗性の改善
された摺動部材を提供することを目的としてお
り、炭素0.3〜2.0%、銅3〜10%、クロム0.5〜5
%、残部が実質的に鉄からなる組成を有し、気孔
が該気孔の内壁に形成された四三酸化鉄
(Fe3O4)によつて封孔されている鉄基焼結合金を
母材とし、少なくとも摺動表面にγ′(Fe4N)相
とε(Fe2〜3N)相とを主体とする窒化層が形成
されていることを特徴とする摺動部材に関する。 発明者は研究の結果、銅を含有する鉄基焼結合
金に窒化処理を施すことにより、γ′(Fe4N)相
が多量に生成され、最表層部にはγ′相と共にε
(Fe2〜3N)相が多量に生成された窒化層が形成
され耐摩耗性が著しく改善されることと、銅の
γ′相生成作用はクロムの含有によつて損なわれ
ないこと、クロムを含有する鉄基焼結合金の前記
のような窒化処理に伴なう甚しい膨張は、窒化処
〓〓〓〓〓
理に先立つて蒸気処理を施して気孔の内壁に四三
酸化鉄(Fe3O4)を形成させて気孔を封ずること
により、窒化層の厚さを0.1〜0.5mm程度にするこ
とで防止できること、並びに銅及びクロムを含有
する鉄基焼結合金に蒸気処理を施し、次いで窒化
処理を施して得られる窒化層は硬さが非常に高
く、耐摩耗性に一層優れることを見出した。 蒸気処理によつて窒化層の厚さが制御され、焼
結体の甚しい膨張が防止されるのは次の理由によ
るものと考えられる。即ち、焼結合金の気孔は立
体的には互に連結されており、窒化処理に際して
窒化ガスは焼結体内の気孔中に侵入し、焼結体の
表面からのみならず内部の気孔からも窒化が進行
する。クロムは窒素との親和力の強い元素である
ので、クロムを含有する鉄基焼結体に窒化処理を
施すと、短時間で深部に迄窒化され、焼結体が甚
しい膨張を起す。窒化処理に先立つて焼結体に蒸
気処理を施して気孔の内壁に四三酸化鉄の皮膜を
形成させて気孔を封孔しておくと、窒化処理の
際、窒化ガスが先ず四三酸化鉄を還元して、次い
で気孔内に侵入して気孔から窒化が進行する、或
いは上記四三酸化鉄の還元と気孔からの窒化とが
同時に進行するようになるので、窒化層が不必要
に厚くなることはなく、焼結体の甚しい膨張も防
止されるものと考えられる。 本発明に於ける窒化処理はガス窒化又はガス軟
窒化が好適である。ガス窒化又はガス軟窒化によ
れば、焼結合金中に存在する気孔の中に雰囲気ガ
スが侵入して充分な深さの窒化層が形成される。
イオン窒化法では表面下の気孔内壁から窒化させ
ることができず、表面からのみの窒化となるので
溶製材に於ける窒化と同様に極めて浅い窒化層し
か形成されない。また塩浴窒化法では窒化処理後
に気孔内に侵入した塩浴の除去が困難であつて、
後に錆の発生が甚しく、機械部品として供するに
は適さない。 本発明摺動部材の母材の化学組成について言え
ば、 炭素が0.3%未満では、焼結合金の組織が大部
分軟質のフエライトとなつて機械的強度が不足
し、20%を超えると遊離セメンタイトが多くなつ
て脆化するようになるので、その含有量を0.3〜
2.0%の範囲とするのが良い。 銅は前記のようなγ′相を主体とする窒化層を
形成させるために必須の元素であつて、これが3
%未満ではγ′相の生成が少ないか或は生成され
ず、耐摩耗性改善の効果が不充分であり、10%を
超えると焼結合金の組織中にCu相が多くなつ
て、機械的強度が著しく低下するようになるの
で、その含有量は3〜10%の範囲とするのが良
い。特に好ましい範囲は5〜8%である。 クロムは銅と共に窒化層の硬さを著しく高め、
耐摩耗性の一層の改善に有効な元素であり、これ
が0.5%未満では窒化層の硬さの上昇が不充分で
あり、5%を超えると焼結合金中にクロムが富化
した部分を生じて窒化処理に際して均一、かつ適
当な厚さの窒化層を形成させる妨げとなるので、
その含有量は0.5〜5%の範囲とするのが良い。 炭素、銅及びクロム以外の合金元素としては、
ニツケル、モリブデン、バナヂウム、チタン、ニ
オブ及びタングステンが焼結合金母材の機械的強
度の改善と、窒化層の硬さを上昇させて耐摩耗性
の一層の改善に有効である。 次に実験例について説明する。 −100メツシユの噴霧鉄粉、−325メツシユの天
然黒鉛粉、−325メツシユの電解銅粉及びJIS G
2303「フエロクロム」に規定されている低炭素フ
エロクロム2号(FCrL2)を粉砕して−200メツ
シユとしたフエロクロム粉を第1表に示すように
配合し、これに潤滑剤としてステアリン酸亜鉛1
%を添加して混合し、金型中で5t/em2の圧縮圧
で圧縮成形して厚さ10mmの板状圧粉体及び外径60
mm、内径40mm、高さ20mmの円筒状圧粉体を得た。
次いでこれら圧粉体にRXガス雰囲気中で1150℃
に90分間加熱の焼結を行つて焼結体とした。第1
表中試料Bが本発明摺動部材の焼結体素材、その
他の試料は比較焼結体素材である。なお、同表に
は配合成分の分析値が併記してある。 〓〓〓〓〓
The present invention relates to a sliding member made of an iron-based sintered alloy that has excellent wear resistance. For example, materials for sliding parts used under harsh operating conditions, such as internal combustion engine cams, tabs, and oil pump housings, are required to have excellent wear resistance. The sliding surface layer is hardened by applying the following steps. However, general cast products do not have good dimensional accuracy and must be machined, but the above-mentioned cast iron does not have good machinability and has the problem of increasing processing costs. Sintered bodies manufactured by powder metallurgy have good dimensional accuracy, high yields, and have good oil retention due to their inherent pores, so sintered alloys are widely used as materials for machine parts. Iron-based sintered alloys with various alloying elements added to improve their wear resistance are being used, but their wear resistance deteriorates under harsh usage conditions. It is not as good as that of cast iron or wear-resistant alloy cast iron. In addition, nitriding is an effective means of improving the wear resistance of steel materials, but nitriding progresses quickly in sintered alloys due to the inherent pores. If chromium is contained in an iron-based sintered alloy, it will expand during the nitriding treatment, resulting in large dimensional changes, so these alloying elements cannot be contained. Therefore, a nitrided layer having sufficient hardness cannot be obtained, and no great effect can be expected in improving the wear resistance of iron-based sintered alloys by nitriding treatment. The present invention aims to solve the above-mentioned problems and provide a sliding member made of a sintered alloy with good dimensional accuracy and improved wear resistance. , copper 3-10%, chromium 0.5-5
%, the balance is essentially iron, and the pores are sealed by triiron tetroxide (Fe 3 O 4 ) formed on the inner walls of the pores. The present invention relates to a sliding member characterized in that a nitrided layer mainly composed of a γ' (Fe 4 N) phase and an ε (Fe 2-3 N) phase is formed on at least the sliding surface. As a result of research, the inventor found that by nitriding a copper-containing iron-based sintered alloy, a large amount of γ' (Fe 4 N) phase is generated, and the outermost layer contains ε along with the γ' phase.
A nitrided layer containing a large amount of (Fe 2-3 N) phase is formed, which significantly improves wear resistance, and the γ′ phase generation effect of copper is not impaired by the inclusion of chromium. The severe expansion caused by the above-mentioned nitriding treatment of the iron-based sintered alloy containing
This can be prevented by sealing the pores by applying steam treatment to form triiron tetroxide (Fe 3 O 4 ) on the inner walls of the pores, and reducing the thickness of the nitrided layer to about 0.1 to 0.5 mm. We have found that the nitrided layer obtained by steam-treating an iron-based sintered alloy containing copper and chromium and then nitriding it has extremely high hardness and even better wear resistance. The reason why the thickness of the nitrided layer is controlled by the steam treatment and significant expansion of the sintered body is prevented is considered to be due to the following reason. In other words, the pores of the sintered alloy are three-dimensionally interconnected, and during the nitriding process, the nitriding gas enters the pores within the sintered body, causing nitriding not only from the surface of the sintered body but also from the internal pores. progresses. Since chromium is an element that has a strong affinity with nitrogen, when an iron-based sintered body containing chromium is subjected to nitriding treatment, the nitridation occurs deep within a short period of time, causing severe expansion of the sintered body. Prior to nitriding, the sintered body is steam-treated to form a film of triiron tetroxide on the inner walls of the pores to seal the pores. The nitrided layer may become unnecessarily thick as the nitriding layer may be reduced, and then enter the pores and nitridation may proceed from the pores, or the reduction of triiron tetroxide and nitridation from the pores may proceed simultaneously. It is considered that this prevents the sintered body from expanding significantly. Gas nitriding or gas soft nitriding is suitable for the nitriding treatment in the present invention. According to gas nitriding or gas nitrocarburizing, atmospheric gas penetrates into the pores existing in the sintered alloy to form a sufficiently deep nitrided layer.
In the ion nitriding method, it is not possible to nitride from the inner walls of the pores below the surface, but only from the surface, so only an extremely shallow nitrided layer is formed, similar to nitriding in melted materials. In addition, in the salt bath nitriding method, it is difficult to remove the salt bath that has entered the pores after the nitriding process.
Afterwards, it rusted severely, making it unsuitable for use as a mechanical part. Regarding the chemical composition of the base material of the sliding member of the present invention, if the carbon content is less than 0.3%, the structure of the sintered alloy becomes mostly soft ferrite, resulting in insufficient mechanical strength, and if it exceeds 20%, free cementite forms. As the amount increases, it becomes brittle, so the content should be reduced from 0.3 to
A range of 2.0% is preferable. Copper is an essential element for forming the nitride layer mainly consisting of the γ' phase as described above, and it is
If it is less than 10%, the γ' phase will be little or not formed, and the effect of improving wear resistance will be insufficient. If it exceeds 10%, the Cu phase will increase in the structure of the sintered alloy, causing mechanical problems. The content is preferably in the range of 3 to 10% since the strength is significantly reduced. A particularly preferred range is 5 to 8%. Chromium, together with copper, significantly increases the hardness of the nitride layer,
This element is effective in further improving wear resistance; if it is less than 0.5%, the hardness of the nitrided layer will not increase sufficiently, and if it exceeds 5%, chromium-enriched areas will occur in the sintered alloy. This prevents the formation of a uniform nitrided layer with an appropriate thickness during the nitriding process.
Its content is preferably in the range of 0.5 to 5%. Alloying elements other than carbon, copper and chromium include:
Nickel, molybdenum, vanadium, titanium, niobium, and tungsten are effective in improving the mechanical strength of the sintered alloy base material and increasing the hardness of the nitrided layer to further improve wear resistance. Next, an experimental example will be explained. -100 mesh atomized iron powder, -325 mesh natural graphite powder, -325 mesh electrolytic copper powder and JIS G
Ferrochrome powder, which is made by crushing low carbon Ferrochrome No. 2 (FCrL2) specified in 2303 "Ferochrome" to -200 mesh, is blended as shown in Table 1, and zinc stearate 1 is added as a lubricant.
% and mixed and compression molded in a mold at a compression pressure of 5t/em 2 to form a plate-shaped green compact with a thickness of 10mm and an outer diameter of 60mm.
A cylindrical green compact with an inner diameter of 40 mm and a height of 20 mm was obtained.
These green compacts were then heated at 1150°C in an RX gas atmosphere.
A sintered body was obtained by heating and sintering for 90 minutes. 1st
In the table, sample B is a sintered material for the sliding member of the present invention, and the other samples are comparative sintered materials. The table also includes analytical values for the ingredients. 〓〓〓〓〓

【表】 これらの焼結体を水蒸気雰囲気中で520℃に120
分間加熱の蒸気処理を施して気孔の内壁に四三酸
化鉄(Fe3O4)を生成させた後、アンモニアガス
と二酸化炭素を体積比で0.6%含有するRXガスと
を体積比で等量混合してなる混合ガス雰囲気中で
570℃に120分間加熱のガス軟窒化処理を施し、以
下の試験を行つた。 組織観察 本発明材板状試料Bについて表面から内部に向
つて顕微鏡組織を観察した結果は第1図〜第3図
に示す通りである。第1図は表面層の表面に垂直
の断面の組織を示す倍率100倍の顕微鏡写真、第
2図は同じく表面から0.17〜0.36mmの深さの範囲
の組織を示す倍率400倍の顕微鏡写真、 第3図は同じく表面から0.5〜0.75mmの深さの
範囲の組織を示す倍率400倍の顕微鏡写真であ
る。表面から5mmの深さの位置、即ち中心部の組
織は第3図に示す組織と実質的に同一組織であつ
た。 第1図から本発明材は表面1から概ね0.3mmの
深さ迄窒化層2が形成されていることが判る。窒
化層2は後述するX線回折試験によつてγ′
(Fe4N)相とε(Fe2〜3N)相を主体とする窒化
層であることが確認されている。 第2図から母材焼結合金の気孔5の内壁には灰
色に見える四三酸化鉄(Fe3O4)の皮膜6が形成
されていて気孔5は封孔されていることが判る。
窒化層2の中の気孔3の内壁には四三酸化鉄は認
められず、窒化処理中に四三酸化鉄は還元されて
消失したものと考えられる。 第3図から母材焼結合金の気孔5の内壁には第
2図に於けると同様に四三酸化鉄の皮膜6が観察
される。4は母材焼結合金の基地で、微細なパー
ライト組織を呈している。 X線回折試験 板状試料について表面から内部に向つて成分相
をX線回折によつて調べた結果は第2表に示す通
りである。表中εはFe2〜3N、γ′はFe4N、αは
フエライトである。◎印は多量に検出されたこと
を、〇印は少量であるが検出されたことを、×印
は検出されなかつたことを夫々示す。
[Table] These sintered bodies were heated to 520℃ in a steam atmosphere for 120 minutes.
After steaming for 1 minute to generate triiron tetroxide (Fe 3 O 4 ) on the inner walls of the pores, equal amounts of ammonia gas and RX gas containing 0.6% carbon dioxide by volume were added. In a mixed gas atmosphere created by mixing
Gas nitrocarburizing treatment was performed by heating at 570°C for 120 minutes, and the following tests were conducted. Structure Observation The results of microscopic structure observation of the plate-shaped sample B of the present invention material from the surface toward the inside are shown in FIGS. 1 to 3. Figure 1 is a micrograph at 100x magnification showing the structure in a cross section perpendicular to the surface of the surface layer, and Figure 2 is a micrograph at 400x magnification showing the structure at a depth of 0.17 to 0.36 mm from the surface. FIG. 3 is a micrograph at a magnification of 400 times showing the structure in a depth range of 0.5 to 0.75 mm from the surface. The structure at a depth of 5 mm from the surface, ie, the center, was substantially the same as the structure shown in FIG. From FIG. 1, it can be seen that the material of the present invention has a nitrided layer 2 formed from the surface 1 to a depth of approximately 0.3 mm. The nitrided layer 2 was determined to have γ′ by the X-ray diffraction test described below.
It has been confirmed that this is a nitrided layer consisting mainly of (Fe 4 N) phase and ε (Fe 2-3 N) phase. It can be seen from FIG. 2 that a gray-looking triiron tetroxide (Fe 3 O 4 ) film 6 is formed on the inner wall of the pores 5 of the base sintered alloy, and the pores 5 are sealed.
No triiron tetroxide was observed on the inner walls of the pores 3 in the nitrided layer 2, and it is thought that the triiron tetroxide was reduced and disappeared during the nitriding process. From FIG. 3, a film 6 of triiron tetroxide is observed on the inner wall of the pores 5 of the base sintered alloy, as in FIG. 2. 4 is the base of the base material sintered alloy, which exhibits a fine pearlite structure. X-ray diffraction test The component phases of the plate-shaped sample were examined by X-ray diffraction from the surface toward the inside, and the results are shown in Table 2. In the table, ε is Fe 2-3 N, γ' is Fe 4 N, and α is ferrite. The mark ◎ indicates that a large amount was detected, the mark ○ indicates that a small amount was detected, and the mark x indicates that it was not detected.

【表】 表からいずれの試料も表面から0.1mmの深さ迄
は四三酸化鉄が窒化時に還元され尽されて認めら
れなくなつている。ε相は試料Dを除いてはいず
れも表面から0.2mmの深さ迄多量に生成されてい
る。試料B(本発明材)及び試料Cではγ′相は
表面では少量、表面から0.1〜0.2mmの範囲では多
量に存在しており、表面から0.5mmの深さの位置
では殆ど母材からなつているので、ε相、γ′相
共に少量検出されるだけである。試料A及び試料
〓〓〓〓〓
Dではγ′相は検出されなかつた。αは母材のパ
ーライト基地中のフエライトが検出されたもので
あるが、試料Dを除いてはいずれも表面から0.1
mmの深さ迄は認められず、表面から0.2mmの深さ
の位置では少しく残存し、表面から0.5mmの深さ
から中心に至る迄は窒化されていないため多量に
存在している。試料B(本発明材)についての以
上の試験結果は前述の組織観察の結果と一致して
いる。 硬さ試験 板状試料について表面から内部に向つて200g
の荷重でマイクロビツカース硬さを測定し、硬さ
の変化を求めた結果は第4図に示す通りである。 同図から、試料B(本発明材)は窒化層の硬さ
が高く、而も表面から0.3mmの深さ迄硬さの低下
が僅少である。その他の試料は窒化層の硬さが高
くなく(試料A及び試料C)、或いは表面から0.2
mmの深さの位置で硬さの急激な低下を示しており
(試料A及び試料D)、本発明材が耐摩耗性に優れ
ていることが理解できる。 摩耗試験 前記板状試料及び前記以外の比較材として鋳鉄
FC30を冷し金を使用して強制チルさせて製作し
た従来の摺動部材について厚さ3mmの試験片を採
取し、表面層を0.1mm研削除去して表面粗さを中
心線平均粗さ0.10μに仕上げ、これらの試験片に
ついて大越式迅速摩耗試験機を使用して表面層の
摩耗試験を行つた。試験条件は以下の通りであ
る。最終荷重:6.3Kg、摩擦速度:1.14m/sec、
摩擦距離:600m、潤滑油:60℃のモーターオイ
ル#30を1滴/sec供給、相手モーター材:HR
C30の硬さを有するクロムモリブデン鋼
SCM435。 試験結果は第5図に示す通りである。同図か
ら、試料B(本発明材)は従来のチル鋳鉄製摺動
部材に比べては勿論、他の窒化焼結合金製比較材
に比べても摩擦量が著しく少なくなつており、耐
摩耗性が大幅に改善されていることが判る。 寸法変化測定 外径60mm、内径40mm、高さ20mmの円筒状試料に
ついて、圧粉体成形に使用した金型(ダイ)の内
径寸法に対する窒化処理後の試料の外径寸法の変
化を測定し、各々50個の試料についてその平均値
()及び範囲(R)を求めた。 その結果は第3表に示す通りである。同表には
参考のために焼結体素材に蒸気処理を施さずに窒
化処理を施した場合について同様の測定を行つた
結果が併記してある。平均値は 試料の外径−金型の内径/金型の内径×100%の平均値
で、範 囲Rは(試料の外径−金型の内径)mmの範囲で表
示してある。
[Table] The table shows that in all samples, triiron tetroxide is reduced to a depth of 0.1 mm from the surface and is no longer recognized during nitriding. Except for sample D, the ε phase is produced in large quantities up to a depth of 0.2 mm from the surface. In Sample B (material of the present invention) and Sample C, the γ' phase exists in a small amount on the surface, in a large amount in the range of 0.1 to 0.2 mm from the surface, and is almost entirely composed of the base material at a depth of 0.5 mm from the surface. Therefore, only small amounts of both the ε and γ' phases are detected. Sample A and sample〓〓〓〓〓
In D, no γ' phase was detected. α is the detected ferrite in the pearlite base of the base material, but except for sample D, the value is 0.1 from the surface.
It is not observed up to a depth of 0.2 mm, a little remains at a depth of 0.2 mm from the surface, and a large amount remains from a depth of 0.5 mm from the surface to the center because it is not nitrided. The above test results for Sample B (material of the present invention) are consistent with the results of the above-mentioned structure observation. Hardness test 200g from the surface to the inside of a plate-shaped sample
The micro-Vickers hardness was measured under a load of 100 mL, and the changes in hardness were determined. The results are shown in Figure 4. From the same figure, sample B (material of the present invention) has a high hardness of the nitrided layer, and the decrease in hardness is slight from the surface to a depth of 0.3 mm. In other samples, the hardness of the nitrided layer is not high (Sample A and Sample C), or the hardness is 0.2
It can be seen that the hardness suddenly decreases at a depth of mm (sample A and sample D), and that the material of the present invention has excellent wear resistance. Wear test: The above plate sample and cast iron as a comparison material other than the above.
A 3 mm thick test piece was taken from a conventional sliding member manufactured by forcibly chilling FC30 using a cold metal, and the surface layer was ground by 0.1 mm to reduce the surface roughness to a center line average roughness of 0.10. The surface layer of these specimens was subjected to a wear test using an Okoshi type rapid abrasion tester. The test conditions are as follows. Final load: 6.3Kg, friction speed: 1.14m/sec,
Friction distance: 600m, lubricating oil: 1 drop/sec of motor oil #30 at 60°C, mating motor material: H R
Chrome molybdenum steel with hardness of C30
SCM435. The test results are shown in FIG. From the same figure, it can be seen that sample B (inventive material) has significantly less friction than conventional chilled cast iron sliding members, as well as other comparison materials made of nitrided sintered alloys, and has excellent wear resistance. It can be seen that the performance has been significantly improved. Dimensional change measurement For a cylindrical sample with an outer diameter of 60 mm, an inner diameter of 40 mm, and a height of 20 mm, the change in the outer diameter of the sample after nitriding treatment with respect to the inner diameter of the mold (die) used for compacting was measured. Average value for each 50 samples
() and range (R) were determined. The results are shown in Table 3. For reference, the same table also includes the results of similar measurements when the sintered material was subjected to nitriding treatment without being subjected to steam treatment. The average value is the average value of sample outer diameter - mold inner diameter / mold inner diameter x 100%, and the range R is expressed as the range of (sample outer diameter - mold inner diameter) mm.

【表】 表から蒸気処理を施さず、窒化処理を流した場
合は、焼結体素材の組成の如何に拘らず大きな寸
法変化を起すのみならず、寸法のバラツキも非常
に大きいが、焼結体素材に蒸気処理を施して気孔
を四三酸化鉄で封孔し、然る後窒化処理を施した
場合は寸法変化もまた寸法のバラツキも小さく、
特に本発明材(試料B)は寸法精度に優れている
ことが判る。上記本発明材の寸法変化は溶製鉄鋼
材料の通例の熱処理(焼入、焼戻等)による寸法
変化よりも少なく、本発明材は寸法精度の上でも
良好であることを示している。 以上説明したように、銅及びクロムを含有し、
気孔を四三酸化鉄で封孔した鉄基焼結合金に窒化
処理を施した本発明摺動部材は、クロムを含有す
るにも拘らず寸法精度が良好であり、またその窒
化層はγ′相及びε相を主体としていることと、
銅及びクロムを含有しているために硬度が高く、
而も充分な厚さを有している上に、気孔の存在に
よる良好な保油性を備えているので、苛酷な使用
条件下でも優れた耐摩耗性を示し、工業上の利用
価値は大きい。
[Table] As shown in the table, if nitriding treatment is performed without steam treatment, not only will a large dimensional change occur regardless of the composition of the sintered body material, but the dimensional variation will also be very large. When the body material is steam-treated to seal the pores with triiron tetroxide, and then nitrided, the dimensional changes and dimensional variations are small.
In particular, it can be seen that the material of the present invention (sample B) has excellent dimensional accuracy. The dimensional change of the above-mentioned material of the present invention is smaller than the dimensional change due to the usual heat treatment (quenching, tempering, etc.) of molten steel materials, indicating that the material of the present invention has good dimensional accuracy. As explained above, it contains copper and chromium,
The sliding member of the present invention, which is made by nitriding an iron-based sintered alloy whose pores are sealed with triiron tetroxide, has good dimensional accuracy despite containing chromium, and the nitrided layer has a γ′ It is mainly composed of phase and ε phase,
It has high hardness because it contains copper and chromium.
In addition, it has sufficient thickness and has good oil retention properties due to the presence of pores, so it exhibits excellent abrasion resistance even under severe usage conditions, and has great industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明摺動部材の表面層の代表的な組
織を示す倍率100倍の顕微鏡写真、第2図は同じ
く倍率400倍の顕微鏡写真、第3図は本発明摺動
部材の母材焼結合金の代表的な組織を示す倍率
〓〓〓〓〓
400倍の顕微鏡写真である。 図中、1は表面、2は窒化層、3は窒化層中の
気孔、4は母材焼結合金の基地、5は母材中の気
孔、6は四三酸化鉄である。 第4図は表面から内部へ向つての硬さの変化を
示すグラフ、第5図は大越式迅速摩耗試験機を使
用しての摩耗試験の結果を示すグラフである。 〓〓〓〓〓
Fig. 1 is a micrograph at 100x magnification showing a typical structure of the surface layer of the sliding member of the present invention, Fig. 2 is a micrograph at 400x magnification, and Fig. 3 is the base material of the sliding member of the present invention. Magnification showing typical structure of sintered alloy〓〓〓〓〓
This is a 400x photomicrograph. In the figure, 1 is the surface, 2 is the nitrided layer, 3 is the pores in the nitrided layer, 4 is the base of the base material sintered alloy, 5 is the pores in the base material, and 6 is triiron tetroxide. FIG. 4 is a graph showing the change in hardness from the surface toward the inside, and FIG. 5 is a graph showing the results of an abrasion test using an Okoshi rapid abrasion tester. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 炭素0.3〜2.0%、銅3〜10%、クロム0.5〜5
%、残部が実質的に鉄からなる組成を有し、気孔
が該気孔の内壁に形成された四三酸化鉄
(Fe3O4)によつて封孔されている鉄基焼結合金を
母材とし、少なくとも摺動表面にγ′(Fe4N)相
とε(Fe2〜3N)相とを主体とする窒化層が形成
されていることを特徴とする摺動部材。
1 Carbon 0.3-2.0%, Copper 3-10%, Chromium 0.5-5
%, the balance is essentially iron, and the pores are sealed by triiron tetroxide (Fe 3 O 4 ) formed on the inner walls of the pores. 1. A sliding member, characterized in that a nitrided layer mainly consisting of a γ' (Fe 4 N) phase and an ε (Fe 2-3 N) phase is formed on at least the sliding surface.
JP13404881A 1981-08-28 1981-08-28 Sliding member Granted JPS5837155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13404881A JPS5837155A (en) 1981-08-28 1981-08-28 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13404881A JPS5837155A (en) 1981-08-28 1981-08-28 Sliding member

Publications (2)

Publication Number Publication Date
JPS5837155A JPS5837155A (en) 1983-03-04
JPS6111309B2 true JPS6111309B2 (en) 1986-04-02

Family

ID=15119139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13404881A Granted JPS5837155A (en) 1981-08-28 1981-08-28 Sliding member

Country Status (1)

Country Link
JP (1) JPS5837155A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186489A (en) * 1984-03-02 1985-09-21 同和鉱業株式会社 Soft nitration for sintered part and device therefor
AU579314B2 (en) * 1984-04-06 1988-11-24 E.I. Du Pont De Nemours And Company Polyvinyl butyral laminates
US5087181A (en) * 1989-03-06 1992-02-11 Hitachi, Ltd. Sliding structure such as compressor or the like

Also Published As

Publication number Publication date
JPS5837155A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
US4970049A (en) Sintered materials
US5613180A (en) High density ferrous power metal alloy
JP5992402B2 (en) Manufacturing method of nitrided sintered component
US4251273A (en) Method of forming valve lifters
JP3378012B2 (en) Manufacturing method of sintered product
US4230491A (en) Internal combustion engine tappet comprising a sintered powdered metal wear resistant composition
US5062908A (en) Valve guide
US4518563A (en) Method for manufacturing a slide member
US4271239A (en) Sintered metal articles and process for their manufacture
EP1027467A1 (en) Method for manufacturing high carbon sintered powder metal steel parts of high density
US20090129964A1 (en) Method of forming powder metal components having surface densification
US4904302A (en) Roller in rotary compressor and method for producing the same
EP0722796B1 (en) Process for producing heat-treated sintered iron alloy part
Straffelini et al. Dry sliding behaviour of steam treated sintered iron alloys
US4861372A (en) Roller in rotary compressor and method for producing the same
JPS6111309B2 (en)
EP1500449A2 (en) Sintered sprocket for silent chain and production method therefor
US3966423A (en) Grain refinement of titanium carbide tool steel
US2881511A (en) Highly wear-resistant sintered powdered metal
JP3572078B2 (en) Method of manufacturing sintered parts
US2882190A (en) Method of forming a sintered powdered metal piston ring
US2884687A (en) Wear-resistant sintered powdered metal
Baglyuk et al. Powder metallurgy wear-resistant materials based on iron. Part 1. Materials prepared by sintering and infiltration
Chagnon et al. Effect of sintering parameters on mechanical properties of sinter hardened materials
Predki et al. Influence of hardening on the microstructure and the wear capacity of gears made of Fe1. 5Cr0. 2Mo sintered steel