JPS58193070A - Water-cooling heat accumulation type drink cooling device - Google Patents
Water-cooling heat accumulation type drink cooling deviceInfo
- Publication number
- JPS58193070A JPS58193070A JP7570682A JP7570682A JPS58193070A JP S58193070 A JPS58193070 A JP S58193070A JP 7570682 A JP7570682 A JP 7570682A JP 7570682 A JP7570682 A JP 7570682A JP S58193070 A JPS58193070 A JP S58193070A
- Authority
- JP
- Japan
- Prior art keywords
- water
- agitator
- beverage cooling
- cooling device
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
- Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明はカップ式飲料自動欺光機、冷水あるいはシロ
ップ飲料ディスペンサなどに用いられる水冷蓄熱式飲料
冷却装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-cooled thermal storage type beverage cooling device used in cup-type automatic beverage decoupling machines, cold water or syrup beverage dispensers, and the like.
顧記飲料冷却装置として、水を満たした冷却水槽内に冷
凍機の蒸発コイル、飲料供給パイプラインに介挿した飲
料冷却コイル、および水撹拌用のアジテータを浸漬配置
し、冷凍機の運転により水槽内の水を熱移動媒体として
飲料を冷却させる装置が周知である。この場合に冷凍機
の小容量化を目的として水槽内の蒸発コイルの側照にい
わゆるアイスバンクと称される氷を常時蓄水しておき、
冷凍機の停止中にも氷の蓄熱蓋を第11用して槽内冷却
水を低温に維持し、これにより一助的な飲料冷却能力の
増強化を図る方式が一般に広く採用されている。かかる
従来の水冷蓄熱式飲料冷却装置の漿要を第1図に示す。As a beverage cooling system, the evaporator coil of the refrigerator, the beverage cooling coil inserted in the beverage supply pipeline, and the agitator for water stirring are placed immersed in a cooling water tank filled with water, and the water tank is heated by the operation of the refrigerator. Devices for cooling beverages using water as a heat transfer medium are well known. In this case, for the purpose of reducing the capacity of the refrigerator, ice, called an ice bank, is constantly stored in the side light of the evaporator coil in the water tank.
A widely used method is to use an ice heat storage lid to maintain the cooling water in the tank at a low temperature even when the refrigerator is stopped, thereby increasing the beverage cooling capacity. The main features of such a conventional water-cooled thermal storage beverage cooling device are shown in FIG.
第1図において、lは飲料冷却用の水を満たした冷却水
槽であり、この中には水中にV潰して冷凍機2の4発コ
イル211飲料供給ライン3の途中に介挿された飲料冷
却コイル31、および水撹拌用のアジテータ4が配置さ
れている。冷凍機2は蒸発コイル21を含め圧締機22
.a輪器23.およびキャビラリチューブ24で冷凍サ
イクルを構成している。また飲料供給ライン3は水道よ
り給水を受ける水リザーバ5より引出して配管された冷
水ラインであり、送水ポンプ32.冷却コイル31.冷
水弁33を経て先端の吐出ノズルがベンドステージ(こ
直かれたカップ6の上方に臨んで開口している。なお図
示されていないが、同じ冷却水槽l内には前記の冷水ラ
インのほかにシロップ供給ライン、および飲料供給ライ
ン3の途中から分岐した炭酸水供給ラインのカーボネー
タなども冷却するよう浸漬配置されている。In FIG. 1, l is a cooling water tank filled with water for cooling beverages, and inside this tank, a four-round coil 211 of the refrigerator 2 is inserted in the middle of the beverage supply line 3. A coil 31 and an agitator 4 for stirring water are arranged. The refrigerator 2 includes a compressor 22 including an evaporator coil 21.
.. A ring device 23. and the cabillary tube 24 constitute a refrigeration cycle. The beverage supply line 3 is a cold water line drawn out and piped from a water reservoir 5 that receives water from the water supply pump 32. Cooling coil 31. The discharge nozzle at the tip passes through the cold water valve 33 and opens above the bent stage (the broken cup 6).Although not shown, there are other cold water lines in the same cooling water tank l in addition to the above-mentioned cold water line. The syrup supply line and the carbonator of the carbonated water supply line branched from the middle of the beverage supply line 3 are also immersed for cooling.
かかる構成において、アジテータ4で水を攪拌しつつ冷
凍機2を運転すにとにより、冷却水槽1内の水を冷却し
、この水を熱移動媒体として冷却コイル31を流れる飲
料水を冷やす。更に冷凍機2の運転中には蒸発コイル2
1の周囲に氷を生成させて常時アイスバンクとして蓄氷
しておき、飲料水の連続供給時などには氷の蓄熱菫をオ
リ用して飲料冷却能力の増強を図っている。In this configuration, the water in the cooling water tank 1 is cooled by operating the refrigerator 2 while stirring the water with the agitator 4, and the drinking water flowing through the cooling coil 31 is cooled using this water as a heat transfer medium. Furthermore, while the refrigerator 2 is operating, the evaporator coil 2
Ice is generated around 1 and stored as an ice bank at all times, and when drinking water is continuously supplied, the heat storage violet of the ice is used to increase the beverage cooling capacity.
ところで上記飲料冷却装置o)運転中には、飲料供給ラ
イン3の動作が正常であるにもかかわらずしばしば飲料
水がカップ6ヘスムースに供給されないトラブルの生じ
ることがある。このトラブルを調べて見ると、飲料供給
ライン3の途中狭い箇所、例えば冷水弁33の内部など
に細かい氷片が結まり1.水の流れを阻害していること
が判明した。By the way, during the operation of the beverage cooling apparatus o), there may often occur a problem in which drinking water is not smoothly supplied to the cup 6 even though the operation of the beverage supply line 3 is normal. When we investigated this problem, we found that small pieces of ice had formed in a narrow part of the beverage supply line 3, such as inside the cold water valve 33. It turned out that it was blocking the flow of water.
このことは冷却過程で冷水弁33が閉じている際に飲料
冷却コイル31の部分で過冷却が生じ、これが原因で冷
水弁を開いた際1こ飲料水中に氷片が発生したものと考
えられ、この点についての考察を行った結果、その要因
は次の点にあることが明らかlこなった。This is thought to be because supercooling occurred in the beverage cooling coil 31 when the cold water valve 33 was closed during the cooling process, and this caused ice chips to form in the drinking water when the cold water valve was opened. As a result of considering this point, it became clear that the following factors were responsible for this.
すなわち冷却水槽1の水温の時間的推移を図で表わすと
第2図の各点(イ)、(ロ)、H・・・・・のような経
通をたどる。つまり冷凍機2の運転開始により水槽1内
における蒸発コイル21の族囲の水は(イ)の常温から
除々に水温が低くなり、蒸発コイル21の周りに氷が生
じる直前には(ロ)→e埼のように水温は氷点である0
℃を越えて更に低下し、マイナス温度の過冷却状態にな
り、蒸発コイル21へ結氷が生じた瞬間に水は0°Cに
戻る。それ以後は冷凍機の運転とともに結氷層が成長す
るか水温は0“Cに保たれる。また飲料水の給水量が増
して冷却負荷が冷凍機の蓄氷能力以上になればに)で氷
は融解してなくなり、水温はに)→(ホ)のように上昇
するが、飲料水の供給量が低下あるいは停止すれば再び
水温は低下する。この場合にも蒸発コイルに着水する過
程で(へ)→(9切期間に禍冷却が生じる。この際の過
冷却度は実験で調べたところによれば冷凍機の能力によ
っても異なるか最大−3°C楓度で、時i口]的には数
分、条件如何によっては数十分も継続する。しかもこの
過冷却期間中にもアジテータ4は運転しているので水槽
lFF3の全域に過冷却現象が波及する。この結果蒸発
コイル21と離間して配置されている飲料冷却コイル3
1内の飲料水も氷点以下lこ過冷却され、冷却コイル内
憂こ微細な水片が発生することになるので、この時点で
冷水弁プルを引起こす。特に自動賊売機ではl収光動作
の飲料供給量を弁の時間制御で定めており、したがって
前記の氷片詰まりはそのまま販売トラブルに進展する。In other words, if the time course of the water temperature in the cooling water tank 1 is represented graphically, it follows the course of points (a), (b), H, etc. in FIG. 2. In other words, when the refrigerator 2 starts operating, the temperature of the water surrounding the evaporator coil 21 in the water tank 1 gradually decreases from the room temperature (a), and just before ice forms around the evaporator coil 21, the temperature of the water surrounding the evaporator coil 21 decreases (b) → Like E-Sai, the water temperature is at freezing point 0
The temperature further decreases beyond 0.degree. C., reaching a supercooled state of minus temperature, and the moment ice forms on the evaporator coil 21, the water returns to 0.degree. After that, a layer of ice grows as the refrigerator operates, or the water temperature is maintained at 0"C.Also, if the amount of drinking water supplied increases and the cooling load exceeds the ice storage capacity of the refrigerator, The water melts and disappears, and the water temperature rises as follows: (i) → (e), but if the supply of drinking water decreases or stops, the water temperature will drop again.In this case, too, during the process of water landing on the evaporator coil, (Go) → (Severe cooling occurs during the 9-off period.According to experiments, the degree of supercooling at this time varies depending on the capacity of the refrigerator, or is at most -3°C, and at the time It lasts several minutes, depending on the conditions, for several tens of minutes.Furthermore, since the agitator 4 is operating even during this supercooling period, the supercooling phenomenon spreads to the entire area of the water tank IFF3.As a result, the evaporator coil 21 Beverage cooling coil 3 arranged separately from the beverage cooling coil 3
The drinking water in the tank 1 will also be supercooled to below the freezing point, and fine water particles will be generated in the cooling coil, causing the cold water valve to pull at this point. Particularly in automatic vending machines, the amount of beverage supplied during the light collecting operation is determined by time control of a valve, and therefore, the aforementioned blockage of ice pieces can directly lead to sales troubles.
かかる水槽内での過冷却現象を防止する手段として、水
槽内の水温、特に飲料冷却コイル近傍の水温を検知して
社製するサーモスタットを設け、この水温が氷点近くま
で下降した際に一時的にアジテータを停止して水の攪拌
を止め、着氷開始直前に蒸発器コイルの周囲に生じた過
冷却が飲料冷却コイルにまで波及しないようにするとと
もに、別なサーモスタットで蒸発コイルへの着氷を確認
した後にアジテータを運転再開する運転制御方法が提案
されている。この方法は飲料ノ゛クイプ内の氷片発生防
止ζこは有効である反面、2個のサーモスタットを含む
アジテータの運転制御回路の構成に多くの費用がかかる
し、部品の増えた分だけ水槽内での部品据付けのレイア
ウトに制約を与える。As a means to prevent such supercooling phenomenon in the water tank, we installed a thermostat made by our company that detects the water temperature in the water tank, especially the water temperature near the beverage cooling coil, and temporarily stops when the water temperature drops to near the freezing point. The agitator is stopped to stop stirring the water to prevent the supercooling that occurs around the evaporator coil just before icing starts from spreading to the beverage cooling coil, and a separate thermostat is used to prevent icing from forming on the evaporator coil. An operation control method has been proposed in which the agitator is restarted after confirmation. Although this method is effective in preventing the generation of ice chips in the drinking cup, it costs a lot of money to configure the operation control circuit of the agitator, which includes two thermostats, and the additional parts increase the cost in the aquarium. constraints on the layout of parts installation.
更にはサーモスタットの精度および創作すき間勢の動作
特性上の間亀もあって、実用的にはアジテータを停止か
ら貴始動に切換えるのには少なくとも最低数分以上の時
間がかかる。しかもこの停止期間中はアジテータが停止
しているので水槽内における熱貫流効率が低下し、この
期間に飲料供給指令が与えられた場合には、冷料を十分
に冷やすことができない不具合を招く。Further, due to the accuracy of the thermostat and the operating characteristics of the original clearance, it actually takes at least several minutes to switch the agitator from stop to start. Moreover, since the agitator is stopped during this stop period, the heat transfer efficiency in the water tank is reduced, and if a beverage supply command is given during this period, the refrigerant cannot be sufficiently cooled, resulting in a problem.
この発明は上記の点にかんがみなされたものであり、そ
の目的は従来の制御方式による難点を解消し、簡易な制
御手段でしかも飲料冷却コイルと冷却水との間の高い熱
交換性能を維持しつつ、飲料冷却コイル内での過冷却現
象の発生を抑えながら確実に蒸発コイルへ着氷できるよ
うにした飲料冷却装置を提供することにある。This invention was made in consideration of the above points, and its purpose is to solve the problems caused by conventional control methods, and to maintain high heat exchange performance between the beverage cooling coil and the cooling water using a simple control means. At the same time, it is an object of the present invention to provide a beverage cooling device that can reliably deposit ice on an evaporator coil while suppressing the occurrence of supercooling within the beverage cooling coil.
かかる目的はこの発明ζこより、タイマ等の運転制御手
段を用いて、アジテータを周期的に運転と停止を交互に
繰返してデユーティサイクル運転させるよう構成したこ
とにより達成される。According to the present invention, this object is achieved by configuring the agitator to operate in a duty cycle by periodically repeating operation and stop using an operation control means such as a timer.
以下この説明を図示の実施例1と基づき詳述すム才ず第
3図ζここの発明による飲料冷却装置の運転制御回路を
示す。図においてMCは第1図(こ示した圧縮機22の
コンプレッサモータ、MAはアジテータ4の駆動モータ
、Thは蓄氷量を検知して冷凍機を運転制御するサーモ
スタツ1−1Tはタイマである。アジテータモータMA
の回路にはタイマTのタイマ接点Ill 、が直列(こ
介挿されており、第1図におけるアジテータ4をタイマ
Tにより運転、停止制御するように構成されている。こ
こでタイマTは予め所定の周期で接点TsをON。This description will be explained in detail below based on the illustrated embodiment 1. Figure 3 shows an operation control circuit for a beverage cooling device according to the present invention. In the figure, MC is the compressor motor of the compressor 22 shown in FIG. 1, MA is the drive motor of the agitator 4, and Th is the thermostat 1-1T that detects the amount of ice storage and controls the operation of the refrigerator. Agitator motor MA
A timer contact Ill of a timer T is inserted in series in the circuit, and the agitator 4 in FIG. 1 is controlled to be operated and stopped by the timer T. The contact Ts is turned on at the cycle of.
OFFと交互に繰返すように設定されており、これによ
りアジテータ4はデユーティサイクル運転る。前記のよ
うにアジテータ4を水温に関係なく常時運転と停止を交
互に繰返してデユーティサイクル運転することにより、
次のような経過をたどって氷層が生成さるに至る。すな
わち、今水411Il内のアイスバンクがすべて溶解し
た氷のない状態で冷凍機2が運転1こ入れは、プルダウ
ンの過程で冷凍機蒸発コイル21の表面温度が水槽内に
おける他の部分よりも最も早く低下する。そして蒸発コ
イル21の表面温度が0℃以下に下った条件で前述のデ
ユーティサイクル運転によってアジテータ4が停止すれ
ば、水槽内の水は静止状態となるので蒸発コイルの表面
域での着氷条件が整い、瞬時に着氷か生じる。しかもこ
の時点ではアジテータ4が停止しているので、過冷却は
僅かに水槽内における蒸発コイル21の周域に限定され
、蒸発コイルと離間して配管されている飲料冷却コイル
31の周辺にまで過冷却が波及することはない。The agitator 4 is set to alternately turn off and on, thereby causing the agitator 4 to operate on a duty cycle. As mentioned above, by operating the agitator 4 in a duty cycle by alternately repeating constant operation and stopping regardless of the water temperature,
An ice layer is formed through the following process. In other words, when the refrigerator 2 is operated for one time in a state where all the ice banks in the water tank have melted and there is no ice, the surface temperature of the refrigerator evaporator coil 21 becomes the highest than other parts in the water tank during the pull-down process. declines quickly. If the agitator 4 is stopped by the above-described duty cycle operation under the condition that the surface temperature of the evaporator coil 21 has fallen to 0° C. or less, the water in the water tank becomes stationary, so that the icing conditions on the surface area of the evaporator coil are reduced. ication occurs instantly. Moreover, since the agitator 4 is stopped at this point, the supercooling is limited to the area around the evaporator coil 21 in the water tank, and the supercooling extends to the area around the beverage cooling coil 31, which is piped apart from the evaporator coil. There is no effect of cooling.
この結果、着氷過程で飲料冷却コイル31の内部に氷片
が発生するのを確実ζこ防止できる。また前記の着水動
作は、アジテータのチューティサイクル運転周期が知い
程、停止のMUが高くなって着氷のチャンスが多くなる
。なお前述のように蒸発コイル21に一旦着氷すれば、
以佐継軟して冷凍機2が運転しても水槽1内の水が0
’0以下に過冷却されることはない。As a result, it is possible to reliably prevent ice pieces from forming inside the beverage cooling coil 31 during the icing process. In addition, in the above-mentioned water landing operation, the longer the agitator's tute cycle operation period, the higher the MU of stopping, and the greater the chance of icing. As mentioned above, once ice forms on the evaporator coil 21,
Even if the refrigerator 2 is operated after softening, the water in the water tank 1 is 0.
It will never be supercooled below 0.
一方、市場に出まわっているカップ式飲料自動&!機の
飲料冷却装置を用いて発明者が行−〕た実機テストによ
れば、橡準周囲温展朱件の下で水槽の水温を1℃低下す
るのに平均四に約5分の時間を費する。なおこの時間は
あくまで平均値であり、水温が高ければ時間が早く、水
温が低下するにしたがって長くなる。また蒸発コイル2
1の表面温度が十分に低下して着氷条件が整った状態で
、アジテータ4を停止した際に着氷に要する時間は僅か
数秒であることが確認されている。またこのテスト結果
を基に、前記タイマTの動作サイクルを5分間ON、s
秒OFFのサイクルで接点TsをON、OFFするよう
に設定してアジテータ4をデユーティサイクル運転する
ことにより、実用に供し得る良好な運転結果の得られる
ことが確められた。すなわち水槽水温が10 ’C程度
から0“0まで低下する間に10回柱度アジテータ4が
停止し、いずれかの停止期間のチャンスをとらえて蒸発
コイル21への着氷が確実に行われることになる。On the other hand, automatic cup-type beverages on the market &! According to an actual machine test conducted by the inventor using the beverage cooling device of the machine, it took an average of about 4 to 5 minutes to lower the water temperature in the water tank by 1 degree Celsius under near-ambient temperature conditions. spend Note that this time is just an average value; the higher the water temperature, the faster the time, and the lower the water temperature, the longer the time. Also evaporator coil 2
It has been confirmed that when the agitator 4 is stopped in a state where the surface temperature of the agitator 1 is sufficiently lowered and icing conditions are established, the time required for icing to occur is only a few seconds. Also, based on this test result, the operation cycle of the timer T is turned ON for 5 minutes.
It has been confirmed that by operating the agitator 4 in a duty cycle by setting the contact Ts to turn ON and OFF in a cycle of OFF seconds, good operational results that can be used in practical use can be obtained. In other words, the 10-cycle agitator 4 stops while the aquarium water temperature drops from about 10'C to 0'0, and ice buildup on the evaporator coil 21 is ensured by seizing the opportunity during any of the stopping periods. become.
なお第4図は前記テストの結果に基づくこの発明の動作
特性を示すタイムチャートであり、図中の特性線Aは水
槽内lこおける飲料冷却コイル31Q)近傍の水温、B
は蒸発コイル21の18而@薇を示している。この図か
ら明らかなようlこ、水に%性Aは0℃以下に低下しな
い。FIG. 4 is a time chart showing the operating characteristics of the present invention based on the results of the above-mentioned test, and the characteristic line A in the figure indicates the water temperature near the beverage cooling coil 31Q in the water tank, and B
indicates the 18th position of the evaporator coil 21. As is clear from this figure, the %A in water does not decrease below 0°C.
以上述べたようにこの発明はアジテータをタイマ等によ
り水温に関係なく運転、停止を交互(こ繰返すようにデ
ユーティサイクル運転制御させたものであり、したがっ
て従来の制御方式のように水槽内の水温を検出して動作
する2個のサーモスタットを用いたものと較べて運転制
御回路が簡単に構成でき、しかもタイマ制御方式により
アジテータの停止時間を着氷に要する時間に合わせて僅
か数秒に設定することが容易に実施できる。かくして水
槽内での高い熱交換性能を維持しつつ、飲料冷却コイル
内での過冷却現象の発生を抑えながら、蒸発コイルに確
実に着氷させることができる実用的効果が得られる。As described above, this invention uses a timer or the like to control the duty cycle of the agitator so that it is alternately started and stopped regardless of the water temperature. The operation control circuit can be configured more easily than a system using two thermostats that detect and operate the system, and the timer control method allows the agitator stop time to be set to just a few seconds, in line with the time required for icing. This can be easily carried out.Thus, the practical effect is that while maintaining high heat exchange performance in the water tank and suppressing the occurrence of supercooling phenomenon in the beverage cooling coil, ice can be reliably formed on the evaporator coil. can get.
第1図は水冷蓄熱式飲料冷却装置の系統図、第2図は第
1図におけるアジテータを連続運転した場合の水温変化
の推移を示す運転チャート、第3Vはこの発明の実施例
による冷却装置の連転fIIJ御回路図、第4図は第3
図の回路に基づく酊却漣転Nilを示すタイムチャート
である。
1・・・冷却水槽、2・・・冷凍機、21・・蒸発コイ
ル、3・・・飲料供給ライン、31・・・飲料冷却コイ
ル、4・アジテータ、MA・・アジテータモータ、T・
・・運転制御手段としてのタイマ。
1
22図
才3図
才4図Fig. 1 is a system diagram of a water-cooled thermal storage type beverage chiller, Fig. 2 is an operation chart showing changes in water temperature when the agitator in Fig. 1 is continuously operated, and Fig. 3V is a system diagram of a cooling device according to an embodiment of the present invention. Continuous rotation fIIJ control circuit diagram, Fig. 3
3 is a time chart showing intoxication rotation Nil based on the circuit shown in the figure. DESCRIPTION OF SYMBOLS 1... Cooling water tank, 2... Freezer, 21... Evaporation coil, 3... Beverage supply line, 31... Beverage cooling coil, 4... Agitator, MA... Agitator motor, T...
...A timer as an operation control means. 1 22 figures 3 figures 4 figures
Claims (1)
*+供給ラインに介挿された飲料冷却コイルおよび水撹
拌用のアジテータを浸漬配置し、冷凍機の運転により蒸
発コイルの周りに水を生成させて蓄水し、水槽内の水を
熱移動媒体としてアジテータを運転しながら飲料冷却コ
イル内を通流する飲料を冷却するようにした水冷蓄熱式
飲料冷却装置において、前記電動式アジチー タを筒期
的に運転と停止を交互に繰返してデユーティサイクル運
転させ□る運転制御手段を備えたことを%像とする水冷
蓄熱式飲料冷却装置。 2、特許請求の範囲第1狽紀載の飲料冷却装置において
、デユーティサイクル運転制御手段にタイマを用いた水
冷蓄熱式飲料冷却装置。[Claims] 1) Operation of the refrigerator by immersing the evaporator coil of the refrigerator, the beverage cooling coil inserted in the drinking*+ supply line, and the agitator for water agitation in cooling water filled with water. A water-cooled thermal storage beverage cooling device that generates and stores water around an evaporator coil, and cools beverages flowing through the beverage cooling coil while operating an agitator using the water in the water tank as a heat transfer medium. The water-cooled thermal storage type beverage cooling device is characterized in that the water-cooled thermal storage type beverage cooling device is provided with an operation control means for periodically repeating operation and stop of the electric agitator to operate it on a duty cycle. 2. A water-cooled thermal storage type beverage cooling device in which a timer is used as a duty cycle operation control means in the beverage cooling device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7570682A JPS58193070A (en) | 1982-05-06 | 1982-05-06 | Water-cooling heat accumulation type drink cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7570682A JPS58193070A (en) | 1982-05-06 | 1982-05-06 | Water-cooling heat accumulation type drink cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58193070A true JPS58193070A (en) | 1983-11-10 |
Family
ID=13583926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7570682A Pending JPS58193070A (en) | 1982-05-06 | 1982-05-06 | Water-cooling heat accumulation type drink cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58193070A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121928A (en) * | 2006-11-09 | 2008-05-29 | Hoshizaki Electric Co Ltd | Cold water supply device |
EP3561419A4 (en) * | 2016-12-26 | 2020-08-19 | LG Electronics Inc. -1- | Method for controlling water purifier |
-
1982
- 1982-05-06 JP JP7570682A patent/JPS58193070A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121928A (en) * | 2006-11-09 | 2008-05-29 | Hoshizaki Electric Co Ltd | Cold water supply device |
EP3561419A4 (en) * | 2016-12-26 | 2020-08-19 | LG Electronics Inc. -1- | Method for controlling water purifier |
US11976877B2 (en) | 2016-12-26 | 2024-05-07 | Lg Electronics Inc. | Method for controlling water purifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2549747A (en) | Ice-making apparatus | |
US2942432A (en) | Defrosting of evaporator | |
US5212957A (en) | Refgrigerator/water purifier | |
US2593874A (en) | Ice-making | |
US3196625A (en) | Combination ice chip maker-dispenser and method | |
US2524568A (en) | Defrosting apparatus for evaporators | |
US2674101A (en) | Refrigeration control means | |
US2001028A (en) | Defrosting system | |
US2633004A (en) | Ice maker | |
JPS58193070A (en) | Water-cooling heat accumulation type drink cooling device | |
US4941902A (en) | Ice maker and water purifier | |
EP0065995B1 (en) | Water-cooled heat-accumulating type drink cooling system | |
USRE18263E (en) | Automatic refrigerating system | |
JP2001133109A (en) | Cold water pour-out device | |
JPS6211274B2 (en) | ||
US4365486A (en) | Water-cooled heat-accumulating type drink cooling system | |
US2381013A (en) | Refrigeration apparatus | |
US2005860A (en) | Cooling system | |
JP2589719B2 (en) | Water-cooled thermal storage beverage cooling system | |
JPS582568A (en) | Water-cooling heat accumulation type drink cooling device | |
US2022771A (en) | Refrigerating apparatus | |
JP4147026B2 (en) | Cold beverage supply device | |
JPS6037381B2 (en) | Water-cooled thermal storage beverage chiller | |
JP5219356B2 (en) | Cold water supply device | |
KR850000813B1 (en) | Drink cooling apparatus |