JPS6037381B2 - Water-cooled thermal storage beverage chiller - Google Patents
Water-cooled thermal storage beverage chillerInfo
- Publication number
- JPS6037381B2 JPS6037381B2 JP16254579A JP16254579A JPS6037381B2 JP S6037381 B2 JPS6037381 B2 JP S6037381B2 JP 16254579 A JP16254579 A JP 16254579A JP 16254579 A JP16254579 A JP 16254579A JP S6037381 B2 JPS6037381 B2 JP S6037381B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- ice
- beverage
- cooler
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【発明の詳細な説明】
この発肌まカップ式清涼飲料自動販売機、冷水あるいは
清涼飲料デスベンサなどに用いる水冷蓄熱式飲料冷却装
置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cold cup type soft drink vending machine, a water-cooled thermal storage type beverage cooling device used for dispensing cold water or soft drinks, and the like.
頭記飲料冷却装置として、水を満たした冷却水槽内に冷
凍機のェバポレータである冷却器、飲料供給パイプライ
ンに介挿した飲料冷却コイルおよび水蝿群用の電動式ア
ジテータを浸薄配遣し、冷凍機の運転により水槽内の水
を熱移動媒体として飲料を冷却させる装置が周知である
。The above mentioned beverage cooling system consists of a cooler that is an evaporator for a refrigerator, a beverage cooling coil inserted in a beverage supply pipeline, and an electric agitator for water flies, all placed in a cooling water tank filled with water. 2. Description of the Related Art A device is well known in which a beverage is cooled by operating a refrigerator using water in a water tank as a heat transfer medium.
この場合に冷凍機の小容量化を目的として水槽内の冷却
器の周囲にいわゆるアイスバンクと称される氷を常時製
氷しておき、冷凍機の運転停止中にも氷の蓄熱量を利用
して糟内冷却水を低温に維持し、これにより瞬時的な飲
料冷却能力の増強化を図る方式が一般に広く採用されて
いる。かかる水冷蓄熱式飲料冷却装置の概要を第1図に
示す。第1図において、11は水道などの飲料水源、2
は飲料水リザーバ、3はリザーバ2より引出してペンド
ステージ4へ置かれたカップ5へ向けて関口するように
配管した飲料供給パイプライン、6は飲料送水用ポンプ
、7はパイプライン3の終端近〈に設けた飲料供給弁、
8は飲料供給制御回路である。一方、飲料冷却装置9は
水91を満たした冷却水槽92と、水槽内の水中に浸潰
して設置した冷凍機93のェバポレータである冷却器9
4と、水灘杵用アジテータ95と、前記パイプライン3
の途中に介挿して氷槽内へ冷却器94より離間して配置
した飲料冷却コイル31とで構成されている。なお96
は冷凍機93のコンブレツサモータ、97はアジテータ
95の駆動モータ、98は冷却器94の周囲に生成され
たアイスバンクを示す。飲料水は常時リサーバ2に貯え
られており、飲料供給指令信号が与えられると供給弁7
が開き、同時にポンプ6が運転されて冷却コイル31で
冷却された飲料水がカップ5へ供給される。ところで従
来装置における冷凍機コンブレッサモータ96およびア
ジテータ駆動モータ97の運転制御回路は第2図に示す
ごとくである。In this case, in order to reduce the capacity of the refrigerator, ice called an ice bank is constantly made around the cooler in the water tank, and the heat stored in the ice is used even when the refrigerator is not operating. Generally, a method is widely adopted in which the cooling water in the pot is maintained at a low temperature, thereby instantaneously increasing the beverage cooling capacity. An outline of such a water-cooled thermal storage type beverage cooling device is shown in FIG. In Figure 1, 11 is a drinking water source such as tap water, 2
3 is a drinking water reservoir, 3 is a drinking water supply pipeline drawn out from the reservoir 2 and piped to the cup 5 placed on the pend stage 4, 6 is a drinking water pump, and 7 is near the end of the pipeline 3. Beverage supply valve installed in
8 is a beverage supply control circuit. On the other hand, the beverage cooling device 9 includes a cooling water tank 92 filled with water 91 and a cooler 9 which is an evaporator for a refrigerator 93 installed submerged in water in the water tank.
4, an agitator 95 for a water punch, and the pipeline 3
The beverage cooling coil 31 is inserted in the middle of the ice tank and placed in the ice tank at a distance from the cooler 94. Furthermore, 96
97 is a combinator motor of the refrigerator 93, 97 is a drive motor of the agitator 95, and 98 is an ice bank generated around the cooler 94. Drinking water is always stored in the reservoir 2, and when a drink supply command signal is given, the supply valve 7
is opened, and at the same time, the pump 6 is operated and drinking water cooled by the cooling coil 31 is supplied to the cup 5. By the way, the operation control circuit for the refrigerator compressor motor 96 and the agitator drive motor 97 in the conventional device is as shown in FIG.
図中TS.はコンブレッサモータ96と直列に接続した
コンブレツサモータ運転制御用サーモスタットの接点で
あり、その感温部は冷却器94より離間して設置され、
冷却器の周囲に生成した結氷層が成長してアイスバンク
98が所定の厚さになれば感温部が結氷層に覆われて作
動し、接点TS,を開きコンブレッサモータ96を停止
する。また氷が溶解して感温部が氷層より露呈すれば復
帰動作して接点TS,を閉じ、冷凍器93を運転再開す
るように動作する。これに対しアジテー夕駆動モータ9
7は飲料冷却装置の稼働中、熱賛流特性向上のために常
時運転を続け水槽92内の水91を損拝し続けている。
ところで上記従来の運転方式で飲料冷却装置を運転した
場合には、飲料供給指令を与えた際にポンプ6、供給弁
7が正常に動作しているにもかかわらずいまいま飲料水
がカップへ流出しないトラブルの生じることがある。In the figure, TS. is a contact point of a thermostat for controlling the operation of the compressor motor 96 connected in series with the compressor motor 96, and its temperature-sensing part is installed apart from the cooler 94,
When the ice layer formed around the cooler grows and the ice bank 98 reaches a predetermined thickness, the temperature sensing portion is covered with the ice layer and operates, opening the contact TS and stopping the compressor motor 96. Further, when the ice melts and the temperature sensing portion is exposed from the ice layer, a return operation is performed to close the contact TS and restart the operation of the refrigerator 93. In contrast, the agitator drive motor 9
While the beverage cooling device is in operation, the device 7 continues to operate at all times to improve the heat flow characteristics, and continues to drain the water 91 in the water tank 92.
By the way, when the beverage cooling device is operated using the above-mentioned conventional operation method, even though the pump 6 and supply valve 7 are operating normally when the beverage supply command is given, drinking water is flowing out into the cup. Failure to do so may cause problems.
このようなトラブルを調べて見ると飲料供給パイプライ
ン3の途中の狭い箇所、あるいは供給弁7の内部に細か
い氷片が詰り、飲料の流れを堰止めていることが判明し
た。このことは冷却過程に何らかの原因で飲料冷却コイ
ル31の内で飲料水に過冷却が生じ、このために氷片が
発生したことによるものと考え、かかる氷片発生の原因
を究明するよう考察を経た結果、その原因は次の点にあ
ることが判明した。すなわち第2図の従来回路による飲
料冷却装置の運転経過をタイムチャートで示すと第3図
のごとくである。図中、水温のA,B特性線はそれぞれ
水槽92内における冷却コイル31の周囲城水温、およ
び冷却器94の表面温度を表わす。この温度特性線Aか
ら明らかなように、水温は冷却器94の表面に結氷層が
生成され始める過程で水の氷点である0℃よりも低いマ
イナス温度T,℃まで一旦過冷却されている。一般に氷
が冷却器94の表面に結水するには、冷却器の表面周囲
の水温が一旦は氷点以下に過冷却される必要があり、こ
の温度推移を経て結氷層が生じた瞬間に氷は0℃となり
、それ以後は結氷層で覆われた冷却器温度のみが低下し
て氷が成長してゆくので水中での過冷却現象は生じなく
なる。しかして前記のようにこの結氷開始の過渡期間に
アジテータ95を運転し続けて水槽92の水91を燈拝
している場合には水槽内全域の水温が冷却器94の温度
にほぼ等しくなり、この結果、結氷の始まる過程では冷
却器94の周辺城に限定されることなく水槽内全域に百
つて水91の過冷却現象が生じることになる。この場合
の過冷却温度T,℃は水槽の構造、冷凍機の冷却能力、
アジテータの擬伴状態によって異なるが、およそ一0.
530〜一2.0qo程度である。この結果、冷却器9
4より離れて位置する冷却コイル31内に停留している
飲料水も熱移動媒体である水91を介して氷点以下に過
冷却され、冷却コイル内に微細な氷片が発生するに至る
。しかも冷却コイル31中に氷片が発生した状態の最中
に飲料供給指令が与えられると、飲料水とともに氷片が
パイプライン3内を移動してパイプラインの狭い箇所、
例えば供給弁7の内部に詰り、この結果として飲料水の
流れを堰止めて正常な飲料供給を阻害するトラブルの事
態が発生するわけである。特に自動販売機では飲料供給
量は供給弁7の開弁時間制御により設定されることから
、前記のトラブルはそのまま販売トラブルにつながる。
なお、上記の説明は飲料として水を冷却供給する場合に
ついて述べたが、そのほかにシロップ類を冷却供給する
場合にも同様な過冷却の問題が起り得る。本発明は上記
した飲料冷却装置に関してアイスバンクの氷層生成過程
で飲料冷却コイル内の飲料が過冷却されるのを防止し、
氷片の発生を防ぐようにすることを目的としてなされた
ものである。When investigating this problem, it was found that small pieces of ice were clogged in a narrow part of the beverage supply pipeline 3 or inside the supply valve 7, blocking the flow of the beverage. This is thought to be due to the drinking water being supercooled in the beverage cooling coil 31 for some reason during the cooling process, which resulted in the generation of ice chips, and consideration was given to investigating the cause of the generation of ice chips. As a result, the cause was found to be as follows. That is, FIG. 3 shows a time chart showing the operation progress of the beverage cooling apparatus according to the conventional circuit shown in FIG. In the figure, water temperature characteristic lines A and B represent the water temperature surrounding the cooling coil 31 in the water tank 92 and the surface temperature of the cooler 94, respectively. As is clear from this temperature characteristic line A, the water temperature is once supercooled to a minus temperature T,° C., which is lower than the freezing point of water, 0° C., in the process where a frozen layer begins to be formed on the surface of the cooler 94. Generally, in order for ice to condense on the surface of the cooler 94, the water temperature around the surface of the cooler needs to be supercooled to below the freezing point, and the moment a layer of ice forms after this temperature transition, the ice disappears. After the temperature reaches 0°C, only the temperature of the cooler covered with the frozen layer decreases and ice grows, so that no supercooling phenomenon occurs in the water. However, as mentioned above, if the agitator 95 continues to be operated during the transition period when freezing starts and the water 91 in the tank 92 is lit, the water temperature throughout the tank becomes approximately equal to the temperature of the cooler 94. As a result, in the process of freezing, the supercooling phenomenon of the water 91 occurs not only in the surrounding area of the cooler 94 but throughout the entire tank. In this case, the supercooling temperature T, °C is determined by the structure of the water tank, the cooling capacity of the refrigerator,
It varies depending on the agitator's parasitic state, but it is approximately 10.
It is about 530 to 12.0 qo. As a result, cooler 9
Drinking water remaining in the cooling coil 31 located away from the cooling coil 31 is also supercooled to below the freezing point via the water 91, which is a heat transfer medium, and minute ice pieces are generated in the cooling coil. Moreover, if a beverage supply command is given while ice chips are generated in the cooling coil 31, the ice chips will move along with the drinking water inside the pipeline 3, causing the ice chips to move in the narrow areas of the pipeline.
For example, the inside of the supply valve 7 may become clogged, resulting in a troublesome situation in which the flow of drinking water is dammed up and normal drinking water supply is inhibited. Particularly in a vending machine, since the amount of beverage supplied is set by controlling the opening time of the supply valve 7, the above-mentioned trouble directly leads to sales trouble.
Although the above explanation deals with the case where water is supplied as a beverage in a cooled manner, a similar problem of overcooling may also occur when other types of syrups are supplied in a chilled manner. The present invention relates to the above-mentioned beverage cooling device, and prevents the beverage in the beverage cooling coil from being overcooled during the ice layer formation process of the ice bank.
This was done to prevent the formation of ice chips.
かかる目的は本発明により、冷却器の表面近傍に設置し
て冷却器の表面に氷層が生成したことを検知する氷セン
サと、該氷センサの氷検知信号に基づき接点を閉じてア
ジテータ駆動モータを運転開始させるアジテータ駆動モ
ータの運転制御接点を備え、冷却水槽の氷点近傍水温城
で、少くとも冷却器の表面に結氷層が生成検知されるま
での間はアジテータの運転を停止するように構成したこ
とにより達成される。次に本発明の実施例を図について
説明する。According to the present invention, the present invention provides an ice sensor that is installed near the surface of a cooler to detect the formation of an ice layer on the surface of the cooler, and an agitator drive motor that closes a contact based on an ice detection signal from the ice sensor. The system is equipped with an operation control contact for the agitator drive motor that starts the operation of the agitator, and is configured to stop the agitator operation at least until a layer of ice is detected to be formed on the surface of the cooler when the water temperature of the cooling water tank is near the freezing point. achieved by doing. Next, embodiments of the present invention will be described with reference to the drawings.
まず第4図は本発明の基本的な実施例の運転制御回路を
示すもので、第2図と較べてアジテータ駆動モータ97
の電源回路にはアジテータ運転制御用接点Sが介挿接続
されている。該接点Sは後記する氷センサ10の氷検知
信号に基づいて閉動作される。氷センサー0は冷却水槽
92内における冷却器94の表面に接近して取付板11
に設置された一対の電極棒12とを備えており、水と氷
とでは電気抵抗が2桁位異なる性質を利用して冷却器9
4の表面に結氷層が生成されたことを検知し氷検知信号
を変換回路より出力するよう構成されている。すなわち
氷が生成されていない間は電極棒12間の電気抵抗は小
さく、変換回路13から信号が出力されないので接点S
は開いてる。冷凍機の運転に伴い冷却器94の表面にア
イスバンク98の結氷層が生成され、この結氷層によっ
て電極棒12が覆われると、電極間抵抗値は増大して変
換回路13より氷検知信号が出力され、接点Sを閉じて
アジテータ駆動モータ97を運転開始させるように動作
する。上記の制御動作により、アイスバンクを生成させ
る冷却過程で、アジテータ駆動モータ97は少くとも冷
却器94の表面に氷層が生じるまでは接点Sが開いてい
て運転が停止され、結氷層の生じたことが氷センサ1川
こより検知された時点から接点Sを閉じて運転開始され
る。First, FIG. 4 shows the operation control circuit of a basic embodiment of the present invention.
An agitator operation control contact S is inserted and connected to the power supply circuit. The contact S is closed based on an ice detection signal from an ice sensor 10, which will be described later. The ice sensor 0 is mounted on the mounting plate 11 close to the surface of the cooler 94 in the cooling water tank 92.
The cooler 9 is equipped with a pair of electrode rods 12 installed at
4 is configured to detect that an ice layer has been formed on the surface of the ice cube and output an ice detection signal from the conversion circuit. In other words, while ice is not being generated, the electrical resistance between the electrode rods 12 is small and no signal is output from the conversion circuit 13, so the contact S
is open. As the refrigerator operates, a frozen layer of the ice bank 98 is generated on the surface of the cooler 94, and when the electrode rod 12 is covered with this frozen layer, the inter-electrode resistance value increases and the ice detection signal is output from the conversion circuit 13. It operates to close the contact S and start the agitator drive motor 97. Due to the above control operation, during the cooling process to generate an ice bank, the agitator drive motor 97 is stopped with the contact S open at least until an ice layer forms on the surface of the cooler 94. When this is detected by the ice sensor 1, the contact S is closed and operation is started.
従って水槽内の水91は0℃近傍水温城では冷却器94
の表面に氷が生成されるまでは損拝されずに静止状態を
保つ。この結果、水槽内での過冷却現象は僅かに冷却器
94の周囲城に限定して局所的に発生するに止まり、冷
却器94と離れている飲料冷却コイル31の周囲城まで
過冷却が及ばず、冷却コイル内の飲料水中に氷片の発生
する恐れがなくなる。上記の運転結果をタイムチャート
で示すと第5図のごとくであり、水温を表わす特性線A
は000より低下することがない。次に前記の基本実施
例を更に発展させた応用実施例を第6図、第7図につい
て説明する。Therefore, the water 91 in the water tank is near 0°C, and the cooler 94
remains undamaged until ice forms on its surface. As a result, the supercooling phenomenon in the water tank only occurs locally in the area around the cooler 94, and the supercooling phenomenon extends to the area around the beverage cooling coil 31, which is separated from the cooler 94. First, there is no possibility of ice chips forming in the drinking water inside the cooling coil. The above operation results are shown in a time chart as shown in Figure 5, where the characteristic line A represents the water temperature.
never falls below 000. Next, an applied example that is a further development of the basic example described above will be described with reference to FIGS. 6 and 7.
第6図は運転制御回路、第7図はその運転経過のタイム
チャートを示すものである。第6図においてアジテータ
駆動モータ97の電源回路には先記実施例で述べた制御
接点Sに加えて、水槽水の冷却過程で水温が0℃より僅
かに高いT2まで低下すると接点を開くように動作する
サーモスタットの接点TS2と、飲料供給指令信号に基
づいて閉じるリレー接点×とが互に並列接続して介挿さ
れている。これらアジテータ駆動モータ97の各運転制
御接点S,TS2,×の開閉動作により、ァジテ山タ駆
動モータの運転結果は第7図のように、水槽水を冷却し
てアイスバンクを生成させる過程で結氷層の生じ始める
0℃前後の水温城になるとアジテータの運転が停止され
る。従って飲料冷却コイル内の飲料は過冷却されるに至
らず、氷片の発生を防止することができる。しかも冷却
開始からの水温が0℃近くに低下するまでの期間、およ
び一旦水層が生じた後にアイスバンクが残留している期
間、さらには氷が溶解した状態でも飲料供給動作により
冷却コイル内に飲料が流れている期間など、飲料冷却コ
イル内で過冷却の生じる恐れのない運転期間にはアジテ
ー夕が運転され、高い熱貴流効率で冷却運−できる。上
述の説明から明らかなように、本発明によれば冷却器の
周囲に結水が始まる過程で結氷層の生成が検知されるま
ではアジテータの運転が停止されるので、過冷却は僅か
に冷却器の周辺のみに止どまり、飲料冷却コイル周囲の
水が0℃以下に過冷却されることがない。FIG. 6 shows the operation control circuit, and FIG. 7 shows a time chart of the operation progress. In FIG. 6, the power supply circuit for the agitator drive motor 97 includes, in addition to the control contact S described in the previous embodiment, a contact that opens when the water temperature drops to T2, which is slightly higher than 0°C, during the cooling process of the aquarium water. A contact TS2 of the thermostat that operates and a relay contact x that closes based on a beverage supply command signal are connected and inserted in parallel with each other. By opening and closing the operation control contacts S, TS2, and × of the agitator drive motor 97, the operation result of the agitator drive motor is as shown in Fig. 7. When the water temperature reaches around 0°C where a layer begins to form, the operation of the agitator is stopped. Therefore, the beverage in the beverage cooling coil is not supercooled, and the generation of ice chips can be prevented. Moreover, during the period from the start of cooling until the water temperature drops to nearly 0℃, the period when the ice bank remains after a water layer has formed, and even when the ice has melted, the water temperature inside the cooling coil due to the beverage supply operation The agitator is operated during operating periods in which there is no risk of overcooling occurring within the beverage cooling coil, such as during the period when the beverage is flowing, and cooling can be carried out with high thermal efficiency. As is clear from the above description, according to the present invention, the operation of the agitator is stopped until the formation of a frozen layer is detected in the process of water starting to condense around the cooler, so that supercooling is slightly reduced. It stays only around the container, and the water around the beverage cooling coil is not supercooled to below 0°C.
この結果、飲料冷却コイル内に氷片の発生することがな
くなり、従来問題となっていた飲料供給トラブルを解決
して円滑な飲料供給を行わせることができる。As a result, ice chips are no longer generated in the beverage cooling coil, and the conventional beverage supply troubles can be solved and beverages can be supplied smoothly.
第1図は水冷蓄熱式飲料冷却装置の系統図、第2図は従
来における冷却装置の運転制御回路図、第3図は第2図
による冷却運転経過のタイムチャート、第4図および第
6図はそれぞれ本発明の基本および応用実施例の運転制
御回路図、第5図および第7図はそれぞれ第4図、第6
図による冷却運転経過のタイムチャートである。
3・・・…飲料供給パイプライン、31、・・・・・・
飲料冷却コイル、9・・・・・・飲料冷却装置、91・
・・・・・水、92・・・・・・冷却水槽、93・・・
・・・冷凍機、94・・・・・・冷却器、95……アジ
テータ、97……アジテータ駆動モータ、98……アイ
スバンク、S……アジテータの運転制御接点、10・・
・・・・氷センサ、12・・・・・・電極榛。
キー図
才2図
ナ3図
ナ4図
矛5図
才6回
オフ図Fig. 1 is a system diagram of a water-cooled thermal storage type beverage chiller, Fig. 2 is an operation control circuit diagram of a conventional chiller, Fig. 3 is a time chart of the cooling operation progress according to Fig. 2, and Figs. 4 and 6. are operation control circuit diagrams of the basic and applied embodiments of the present invention, respectively, and FIGS. 5 and 7 are diagrams of FIGS. 4 and 6, respectively.
It is a time chart of the progress of cooling operation according to the figure. 3...Beverage supply pipeline, 31,...
Beverage cooling coil, 9... Beverage cooling device, 91.
...Water, 92...Cooling water tank, 93...
... Refrigerator, 94 ... Cooler, 95 ... Agitator, 97 ... Agitator drive motor, 98 ... Ice bank, S ... Agitator operation control contact, 10 ...
...Ice sensor, 12...Electrode beam. Key figure, 2 figure, 3 figure, 4 figure, spear 5 figure, 6 times off figure
Claims (1)
ラインの途中に介挿した飲料冷却コイル、および冷却水
槽水撹拌用の電動式アジテータを配置し、水槽内の水を
熱移動媒体として飲料を冷却するとともに、冷却器の周
囲に氷層を生成させて蓄熱する水冷蓄熱式飲料冷却装置
において、冷却器の表面近傍に設置して冷却器の表面に
氷層が生成したことを検知する氷センサと、該氷センサ
の氷検知信号に基づき接点を閉じてアジテータ駆動モー
タを運転開始させるアジテータ駆動モータの運転制御接
点を備えたことを特徴とする水冷蓄熱式飲料冷却装置。 2 特許請求の範囲第1項に記載の飲料冷却装置におい
て、氷センサが冷却器の表面に接近して設置された一対
の電極棒を有し、水と氷との電極棒間の電気抵抗差に基
づき氷検知信号を出力するものである水冷蓄熱式飲料冷
却装置。[Claims] 1. A cooler, a beverage cooling coil inserted in the middle of a beverage supply pipeline, and an electric agitator for stirring water in the cooling water tank are arranged in a cooling water tank filled with water, and the water in the water tank is In a water-cooled thermal storage type beverage cooling device that uses water as a heat transfer medium to cool the beverage and also generates an ice layer around the cooler to store heat, it is installed near the surface of the cooler to generate an ice layer on the surface of the cooler. A water-cooled thermal storage type beverage chiller, comprising: an ice sensor that detects when the ice sensor is activated; and an agitator drive motor operation control contact that closes the contact and starts operation of the agitator drive motor based on an ice detection signal from the ice sensor. . 2. In the beverage cooling device according to claim 1, the ice sensor has a pair of electrode rods installed close to the surface of the cooler, and the electric resistance difference between the electrode rods of water and ice is determined by the ice sensor. A water-cooled thermal storage beverage chiller that outputs an ice detection signal based on
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16254579A JPS6037381B2 (en) | 1979-12-14 | 1979-12-14 | Water-cooled thermal storage beverage chiller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16254579A JPS6037381B2 (en) | 1979-12-14 | 1979-12-14 | Water-cooled thermal storage beverage chiller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5685677A JPS5685677A (en) | 1981-07-11 |
JPS6037381B2 true JPS6037381B2 (en) | 1985-08-26 |
Family
ID=15756627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16254579A Expired JPS6037381B2 (en) | 1979-12-14 | 1979-12-14 | Water-cooled thermal storage beverage chiller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6037381B2 (en) |
-
1979
- 1979-12-14 JP JP16254579A patent/JPS6037381B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5685677A (en) | 1981-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4497179A (en) | Ice bank control system for beverage dispenser | |
US4448032A (en) | Ice-making and fresh water dispensing apparatus | |
US2001323A (en) | Refrigerating apparatus | |
EP0065995B1 (en) | Water-cooled heat-accumulating type drink cooling system | |
JPS6037381B2 (en) | Water-cooled thermal storage beverage chiller | |
US4365486A (en) | Water-cooled heat-accumulating type drink cooling system | |
US3220207A (en) | Ice cube maker with slush preventing means | |
JPS582569A (en) | Water-cooling heat accumulation type drink cooling device | |
JP2003192097A (en) | Cold drink feed device | |
JP2778924B2 (en) | Beverage cooler | |
KR850000813B1 (en) | Drink cooling apparatus | |
JPS58193070A (en) | Water-cooling heat accumulation type drink cooling device | |
JPS6234209Y2 (en) | ||
JP2589719B2 (en) | Water-cooled thermal storage beverage cooling system | |
US2255413A (en) | Refrigeration | |
JP4008393B2 (en) | Water cooler | |
JP4147026B2 (en) | Cold beverage supply device | |
JP3190372B2 (en) | Water-cooled thermal storage beverage cooling system | |
JP5219356B2 (en) | Cold water supply device | |
JP4445688B2 (en) | Cold beverage supply device | |
US1942412A (en) | Means for defrosting cooling element of mechanical refrigerators | |
JP3318151B2 (en) | Vending machine cooling control device | |
JPS5844188B2 (en) | beverage chiller | |
FR2482275A1 (en) | Refrigeration system for liquids - has container with ice and two exchangers in series with refrigerant e.g. ethylene glycol circulating between them | |
JPS582568A (en) | Water-cooling heat accumulation type drink cooling device |