JPS5819126B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5819126B2
JPS5819126B2 JP16580378A JP16580378A JPS5819126B2 JP S5819126 B2 JPS5819126 B2 JP S5819126B2 JP 16580378 A JP16580378 A JP 16580378A JP 16580378 A JP16580378 A JP 16580378A JP S5819126 B2 JPS5819126 B2 JP S5819126B2
Authority
JP
Japan
Prior art keywords
dose
ion implantation
junction
ion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16580378A
Other languages
Japanese (ja)
Other versions
JPS5591822A (en
Inventor
東迎良育
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16580378A priority Critical patent/JPS5819126B2/en
Publication of JPS5591822A publication Critical patent/JPS5591822A/en
Publication of JPS5819126B2 publication Critical patent/JPS5819126B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、イオン注入によってpn接合を形成する工程
を含む半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device including a step of forming a pn junction by ion implantation.

半導体装置の集積度を高くするに従って半導体基板に形
成する不純物領域を浅く形成する必要が生じ、Si (
シリコン)に対して拡散速度の遅いAs (砒素)を不
純物として用いることが多イなった。
As the degree of integration of semiconductor devices increases, it becomes necessary to form shallow impurity regions in semiconductor substrates, and Si (
As (arsenic), which has a slower diffusion rate than silicon, is increasingly used as an impurity.

又イオン注入により不純物領域を形成した場合、イオン
注入により生じた結晶欠陥等を補償する為にアニールが
行なわれている。
Further, when an impurity region is formed by ion implantation, annealing is performed to compensate for crystal defects caused by the ion implantation.

AsをSi基板にイオン注入してpn接合を形成する場
合に於いても、イオン注入後にアニールが行なわれるが
、pn接合の特性を改善する為には高温でアニールする
ことが望ましい。
Even when a pn junction is formed by ion-implanting As into a Si substrate, annealing is performed after ion implantation, but it is desirable to anneal at a high temperature in order to improve the characteristics of the pn junction.

しかし、高温処理することによりAsが拡散してイオン
注入により形成した領域が深くなる欠点がある。
However, there is a drawback that the high temperature treatment causes As to diffuse and deepen the region formed by ion implantation.

従って再現性良く且つ特性の良い浅い不純物領域を形成
することは困難であった。
Therefore, it has been difficult to form shallow impurity regions with good reproducibility and good characteristics.

本発明は、前述の如き従来の欠点を改善したもので、A
sのイオン注入後、低温でアニールする;ことにより特
性の改善を図ることができる方法を提供することを目的
とするものである。
The present invention improves the conventional drawbacks as described above, and A.
The object of the present invention is to provide a method that can improve the characteristics by annealing at a low temperature after s ion implantation.

以下実施例について詳細に説期する。Examples will be explained in detail below.

第1図に示すように、Si基板1上の5i02等の絶縁
膜2に窓3を形成して、Asのイオン注入、により領域
4を形成する場合、Asと同一導電型となるP(燐’)
、 Sb (アンチモン)等の不純物を、Asのドー
ズ量より少ないドーズ量でイオン注入するものである。
As shown in FIG. 1, when a window 3 is formed in an insulating film 2 such as 5i02 on a Si substrate 1 and a region 4 is formed by ion implantation of As, P (phosphorus), which has the same conductivity type as As, is formed. ')
, Sb (antimony), and other impurities are ion-implanted at a dose smaller than that of As.

このAsに対するP又はsbのドーズ量は5〜20係と
するものである。
The dose amount of P or sb relative to As is 5 to 20 times.

;即ち5係以下ではP又はsbをイオン注入した効果が
殆んど現われず、又20係以上であると、アニール時に
P又はsbの拡散量が多(なって、Asにより浅い領域
を形成しても、アニールにより深い領域となる。
; That is, if the coefficient is less than 5, the effect of ion implantation of P or sb will hardly appear, and if it is more than 20, the amount of diffusion of P or sb will be large during annealing (as a result, a shallow region will be formed by As). However, the area becomes deep due to annealing.

一例としてAsをSi基板に深さd、ドーズ量1×10
16原子cIrL−2でイオン注入し、更にPをイオン
注入し、熱処理によって増大した深さをd。
As an example, As is applied to a Si substrate at a depth d and a dose of 1×10
16 atoms cIrL-2 were ion-implanted, P was further ion-implanted, and the depth increased by heat treatment was d.

としたときのd/dOと熱処理後(’C)との関係を第
2図に示す。
The relationship between d/dO and after heat treatment ('C) is shown in FIG.

同図に於いて、曲線AはPのドーズ量1×1015原子
cIrL−2、曲線BはP(7)ドーズ量2×1015
原子CIrL’の場合についてのものである。
In the same figure, curve A is a P dose of 1 x 1015 atoms cIrL-2, and curve B is a P(7) dose of 2 x 1015.
This is for the case of the atom CIrL'.

同図から判るように、Pのドーズ量が2×1015原子
儂−2の場合、熱処理温度を1000℃とすると、接合
深さは、約1.26倍になるが、ドーズ量が1×101
5原子儂−2の場合は、1.06倍になるだけであり、
この場合のイオン注入時に於ける加速電圧は、Asは5
0Kv、Pは25Kvである。
As can be seen from the figure, when the P dose is 2 x 1015 atoms f-2 and the heat treatment temperature is 1000°C, the junction depth becomes approximately 1.26 times, but the dose is 1 x 101
In the case of 5 atoms -2, it only increases by 1.06 times,
In this case, the accelerating voltage during ion implantation is 5 for As.
0Kv, P is 25Kv.

又Asのドーズ量を前述と同様KIXIO原子cIIL
−2としたときのpn接合の逆方向電流を■訂とし、P
もイオン注入したと、きの逆方向電流を■として、■/
■oとPのドーズ誉との関係は第3図に示すものとなっ
た。
Also, the dose of As was changed to KIXIO atom cIIL as described above.
-2, the reverse current of the pn junction is
When ions are also implanted, the reverse current is assumed to be ■/
■The relationship between o and P's dose honor is shown in Figure 3.

即ちAs単独の場合の逆方向電流をI/Io =、1と
して、Pのドーズ量を1×1015原子C111,−2
としたとき、逆方向電流■/Ioは0.12となった。
That is, assuming that the reverse current in the case of As alone is I/Io = 1, the dose of P is 1 x 1015 atoms C111,-2
When this happens, the reverse current ■/Io was 0.12.

換言すればpn接合の逆方向電流がPのイオン注入によ
って約1/10になった。
In other words, the reverse current in the pn junction was reduced to about 1/10 by the P ion implantation.

又結晶欠陥を顕微鏡写真によって観察したところ、Pの
ドーズ量をAsに対して次第に増大するに従って結晶欠
陥が少なくなった。
Further, when crystal defects were observed using micrographs, it was found that as the dose of P was gradually increased relative to As, the number of crystal defects decreased.

これは第3図に示すpn接合の逆方向電流がPのドーズ
量を増加すをに従って減少することと一致するものであ
る。
This is consistent with the fact that the reverse current in the pn junction shown in FIG. 3 decreases as the P dose increases.

なおAsのドーズ量に対して20%以上以上イオン注入
しても改善効果は僅かしか認められず、熱処理による接
合深さの増大の影響が現われて(ることになる。
Note that even if ions are implanted at a dose of 20% or more of As, only a slight improvement effect is observed, and the effect of increasing the junction depth due to heat treatment appears.

又ミbを用いた場合も前述と同様の結果が得られた。Also, when Mi-b was used, similar results to those described above were obtained.

以上説明したように、本発明は、Asのイオン注入と同
時又は前後にp、sb等のAsと同一導電型を形成する
不純物をイオン注入する衣ので、As単独の場合に比較
して結晶欠陥を少なくする′ととができるので、低温ア
ニールでpn接合の特性を改善することができる。
As explained above, in the present invention, impurities forming the same conductivity type as As, such as p and sb, are ion-implanted at the same time or before or after As ion implantation, so crystal defects are more likely to occur than in the case of As alone. Since the characteristics of the pn junction can be improved by low-temperature annealing, the characteristics of the pn junction can be improved.

又Asと同一導電型の不純物を、Asのドーズ量の5−
20%のドーズ量でイオン注入するものであって、5係
以下では前述のようにAsと同一導電型のp、sb等の
不純物をイオン注入した効果が殆んど無く、20%以上
ではアニール時にp、sb等の拡散により浅い領域を形
成することができないものとなる。
In addition, an impurity of the same conductivity type as As is added at a dose of 5-
Ion implantation is performed at a dose of 20%, and as mentioned above, there is almost no effect of ion implantation of impurities such as p and sb, which have the same conductivity type as As, when the dose is less than 5%, and when it is over 20%, annealing is performed. Sometimes, it becomes impossible to form a shallow region due to diffusion of p, sb, etc.

□従って、Asと同一導電型のp、sb等の不純物を、
Asのドーズ量の5〜20係の範囲が最適のドーズ量と
なる。
□Therefore, impurities such as p and sb, which have the same conductivity type as As,
The optimal dose range is between 5 and 20 of the As dose.

このように、浅い接合深さのpn接合を容易に形成でき
るので、バイポーラ型やMOS型等の高集積度9半導体
装置に適用して実用上の効果は非常に大きいものである
As described above, since a pn junction with a shallow junction depth can be easily formed, the practical effect is very large when applied to highly integrated semiconductor devices such as bipolar type and MOS type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオン注入による不純物領域の説明図、第2図
は熱処理温度と接合深さとのPのドーズ量をパラメータ
とした曲線図、第3図はPのドーズ量と逆方向電流との
関係曲線図である。 1はSi基板、2は絶縁膜、3は窓、4はイオン注入領
域である。
Figure 1 is an explanatory diagram of an impurity region formed by ion implantation, Figure 2 is a curve diagram of the heat treatment temperature and junction depth using the P dose as a parameter, and Figure 3 is the relationship between the P dose and reverse current. It is a curve diagram. 1 is a Si substrate, 2 is an insulating film, 3 is a window, and 4 is an ion implantation region.

Claims (1)

【特許請求の範囲】[Claims] I Si基板にAsをイオン注入して不純物領域を形
成する半導体装置の製造方法に於いて、イオン注入する
前記Asと同一導電型の不純物を、前記Asのドーズ量
の5〜20係のドーズ量で前記不純物領域にイオン注入
することを特徴とする半導体装置の製造方法。
I In a method for manufacturing a semiconductor device in which an impurity region is formed by ion-implanting As into a Si substrate, an impurity having the same conductivity type as the As to be ion-implanted is added at a dose of 5 to 20 times the dose of As. A method for manufacturing a semiconductor device, characterized in that ions are implanted into the impurity region.
JP16580378A 1978-12-30 1978-12-30 Manufacturing method of semiconductor device Expired JPS5819126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16580378A JPS5819126B2 (en) 1978-12-30 1978-12-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16580378A JPS5819126B2 (en) 1978-12-30 1978-12-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5591822A JPS5591822A (en) 1980-07-11
JPS5819126B2 true JPS5819126B2 (en) 1983-04-16

Family

ID=15819282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16580378A Expired JPS5819126B2 (en) 1978-12-30 1978-12-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5819126B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137072A (en) * 1983-12-26 1985-07-20 Matsushita Electronics Corp Manufacture of junction type field effect transistor
JPH03139827A (en) * 1989-10-25 1991-06-14 Katsuhiro Yokota Forming method for low resistance layer on silicon by ion implanting of two or more elements having different atomic radii

Also Published As

Publication number Publication date
JPS5591822A (en) 1980-07-11

Similar Documents

Publication Publication Date Title
JPH0777259B2 (en) Method for manufacturing polycrystalline silicon resistor having desired temperature coefficient
JPS6362227A (en) Correction of characteristics of p-type dopant by other p-type dopant
KR19980070332A (en) Method for forming a very shallow junction in a silicon device
JPS5819126B2 (en) Manufacturing method of semiconductor device
JPH0366165A (en) Diffusion of impurities to semiconductor substrate
JPH0334649B2 (en)
JPH0526343B2 (en)
JPH0715997B2 (en) Method for manufacturing semiconductor device
US5646057A (en) Method for a MOS device manufacturing
JPS60198814A (en) Manufacture of semiconductor device
JPH0212924A (en) Manufacture of bipolar transistor
JPH0521461A (en) Manufacture of semiconductor device
JPS61248476A (en) Manufacture of semiconductor device
JPS60127755A (en) Manufacture of semiconductor device
JPS6321825A (en) Manufacture of semiconductor device
JP2653513B2 (en) Method for manufacturing semiconductor device
JPH04196525A (en) Manufacture of semiconductor device
JPH053146B2 (en)
JPS60213019A (en) Manufacture of semiconductor device
JPH0795537B2 (en) Method for manufacturing semiconductor device
JPH0234170B2 (en)
JPS59132678A (en) Manufacture of semiconductor device
JP3041886B2 (en) Method for manufacturing semiconductor device
JPS61206219A (en) Manufacture of semiconductor device
JPH02148851A (en) Manufacture of semiconductor device