JPS58190710A - Range finder - Google Patents

Range finder

Info

Publication number
JPS58190710A
JPS58190710A JP7375882A JP7375882A JPS58190710A JP S58190710 A JPS58190710 A JP S58190710A JP 7375882 A JP7375882 A JP 7375882A JP 7375882 A JP7375882 A JP 7375882A JP S58190710 A JPS58190710 A JP S58190710A
Authority
JP
Japan
Prior art keywords
light
amplifier circuit
receiving
spd10
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7375882A
Other languages
Japanese (ja)
Inventor
Hirotaka Nishira
西羅 博隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7375882A priority Critical patent/JPS58190710A/en
Publication of JPS58190710A publication Critical patent/JPS58190710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To provide a range finder incorporating, in place of conventional logarithmic amplifier circuit, a linear amplifier circuit having superior signal to noise ratio and resolution, by making use of a light-receiving element the input/ output characteristics of which vary depending on the position of incidence of light. CONSTITUTION:An SPD10 has a deformed light-receiving pattern 11 so that the rate of change of light-receiving sensitivity thereof varies in accordance with the shape of the pattern 11. The reflected light image 8 of a closer object 3 is within a part of low light-receiving sensitivity of the SPD10, while the reflected light image 7 of a remoter object 4 is in the part of high light-receiving sensitivity of the SPD10. The quantity of the reflected light is in inverse proportion to the distance to the object, so that it becomes possible to reduce the amount of change of the output current from SPD10 by forming the light-receiving pattern 11 in a shape corresponding to the expected amount of change of the reflected light quantity. It is, therefore, possible to use a linear amplifier circuit which is superior to the logarithmic amplifier circuit in the aspects of the signal to noise ratio and resolution, even with a power source of a comparatively low voltage.

Description

【発明の詳細な説明】 本発明は投光器による光を物体に向けて照射し。[Detailed description of the invention] The present invention irradiates light from a projector toward an object.

物体による反射光を受光し、物体の距離を測定する翫り
距装皺。特にその受光素子の改良に関するものである。
A telescope that measures the distance to an object by receiving light reflected from it. In particular, it relates to improvements in the light-receiving element.

従来、この柚の装置として第1図にボすものがあった。Conventionally, there was a device for this purpose as shown in Figure 1.

図において、 Q月よ都外発光ダイオードの様な光九体
(以下LEI)と略称1−る)(2月よLED (1)
の自口面に配電しtこ集光レンズ、 にiJおよび(4
)はIJD (r)による光か照射される被測定物体、
(5)は被測定物体(3)および(4)を輪軸する集光
レンズ、(6)は集光レンズ(5ンの彼方に配titさ
れγこンリコンフオトタイオードの様な受光素子(以下
bf’Dと略称する)、(力は受光系子(6)上に結像
した被測定物体(4)の像、(8)は受光素子(6)上
に?iIi憾した被測定物体(3)の像、(9)は受光
素子(6)に接続さ7した対数圧縮増幅回路である。
In the figure, there is a light nine body (hereinafter referred to as LEI), which looks like a light-emitting diode outside Q month (abbreviated as 1-ru) (February LED (1)).
Power is distributed to the aperture surface of the condenser lens, iJ and (4
) is the object to be measured that is irradiated with light by IJD (r),
(5) is a condensing lens that rotates the objects to be measured (3) and (4), and (6) is a condensing lens (a light receiving element such as a γ-reconverter photodiode placed on the other side of 5). (hereinafter abbreviated as bf'D), (force is the image of the object to be measured (4) formed on the light receiving element (6), (8) is the image of the object to be measured (4) formed on the light receiving element (6)? In the image (3), (9) is a logarithmic compression amplifier circuit connected to the light receiving element (6).

久に創作について説明する。LEIJ (υによる光は
果光しンズe目こまって被測定物体(3ンあるいは(4
)の上に照射面を形成する。板?St!l疋物体(3)
および(旬上の照射向は集光レンズ(5)にまり8PD
 (s)の表ml上の(8)あるいは(7)の位置に結
像する。5P1)(6)の出力電流は対数圧縮増幅回路
(9)によ−ノて増幅され、適当な手段でSFD (6
>上の位置を検出することに誹り距離が測定される。対
数圧縮増幅回路(9)は物体からの反射光量か非常に大
きな変化取を持つでいることに対応して使用されている
。物体からの反射光量は物体の距離の2乗に近似的に反
比例し、その他の要因も含めると約1000倍の変化販
を持っているため受光素子の出力を増幅する電気回路を
低電圧電源で動作させるために対数圧動回路を必要とし
た。しかし対数圧縮増幅回路は微りな信号電流を増幅す
る際に信号対雑音の面で線形増幅回路に比較して不利で
あり9分解能も線形増幅回路に比較して悪化する欠点か
ある。従来の測距装置は以上のまりに構成されていたの
で対数圧縮増幅回路を必装とし、信号対雑音比1分解能
を悪化させるなどの欠点を持っていた。
I will explain about the creation soon. The light emitted by LEIJ (υ) is emitted by the light beam, and the object to be measured (3 or (4)
) to form an irradiation surface. Board? St! 1 object (3)
(The irradiation direction on the top is the condensing lens (5) and the 8PD
The image is formed at position (8) or (7) on table ml of (s). The output current of 5P1) (6) is amplified by the logarithmic compression amplifier circuit (9), and the output current of SFD (6) is amplified by a logarithmic compression amplifier circuit (9).
>The distance is measured by detecting the position above. The logarithmic compression amplifier circuit (9) is used in response to the fact that the amount of reflected light from an object has a very large change. The amount of light reflected from an object is approximately inversely proportional to the square of the distance from the object, and if other factors are included, the change is approximately 1000 times. Therefore, the electric circuit that amplifies the output of the photodetector must be powered by a low-voltage power supply. It required a logarithmic pressure circuit to operate. However, logarithmic compression amplification circuits are disadvantageous in terms of signal to noise when amplifying minute signal currents compared to linear amplification circuits, and also have the disadvantage that their resolution is worse than that of linear amplification circuits. Conventional distance measuring devices were constructed as described above, and therefore required a logarithmic compression amplifier circuit, which had drawbacks such as deterioration of signal-to-noise ratio (1) resolution.

この発明は上記のような従来のものの欠点を除去するた
めになされたものでBPDの構造を改良することにより
、対数肚勧増幅N路を使用せずに。
This invention was made to eliminate the above-mentioned drawbacks of the conventional method, and by improving the structure of the BPD, it does not use the logarithmic amplification N-path.

り自利な線形増幅回路を由いることのできる測距装置?
提供することを目的としている。
A distance measuring device that can use a convenient linear amplification circuit?
is intended to provide.

以F、この発明の一実施例を図について説明する。第2
図にわいCa Hは5PIJチツプ(ロ)は5PDaQ
上にバタン構成された光感度を;汀する拡散部分である
。第8図においで、(1)はLED 、 <2)はLE
D (1)の前面をこ配置した果元レンズ、(3)およ
び(4)はLED <i)による光が照射される物体、
(5)は被測定物体(3)および(4> ンtm測する
栄光レンズ、&Iは栄光レンズ(5)の後ガに配置され
た■ぜD 、 <nはSPD Ql上に結像した物体(
4)の像、(8)は受光素子α1上に結像した被測定物
体(3)の像、0は受光素子に倭統さ口た線形増幅回路
である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Second
In the figure, Ca H is 5 PIJ chip (B) is 5 PDaQ
It is a diffusing part that suppresses the light sensitivity that is configured with a slam on the top. In Figure 8, (1) is LED, <2) is LE
D (1) The front lens is arranged in this way, (3) and (4) are objects illuminated by light from LED <i),
(5) is the Glory lens that measures the objects to be measured (3) and (4> tm, &I is the Glory lens placed behind the Glory lens (5), and <n is the object imaged on the SPD Ql. (
4), (8) is an image of the object to be measured (3) formed on the light-receiving element α1, and 0 is a linear amplifier circuit connected to the light-receiving element.

次に動作についで説明する。8PD ulJは抜形した
受光バタン(ロ)を持つために、矢印A方向に対して受
光@度が誠少し、その受光感度の灰化率はパタンOυの
形状によって法定される。このまうな変形バタン(ロ)
を備えた8F1)(2)を@8図の様に矢印入方向の同
きに配置すると、近側1m@坏(3)の反射光像(8)
の位置は、8PDgq上の受光1s罠の低い部分にあり
、遠距離物体(4)の反射構造(7)は、spngg上
の受光感度の高い部分にあることになる。一般に反射光
量は物体距離の2乗に近似的に反比例するため。
Next, the operation will be explained. Since the 8PD ulJ has a cut-out light-receiving button (b), the light-receiving degree is very accurate in the direction of arrow A, and the ashing rate of the light-receiving sensitivity is determined by the shape of the pattern Oυ. This beautiful transformation slam (b)
If 8F1) (2) equipped with
The position is in the low part of the light receiving 1s trap on 8PDgq, and the reflection structure (7) of the distant object (4) is in the part with high light receiving sensitivity on spngg. Generally, the amount of reflected light is approximately inversely proportional to the square of the object distance.

近距離物体(3)に誹る反射光量は、遠距屋物体(4)
に町る反射光量よりも著しく大きいが、5PDQ(Jの
受光バタンにより制限される結果として、81’D(L
(lの出力の変化凰は小さいものになる。距離に応じた
反射光量の度化凰は、あらかじめ計算及び実験で予想可
能であるため、予想される変化星に対応する形で受光バ
タン(ロ)を製作することにまり、更に81’D QO
の出力亀Njの変化監を小さくすることが可能になる6
8FDαQの出力電流変化量が小さくなれば、低電圧電
源でも信号対雑音比9分Pk能の点で対数圧縮増幅回路
よりすぐれた線形増幅回路を使用することが可能になり
、測距装置の積度を向上し、遠距離の物体に対する到達
距離範囲を拡大することができる。第4図は他の実施例
をボすものである。8FDチツプOQ上に複数イーの独
立した受光部分(2)、o4.(2)、(至)を備えた
BPD列で71つでもよく、上記実施例と同様の効果を
有する。第5図は他ノ実施例をボすものである。MPD
チップCIQ上に矢印B方向の感度差が少ない受光バタ
ンa’hを備えたF3PDであってもよく、上記実施例
と同様の効果を有する。第6図は他の実施例を示すもの
である。
The amount of reflected light that falls on a short-distance object (3) is the same as that of a long-distance object (4).
However, as a result of being limited by the light receiving panel of 5PDQ(J),
(The change in the output of l will be small. Since the change in the amount of reflected light depending on the distance can be predicted in advance by calculation and experiment, the light receiving batt (ro ), and further developed 81'D QO.
It becomes possible to reduce the change in the output torque Nj of 6
If the amount of change in the output current of 8FDαQ becomes smaller, it becomes possible to use a linear amplifier circuit that is superior to a logarithmic compression amplifier circuit in terms of signal-to-noise ratio Pk performance of 9 minutes even with a low-voltage power supply, and it becomes possible to use a linear amplifier circuit that is superior to a logarithmic compression amplifier circuit even with a low voltage power supply. It is possible to improve the accuracy and expand the range of reach for distant objects. FIG. 4 shows another embodiment. A plurality of independent light receiving parts (2) on the 8FD chip OQ, o4. There may be 71 BPD columns including (2) and (to), and the same effect as in the above embodiment can be obtained. FIG. 5 shows another embodiment. MPD
An F3PD may be used, which is provided with a light-receiving button a'h having a small sensitivity difference in the direction of arrow B on the chip CIQ, and has the same effect as the above embodiment. FIG. 6 shows another embodiment.

8PI)チップOCI上に矢印C方向に対して仁慈の関
数関係を持った形状の受光バタンとしてもよく、上記実
施例と同様の効果を有する。
8PI) A light-receiving button having a shape having a benevolent functional relationship in the direction of arrow C may be formed on the chip OCI, and the same effect as in the above embodiment can be obtained.

なお上記実施例では受光バタン(ロ)、(至)、DI、
Q5゜M、02)、a&を拡散に誹って&成したが、拡
散によらず蒸着金属、松脂の様なものによる遮光でもよ
い。また上記実施例では8PI)チップ上のパタンの場
合について説明したが、 8に’Dチップ外部の処理に
よる趣光であっても、 bPDチップ外部の処理に誹る
部分的な先賢制限でゐってもまく、上記実施例と同様の
効果を奏する。また、上記実&例では三角副垣方式の場
合について説明したが、他の方式であってもよく、J:
記実施例と同様の効果を桑する。
In the above embodiment, the light receiving buttons (B), (To), DI,
Q5゜M, 02), a & was created by referring to diffusion, but light shielding with vapor-deposited metal, pine resin, etc. may be used instead of diffusion. In addition, in the above embodiment, the case of a pattern on a 8PI) chip was explained, but in 8, even if the effect is due to processing outside the D chip, it is a partial preemptive restriction that impairs the processing outside the bPD chip. However, the same effects as in the above embodiment can be achieved. In addition, in the above actual examples, the case of the triangular side fence method was explained, but other methods may be used.
The same effect as in the above embodiment can be obtained.

以上のようにこの発明によれば8PDを出力変化簾が制
限される形で構成したので、増幅(ロ)路に線形増幅回
路が使用することで、信号対雑音比1分解能な向上する
ことができ、#1度の高い測距装置が得られる効果があ
る。
As described above, according to the present invention, since the 8PD is configured in such a way that the output change is limited, the signal-to-noise ratio can be improved by one resolution by using a linear amplification circuit in the amplification path. This has the effect of providing a distance measuring device with a high #1 degree.

【図面の簡単な説明】[Brief explanation of the drawing]

賠1図は従来の測距装置を示す原理的説明図。 第2図はこの発明の特徴とする8PDの受光表面パター
ンの一例を示す上面図、@S図はこの発明の一実施例を
示す原理的説明図、第4図、第5図。 第6図はこの発明の特徴とする8PDの受光表面パター
ンの他の異なる例を示す上面図である。 (1)・・・発光素子、(2)・・・集光レンズ、(3
)・・・被側定物。 (4)・・・被測定物、(5)・・・集光レンズ、(7
)・・・反射像、t8)・・・反射像、QQ・・・8P
D、Qυ・・・受光部分、(2)・・・線形増幅回路、
Ql、a◆、に)、an、(ロ)、(ト)・・・受光部
分なお1図中、同一符号は同一、又は相当部分を示す。 代理人 葛野信− 第1図 第2図 第4図 第5図 第6図 手続補正書(自発) 11許Iコ長宮殿 1 ・バr’+−の表示    特願昭57−0787
58号3 補11:をする者 代表者片山仁へ部 、1代理人 6、補正の対象 (2)明細書をつぎのとおり訂正する。 第1図 第2図 O Δ 第6図 1θ
Figure 1 is an explanatory diagram of the principle of a conventional distance measuring device. FIG. 2 is a top view showing an example of the light-receiving surface pattern of 8PD which is a feature of the present invention, @S is a principle explanatory diagram showing an embodiment of the present invention, and FIGS. 4 and 5. FIG. 6 is a top view showing another example of the light-receiving surface pattern of the 8PD, which is a feature of the present invention. (1)...Light emitting element, (2)...Condensing lens, (3
)...object constant. (4)...Object to be measured, (5)...Condensing lens, (7
)...Reflection image, t8)...Reflection image, QQ...8P
D, Qυ... Light receiving part, (2)... Linear amplifier circuit,
Ql, a◆, ni), an, (b), (g)...light receiving portions In Figure 1, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Procedural amendment (voluntary) 11 Ko I Kocho Palace 1 ・Display of bar r'+- Patent application 1987-0787
No. 58 No. 3 Supplement 11: Representative Hitoshi Katayama Department, 1 Agent 6, Subject of amendment (2) The specification is amended as follows. Figure 1 Figure 2 O Δ Figure 6 1θ

Claims (4)

【特許請求の範囲】[Claims] (1)被測定物体からの反射光を受光する受光素子上の
光入射位置を検出して被測定物体に対する距離を測定す
る測距装置において、前記受光素子は光入射位置に対応
して変化する入出力特性を有することを特徴とする測距
装置。
(1) In a distance measuring device that measures the distance to the measured object by detecting the light incident position on a light receiving element that receives reflected light from the measured object, the light receiving element changes in accordance with the light incident position. A distance measuring device characterized by having input/output characteristics.
(2)l¥i前記受光素子は光入射位置に対して特定の
関数関係をもった入出力特性を有することを特徴とする
特許請求の範囲第1項記載の測距装置。
(2) The distance measuring device according to claim 1, wherein the light receiving element has an input/output characteristic having a specific functional relationship with respect to a light incident position.
(3)前記受光素子は光入射位置に対応して異なる受光
感度を有することを特徴とする特許請求の範囲第1項ま
たは婉2項記載の測距装置。
(3) The distance measuring device according to claim 1 or 2, wherein the light receiving element has different light receiving sensitivities depending on the light incident position.
(4)前記受光素子の光感度を有する表mlパターンが
光入射位置に対応して変化することを特徴とする特許請
求の範囲第1項ないし@8項のいづれかに記載の測距装
置。
(4) The distance measuring device according to any one of claims 1 to 8, wherein a table ml pattern having photosensitivity of the light-receiving element changes in accordance with a light incident position.
JP7375882A 1982-04-30 1982-04-30 Range finder Pending JPS58190710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7375882A JPS58190710A (en) 1982-04-30 1982-04-30 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7375882A JPS58190710A (en) 1982-04-30 1982-04-30 Range finder

Publications (1)

Publication Number Publication Date
JPS58190710A true JPS58190710A (en) 1983-11-07

Family

ID=13527448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7375882A Pending JPS58190710A (en) 1982-04-30 1982-04-30 Range finder

Country Status (1)

Country Link
JP (1) JPS58190710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161412U (en) * 1984-09-28 1986-04-25
JPS6225209A (en) * 1985-07-26 1987-02-03 Olympus Optical Co Ltd Distance measuring equipment
EP0507102A2 (en) * 1991-04-04 1992-10-07 Leica AG Two-axis inclinometer
JPH04119915U (en) * 1991-04-09 1992-10-27 ヤマギワ株式会社 hanging lights
JPH05164520A (en) * 1991-12-19 1993-06-29 Hitachi Ltd Method and apparatus for detecting three-dimensional shape
WO2019058844A1 (en) * 2017-09-20 2019-03-28 浜松ホトニクス株式会社 Position detection sensor
WO2019058843A1 (en) * 2017-09-20 2019-03-28 浜松ホトニクス株式会社 Position detection sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161412U (en) * 1984-09-28 1986-04-25
JPH0325130Y2 (en) * 1984-09-28 1991-05-31
JPS6225209A (en) * 1985-07-26 1987-02-03 Olympus Optical Co Ltd Distance measuring equipment
EP0507102A2 (en) * 1991-04-04 1992-10-07 Leica AG Two-axis inclinometer
JPH04119915U (en) * 1991-04-09 1992-10-27 ヤマギワ株式会社 hanging lights
JPH05164520A (en) * 1991-12-19 1993-06-29 Hitachi Ltd Method and apparatus for detecting three-dimensional shape
WO2019058844A1 (en) * 2017-09-20 2019-03-28 浜松ホトニクス株式会社 Position detection sensor
WO2019058843A1 (en) * 2017-09-20 2019-03-28 浜松ホトニクス株式会社 Position detection sensor
JP2019057564A (en) * 2017-09-20 2019-04-11 浜松ホトニクス株式会社 Position detection sensor
JP2019056590A (en) * 2017-09-20 2019-04-11 浜松ホトニクス株式会社 Position detection sensor
US10819932B2 (en) 2017-09-20 2020-10-27 Hamamatsu Photonics K.K. Position detector sensor
US11137284B2 (en) 2017-09-20 2021-10-05 Hamamatsu Photonics K.K. Position detection sensor that detects an incident position of light comprising plural pixel groups each with plural pixel parts

Similar Documents

Publication Publication Date Title
AU2005100959A4 (en) Laser Distance Measuring Device
JPH01145515A (en) Photosensor
JPS6060511A (en) Distance measuring device
JPH10221064A (en) Optical distance-measuring device
JPS58190710A (en) Range finder
JP2007010556A (en) Optical range finding sensor, and equipment provided therewith
JPS55119006A (en) Displacement measuring instrument
JP3230625B2 (en) Reflective photoelectric sensor
JPH0450720A (en) Optical length measuring instrument
GB2122835A (en) Rangefinder
JPS57158508A (en) Distance detecting device
JPH0645858Y2 (en) Light receiving element for distance measurement
JPS58106410A (en) Distance detector
JPS5734511A (en) Photographing lens device having focusing function
JPS6238312A (en) Distance detecting device
JPS596457Y2 (en) light wave distance meter
JPH01222235A (en) Camera
JPH03277990A (en) Photoelectric switch for detecting minute matter
JPH01156694A (en) Photoelectric switch
JPH0714810Y2 (en) Rangefinder
JPS58100807A (en) Focusing device
SU883843A1 (en) Optical electronic device for automatic focusing
JPH0588791B2 (en)
JPH0552550A (en) Detecting apparatus of distance
JPH06112520A (en) Photoelectric conversion device