JPH01222235A - Camera - Google Patents

Camera

Info

Publication number
JPH01222235A
JPH01222235A JP4585388A JP4585388A JPH01222235A JP H01222235 A JPH01222235 A JP H01222235A JP 4585388 A JP4585388 A JP 4585388A JP 4585388 A JP4585388 A JP 4585388A JP H01222235 A JPH01222235 A JP H01222235A
Authority
JP
Japan
Prior art keywords
light
camera
psds
projecting means
light projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4585388A
Other languages
Japanese (ja)
Inventor
Hisashi Akima
秋間 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP4585388A priority Critical patent/JPH01222235A/en
Publication of JPH01222235A publication Critical patent/JPH01222235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To perform accurate range-finding even to an object in which luminance difference is large by symmetrically providing light receiving means one by one on both sides of a light projecting means provided on a line which passes the center of the photographic lens of a camera. CONSTITUTION:The light projecting means is provided on the line which passes the center of the photographic lens 2 of the camera and the light receiving means are symmetrically provided one by one on both sides of the light projecting means. Namely, PSDs (Position Sensing Device) 17 and 19 for receiving infrared reflected light are disposed on the rear side of condensing lenses 14 and 16 as the light receiving means and a diode 18 for emitting infrared light is disposed on the rear side of the condensing lens 15 as the light projecting means. When the positions of the PSDs 17 and 19 to the light emission diode 18 are accurately adjusted, output currents from the PSDs 17 and 19 are canceled each other and the erroneous detection of an object distance caused by the luminance difference is evaded even if the luminance of the object is partially extremely different. Thus, erroneous range-finding is not caused and accurate range-finding can be performed.

Description

【発明の詳細な説明】 (摩東上の利用分野) 本発明は三眼測距方式のカメラに関する。[Detailed description of the invention] (Application field of Masatojo) The present invention relates to a trinocular distance measuring camera.

(従来技術) 近年、自動焦点カメラが普及している。自動焦点カメラ
とは、被写体までの距離を測定し測定した距離に応じて
撮影レンズを自動的に移動させて撮影者が手動で合焦動
作(いわゆるピント合せ)をする必要がないようにした
カメラをいうが、この種のカメラでは種々の測距方式か
知られていアク パッシブ式とかある。≠φティツ式はカメラから赤外光
を被写体に向けて発光させ、被写体からの赤外反射光を
P S D (Po5ition Sensing D
evice)と呼ばれる受光素子で受光し、その出力電
流から三角測量の原理を用いて被写体まての距離を測定
する測距方式であり、パッシブ式はカメラから被写体に
向けて発光はせずに被写体からの光により2つの異なる
被写体像を形成し、その像のずれから三角測量の原理を
用いて被写体までの距離を測定する測距方式である。
(Prior Art) Autofocus cameras have become popular in recent years. An autofocus camera is a camera that measures the distance to the subject and automatically moves the photographic lens according to the measured distance, eliminating the need for the photographer to manually focus. However, there are various distance measurement methods known for this type of camera, including the aqua-passive method. ≠φ The Titz method emits infrared light from the camera toward the subject, and the infrared light reflected from the subject is converted into PSD (Po5ition Sensing D).
This is a distance measurement method that measures the distance to the subject using the principle of triangulation from the output current of light received by a light-receiving element called ``device''.Passive type measures the distance to the subject without emitting light from the camera toward the subject. This is a distance measurement method in which two different subject images are formed using light from the camera, and the distance to the subject is measured using the principle of triangulation based on the deviation of the images.

パッシブ方式にも撮影レンズを介して測距するTTL方
式と、撮影レンズを介さず測距する外光式とがあるか、
装置が比較的簡単で低輝度時の測距性能向上のための補
助投光手段等を付加しやすい等の点を考慮して、レンズ
シャッタカメラにはテ 外光式パッシブ方式と前述のアク−イブ方式とが一般的
に使われている。
There are two types of passive methods: the TTL method, which measures distance through the photographic lens, and the external light method, which measures distance without using the photographic lens.
Considering the fact that the device is relatively simple and it is easy to add an auxiliary flashing means to improve distance measurement performance in low brightness, lens-shutter cameras are equipped with the external light passive method and the above-mentioned active method. Eve method is commonly used.

これらの方式はいずれもカメラの正面に一定距離たけ離
れて設けられた2個の窓から被写体に向けて発光したり
被写体からの光を受光するいわゆる二眼式で、被写体の
輝度を重視した考え方に基づいて測距するものである。
All of these methods are so-called twin-lens systems that emit light toward the subject or receive light from the subject through two windows placed a certain distance apart in front of the camera, and are based on a concept that emphasizes the brightness of the subject. The distance is measured based on the following.

ところか、被写体の中には、一部に強い光が当ってその
部分の輝度が極端に大きかった5、逆に一部の輝度が極
端に小さかったり、あるいは白い壁の手前に暗い2つの
物体がやや離れて存在する場合のように輝度か著しく異
なる2つの部分が隣接して存在するようなものがあるが
、このような被写体を上述した輝度重視の二眼式測距方
式で測距すると、受光素子が輝度に応答して出力するた
めに、受光素子により輝度に基づいて検出される被写体
像の中心と現実の被写体の中心とがずれてしまい正確な
測距ができないことがある。
However, some parts of the subject may be exposed to strong light and the brightness of that part is extremely high.5 On the other hand, some parts of the subject may have extremely low brightness, or two dark objects may be in front of a white wall. There are cases where there are two areas with markedly different brightness adjacent to each other, such as when two parts are located slightly apart from each other, but when such objects are measured using the twin-lens distance measuring method that emphasizes brightness as described above, Since the light-receiving element outputs an output in response to brightness, the center of the subject image detected by the light-receiving element based on the brightness may deviate from the center of the actual subject, making accurate distance measurement impossible.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたものて、輝度の
差が大きい被写体でも正確な測距ができるようにするこ
とを目的とし、この目的を達成するために、カメラの撮
影レンズの中心を通る直線−トに投光手段を設け、この
投光手段の両側に対照的に受光手段を1つずつ設けて三
眼式測距装置を構成した。
(Objects and Structure of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to enable accurate distance measurement even for objects with large differences in brightness. A light projecting means was provided on a straight line passing through the center of the photographing lens of the camera, and one light receiving means was provided symmetrically on each side of the light projecting means to constitute a trinocular distance measuring device.

(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

第1図は本発明によるカメラの一実施例の正面を示す。FIG. 1 shows a front view of an embodiment of a camera according to the invention.

カメラ本体lの正面中央には撮影レンズ2か設けられ、
その上方にファインダ用採光窓3、ファインダ用受光窓
4、ストロボ発光窓5か横に並んで設けられ、本体上面
にはレリーズボタン6か設けられている。7はカメラ本
体lの一部が前方にふくらんだ部分て、ここに電池が内
蔵されている。カメラ本体lに設けられるその他の構成
部分、たとえばフィルムカウンタ、セルフタイマ操作ボ
タンなどは省略しである。
A photographic lens 2 is installed in the front center of the camera body l,
Above this, a finder light window 3, a finder light receiving window 4, and a strobe light emitting window 5 are provided side by side, and a release button 6 is provided on the top surface of the main body. 7 is the part of the camera body l that bulges out at the front, and this is where the battery is housed. Other components provided on the camera body l, such as a film counter and a self-timer operation button, are omitted.

撮影レンズ2の横(図では右側)には三限式測距装置の
3つの窓8,9.10か縦に一列に並んて設けられてお
り、各窓には樹脂カバー11゜12.13がはめ込まれ
、その奥に集光レンズか配置されている。これらの3つ
の窓のうち、窓9は赤外光発光用の窓であり、他の2つ
の窓8とlOは赤外反射光受光用の窓であり、赤外反射
光受光用の窓8とlOは赤外発光用の窓9を中心に対照
的に配設されている。
Next to the photographing lens 2 (on the right side in the figure), three windows 8, 9, 10 of a three-limit rangefinder are arranged vertically in a row, and each window has a resin cover 11°, 12, 13 is fitted, and a condensing lens is placed behind it. Among these three windows, window 9 is a window for emitting infrared light, the other two windows 8 and 1O are windows for receiving infrared reflected light, and window 8 is for receiving infrared reflected light. and lO are arranged symmetrically around the window 9 for infrared light emission.

三限式測距装置の内部構像を第2図に示す。Figure 2 shows the internal configuration of the three-limit rangefinder.

三眼式測距装置は、m脂カバー11.12゜13のうし
ろ側にやはり樹脂製の集光レンズ14.15.16がは
め込まれ、されに集光レンズ14および16のうしろ側
には赤外反射光受光用のPSDl7と19が、また集光
レンズ15のうしろ側には赤外光発光用のダイオード1
8が配設されている。PSDl7,19とダイオード1
8は第3図に分解して示すように、1枚の取付板20に
ビス止めされるが、PSDl7と19はその保持枠21
と22の一部に設けられた突片21a、22aを介して
ビス23,24て取付板20に止められる。このとき、
PSDl7,19およびダイオード18の接続端子は取
付板2oに形成されている長孔20a、20bを通って
伸びる。
In the trinocular distance measuring device, condensing lenses 14, 15, and 16, which are also made of resin, are fitted behind the m-fat covers 11, 12, and 13; PSDs 17 and 19 for receiving infrared reflected light, and a diode 1 for emitting infrared light behind the condensing lens 15.
8 are arranged. PSDl7, 19 and diode 1
8 is screwed to one mounting plate 20, as shown in exploded view in FIG.
It is fixed to the mounting plate 20 with screws 23 and 24 via protrusions 21a and 22a provided on parts of and 22. At this time,
Connection terminals of the PSDs 17 and 19 and the diode 18 extend through long holes 20a and 20b formed in the mounting plate 2o.

これらの発光用素子および受光用素子が取付板20に取
り付けられた後全体がカメラ本体lの所定部位に固定さ
れる。
After these light-emitting elements and light-receiving elements are attached to the mounting plate 20, the whole is fixed to a predetermined portion of the camera body l.

取付後ビス23.24を回すことによりPSDl7.1
9の保持枠21.22を上下方向(ビスの長手方向)に
移動させることかできるのでPSDl7,19のダイオ
ード18に対する位置を微調整できる。この調整は、カ
メラの前方=−一定距離基準反射板を設け、ダイオード
18により発生された赤外光かその基準反射板により反
射され反射光が集光レンズ14.16を通りPSDl7
.19により受光されたとき、後述するPSDl 7.
19の出力電流およびIl、I2およびIl’、I2’
に相当する各電圧出力が等しくなるようにPSD 17
.19の位置をビス23.24て調整して行う。この実
施例では、PSDl7.19とタイオード18とが縦に
一列に配列されているのて、素子の位置調整は縦方向だ
けの調整でよく簡単である。
After installation, turn screw 23.24 to set PSD17.1.
Since the holding frames 21 and 22 of 9 can be moved vertically (in the longitudinal direction of the screws), the positions of the PSDs 17 and 19 relative to the diode 18 can be finely adjusted. For this adjustment, a reference reflector is provided at a certain distance in front of the camera, and the infrared light generated by the diode 18 is reflected by the reference reflector, and the reflected light passes through the condenser lens 14.16 and passes through the PSD17.
.. When the light is received by PSDl 7.19, which will be described later.
19 output currents and Il, I2 and Il', I2'
PSD 17 so that each voltage output corresponding to
.. Adjust the position of 19 using screws 23 and 24. In this embodiment, since the PSD17.19 and the diode 18 are arranged vertically in a line, the position adjustment of the elements is simple and requires adjustment only in the vertical direction.

第4図は三眼式測距装置の電気回路のツロツク線図であ
り、図中第2図と同じ参照数字は同し構成部分を示して
いる。
FIG. 4 is a Turok diagram of the electric circuit of the trinocular distance measuring device, in which the same reference numerals as in FIG. 2 indicate the same components.

赤外発光ダイオード18は発光回路25により駆動され
て被写体26に向けて赤外光を発光する。被写体26か
ら反射する赤外光はPSD17および19で受光され、
PSD17および19からは反射赤外光の当る位置に応
じてそれでれ2つの電流!、と12および■1°と1,
1が出力する。
The infrared light emitting diode 18 is driven by the light emitting circuit 25 and emits infrared light toward the subject 26 . Infrared light reflected from the subject 26 is received by the PSDs 17 and 19,
There are two currents from PSD17 and 19 depending on the position where the reflected infrared light hits! , and 12 and ■1° and 1,
1 outputs.

PSD17からの出力I、およびI2とPSD19から
の出力電流11°およqI2°はそ、れぞれ加算され(
) 1 + x so)、(■乏+I2°)として電流
−電圧変換回路28a、28bに加えられ電圧値に変換
される。電流−電圧変換回路28a。
Outputs I and I2 from PSD17 and output currents 11° and qI2° from PSD19 are added together (
) 1 + x so) and (■ deficiency + I2°) are applied to the current-voltage conversion circuits 28a and 28b and converted into a voltage value. Current-voltage conversion circuit 28a.

28bからの電圧出力は増幅回路29a、29bで増幅
され、次に対数圧縮回路30a、30bで対数圧縮され
た後差動増幅回路31で差電圧がとられる。サンプルホ
ールド回路32の出力Sは次のようになる。
The voltage output from 28b is amplified by amplifier circuits 29a and 29b, then logarithmically compressed by logarithmic compression circuits 30a and 30b, and then a differential voltage is obtained by differential amplifier circuit 31. The output S of the sample hold circuit 32 is as follows.

ここでGは演算回路全体のゲイン(一定)、E2は基準
電圧である。
Here, G is the gain (constant) of the entire arithmetic circuit, and E2 is the reference voltage.

上で説明したように、PSD17と19の出力電流が加
算されるように接続されると、発光ダイオード18に対
するPSD17および19の位置が正確に調整されてい
れば、被写体の輝度が部分的に極端に異なっていても、
PSDI7’と19の出力電流どうしが相殺されて輝度
の差による被写体距離の誤検出はなくなる。
As explained above, when the output currents of PSDs 17 and 19 are connected to add, the brightness of the object will be partially extreme if the position of PSDs 17 and 19 relative to the light emitting diode 18 is adjusted accurately. Even if they are different,
The output currents of PSDI 7' and PSDI 19 cancel each other out, and erroneous detection of object distance due to a difference in brightness is eliminated.

第5“図および第6図は三眼式測距装置の3つの窓を第
1図とは異なる位置関係で配置した実施例てあり1図中
同じ参照数字は同じ構成部分を示す。
5" and 6 show an embodiment in which the three windows of the trinocular distance measuring device are arranged in a positional relationship different from that in FIG. 1, and the same reference numerals in each figure indicate the same components.

第5図の実施例は、3つの窓8,9.10を垂直よりや
や傾けて一直線に配置したものである。
In the embodiment shown in FIG. 5, three windows 8, 9 and 10 are arranged in a straight line at a slight angle from the vertical.

この実施例においても、配列が一直線であるからPSD
の調整は容易である。
In this example as well, since the array is in a straight line, the PSD
is easy to adjust.

第6図の実施例は、中心の窓9に対して2つの窓8とl
Oをカメラの中心にややずらして3つの窓を配置したも
のである。この実施例では、PSDを水平方向と垂直方
向に調整する必要があるので、:上記2つの実施例より
はやや手間がかかる。
The embodiment of FIG. 6 has two windows 8 and 1 for a central window 9.
Three windows are arranged with O slightly shifted from the center of the camera. In this embodiment, since it is necessary to adjust the PSD in the horizontal and vertical directions, it takes a little more effort than the above two embodiments.

第5図および第6図の実施例とも測距装置の内部構造は
第2図および第3図に示したものと同じである。
The internal structure of the distance measuring device in both the embodiments shown in FIGS. 5 and 6 is the same as that shown in FIGS. 2 and 3.

(発明の効果) 以上説明したように、本発明においては、カメラの撮影
レンズの中心電通る直線上に投光手段を設け、この投光
手段の両側に対照的に受光手段を1つずつ設は七三眼式
測距装置を構成したので。
(Effects of the Invention) As explained above, in the present invention, the light projecting means is provided on a straight line passing through the center of the photographing lens of the camera, and one light receiving means is provided on each side of the light projecting means. Because it constituted a seven-trinocular distance measuring device.

輝度が部分的に極端に異なる被写体でも二眼式測距装置
による誤測距がなく正確な測距ができる。
Accurate distance measurement is possible without any erroneous distance measurement by the twin-lens distance measurement device even for subjects whose brightness differs significantly in parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による三眼式測距方式のカメラの一実施
例の正面図、第2図は三眼式測距装置の断面図、第3図
は三眼式測距装置の分解斜視図、第4図は三眼式測距装
置の電気回路、第5図および第6図は本発明による三眼
式測距方式のカメラの他の異なる2つの実施例の正面図
である。 l・・・カメラ本体、2・・・撮影レンズ、3・・・フ
ァインダ用採光窓、4・・・ファインダ用受光窓、5・
・・ストロボ発光窓、6・・・レリーズボタン、8,9
゜lO・・・窓、11N13・・・樹脂カバー、14へ
16・・・集光レンズ、17.19−PSD、1 B−
・・発光ダイオード、20−・・取付枠
Fig. 1 is a front view of an embodiment of a trinocular distance measuring camera according to the present invention, Fig. 2 is a sectional view of the trinocular distance measuring device, and Fig. 3 is an exploded perspective view of the trinocular distance measuring device. 4 is an electric circuit of a trinocular distance measuring device, and FIGS. 5 and 6 are front views of two other different embodiments of a trinocular distance measuring camera according to the present invention. l...Camera body, 2...Photographing lens, 3...Light receiving window for finder, 4...Light receiving window for finder, 5...
... Strobe light emitting window, 6... Release button, 8, 9
゜lO...Window, 11N13...Resin cover, 14 to 16...Condensing lens, 17.19-PSD, 1 B-
・・Light emitting diode, 20−・・Mounting frame

Claims (2)

【特許請求の範囲】[Claims] (1)撮影レンズの中心を通る直線上に投光手段を設け
、該投光手段の両側に受光手段を1つずつ対照的に配置
したことを特徴とする三眼測距方式のカメラ。
(1) A trinocular distance measuring camera characterized in that a light projecting means is provided on a straight line passing through the center of the photographic lens, and light receiving means are arranged symmetrically on each side of the light projecting means.
(2)前記投光手段と2つの受光手段とが一直線上に並
ぶように配列されている請求項1に記載のカメラ。
(2) The camera according to claim 1, wherein the light projecting means and the two light receiving means are arranged in a straight line.
JP4585388A 1988-03-01 1988-03-01 Camera Pending JPH01222235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585388A JPH01222235A (en) 1988-03-01 1988-03-01 Camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585388A JPH01222235A (en) 1988-03-01 1988-03-01 Camera

Publications (1)

Publication Number Publication Date
JPH01222235A true JPH01222235A (en) 1989-09-05

Family

ID=12730770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585388A Pending JPH01222235A (en) 1988-03-01 1988-03-01 Camera

Country Status (1)

Country Link
JP (1) JPH01222235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337116A (en) * 1991-12-26 1994-08-09 Olympus Optical Co., Ltd. Light projection type measurement apparatus effectively utilizing a post of a one-chip microcomputer
US5361117A (en) * 1991-12-16 1994-11-01 Olympus Optical Co., Ltd. Distance-measuring device which detects which detects and corrects projection errors of distance-measuring light beams
US5677760A (en) * 1994-08-23 1997-10-14 Olympus Optical Co., Ltd. Rangefinding device for use in a camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361117A (en) * 1991-12-16 1994-11-01 Olympus Optical Co., Ltd. Distance-measuring device which detects which detects and corrects projection errors of distance-measuring light beams
US5337116A (en) * 1991-12-26 1994-08-09 Olympus Optical Co., Ltd. Light projection type measurement apparatus effectively utilizing a post of a one-chip microcomputer
US5677760A (en) * 1994-08-23 1997-10-14 Olympus Optical Co., Ltd. Rangefinding device for use in a camera

Similar Documents

Publication Publication Date Title
US7405762B2 (en) Camera having AF function
US4593987A (en) Method and device for automatic exposure control by programs
JP3958055B2 (en) Ranging and photometry equipment
US4710011A (en) Automatic range finding device
JPH0151819B2 (en)
JPH01222235A (en) Camera
US5159378A (en) Light projector for range finding device
US4745426A (en) Light measuring device for a camera
US4490031A (en) Device for adjusting movement of photographic lens and field of viewfinder
EP0113984A1 (en) Portable video camera with automatic focusing device
JPS59201009A (en) Auto focus detecting device
JPH1096851A (en) Range finder for camera
JP3297497B2 (en) Distance measuring device
JP3063240B2 (en) Converter device and camera system using the same
JP2731159B2 (en) Camera multipoint ranging device
JP3411835B2 (en) Active ranging device
JPH0715544B2 (en) Camera photometer
JP3423079B2 (en) camera
JPH082658Y2 (en) Camera with backlight compensation
JPH026430Y2 (en)
SU1130827A1 (en) Device for lens focusing
JPH0753060Y2 (en) Mounting device for light emitting element for distance measurement
JPS60247631A (en) Single lens reflex camera with focus detector
JPS6280635A (en) Photometric device for camera
JPH0618930U (en) camera