JPS5819042B2 - Position detection method - Google Patents

Position detection method

Info

Publication number
JPS5819042B2
JPS5819042B2 JP51096355A JP9635576A JPS5819042B2 JP S5819042 B2 JPS5819042 B2 JP S5819042B2 JP 51096355 A JP51096355 A JP 51096355A JP 9635576 A JP9635576 A JP 9635576A JP S5819042 B2 JPS5819042 B2 JP S5819042B2
Authority
JP
Japan
Prior art keywords
substrate
electron beam
section
boundary
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51096355A
Other languages
Japanese (ja)
Other versions
JPS5321950A (en
Inventor
井垣誠吾
岡部正博
古川泰男
中山範明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP51096355A priority Critical patent/JPS5819042B2/en
Publication of JPS5321950A publication Critical patent/JPS5321950A/en
Publication of JPS5819042B2 publication Critical patent/JPS5819042B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 本発明は基板薄膜のへき開断面を表面とする素子を用い
電子ビームによりそのへき開断面の境界を走査すること
により電子ビームまたは基板位置を検出する位置検出法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a position detection method for detecting the electron beam or substrate position by scanning the boundary of the cleavage cross section with an electron beam using an element whose surface is a cleavage cross section of a thin substrate film. .

一般に電子ビーム露光装置では電子ビームの走査位置、
走査領域、走査方向等は電子ビームのドリフト等により
変化しまた基板の位置も露光毎に異なるためこれを補正
する必要がしばしば起る。
Generally, in electron beam exposure equipment, the scanning position of the electron beam,
Since the scanning area, scanning direction, etc. change due to the drift of the electron beam, and the position of the substrate also differs for each exposure, it is often necessary to correct this.

このために、被走査基板またはこれと一定の関係位置に
ある基板上に基準位置を示すマークを設定し、このマー
クを電子ビームで走査してその時に生じる反射電子等を
検出して電子ビームと基板との位置関係を求めるように
している。
For this purpose, a mark indicating the reference position is set on the substrate to be scanned or a substrate at a certain position relative to this, and this mark is scanned with the electron beam, and the reflected electrons etc. generated at that time are detected and converted into the electron beam. I am trying to find the positional relationship with the board.

従来、多用されている位置決め用マークは、第1図に示
すように、誘電体または半導体基板またとえばSi基板
上に金属膜またとえばAu膜を蒸着、スパッタリング等
で被着したものである。
Conventionally, a commonly used positioning mark is one in which a metal film, such as an Au film, is deposited on a dielectric or semiconductor substrate, such as a Si substrate, by vapor deposition, sputtering, or the like, as shown in FIG.

このマークの位置を検出するにはエツジを横切るように
電子ビーム4で走査する。
To detect the position of this mark, the electron beam 4 is scanned across the edge.

この時基板1と金属とでは電子ビームに対応して反射ま
たは吸収する電子の量が異なるから、たとえば電子検出
器3により反射電子(2次電子を含む)を受入れ、その
電流値を測定すると、基板1と金属膜2の境界部付近で
は電子ビームの走査距離に対し第2図に示すような電流
特性を示す。
At this time, since the amount of electrons reflected or absorbed by the substrate 1 and the metal differs depending on the electron beam, for example, when the electron detector 3 receives reflected electrons (including secondary electrons) and measures the current value, Near the boundary between the substrate 1 and the metal film 2, current characteristics as shown in FIG. 2 are exhibited with respect to the scanning distance of the electron beam.

この場合、ビームが境界部を通過するときの実効的な傾
斜部の間隔Aの中心が基板とマークの境界を示す。
In this case, the center of the effective distance A between the slopes when the beam passes through the boundary indicates the boundary between the substrate and the mark.

この信号の中心位置を求めることによりマークの位置検
出が可能となる。
By finding the center position of this signal, the position of the mark can be detected.

ところがこの方法は簡単ではあるが金属膜2のエツジが
だれている場合には実効的な傾斜部の傾きが途中で変化
してしまい正確な位置検出ができない。
However, although this method is simple, if the edge of the metal film 2 is sloping, the effective inclination of the slope portion will change midway, making accurate position detection impossible.

これは電子の反射方向がマークの平担部と傾斜部とでは
異なり電子の検出効率が変化するためである。
This is because the electron reflection direction differs between the flat part and the inclined part of the mark, and the electron detection efficiency changes.

・ 本発明はこのような欠点を除去することを目的とし
、この目的を達成するため、本発明の位置検出法は第1
の材料基板上に該第1の基板に対して電子ビームに対す
る反射または吸収する電子の量を異にする第2の材料層
を形成し、これを割って1へき開断面を作り、該へき開
断面を表面とする素子を基板の所定位置に設け、電子ビ
ームにより前記へき開断面の境界を横切り走査し、その
信号処理により電子ビームまたは基板の位置を検出する
ことを特徴とするものである。
- The purpose of the present invention is to eliminate such drawbacks, and in order to achieve this purpose, the position detection method of the present invention
A second material layer having a different amount of electrons reflected or absorbed by the electron beam with respect to the first substrate is formed on the material substrate, this is divided to create one cleavage cross section, and the cleavage cross section is The device is characterized in that a surface element is provided at a predetermined position on the substrate, an electron beam is scanned across the boundary of the cleaved cross section, and the position of the electron beam or the substrate is detected by signal processing.

以下本発明を実施例につき詳述する。The present invention will be described in detail below with reference to examples.

まず本発明の原理につき説明する。First, the principle of the present invention will be explained.

最近本出願人により別出願で電子ビーム径の高精度測定
方法の提案が行なわれた。
Recently, the present applicant has proposed a method for measuring the diameter of an electron beam with high accuracy in a separate application.

第3図は本提案例の構成の説明図である。FIG. 3 is an explanatory diagram of the configuration of this proposed example.

同図において、Si基板1上にAu膜2を被着させたも
のを作り、このSi基板の結晶へき開面に沿って割り、
へき開断面のSi基板部11とAu膜部12の境界13
の近傍を電子ビーム径を測定するための走査領域とした
ものである6すなわちこの境界13を横切るように電子
ビーム4で走査し、その反射電子4′を電子検出器3で
検出すると第2図と同様の電流特性が得られるが、この
場合には境界13はSi基板11のへき開断面に現われ
るから結晶構造的にも特性の均一な面となりこの面にA
u膜面12は追従するから、境界13はシャープに形成
され従来の方法のように不確定な部分や不安定な部分の
発生する余地は全くなくなる。
In the figure, an Au film 2 is deposited on a Si substrate 1, and the Si substrate is split along the crystal cleavage plane.
Boundary 13 between Si substrate portion 11 and Au film portion 12 in cleaved cross section
The vicinity of 6 is the scanning area for measuring the electron beam diameter. When the electron beam 4 is scanned across this boundary 13 and the reflected electrons 4' are detected by the electron detector 3, the result is shown in Fig. 2. However, in this case, since the boundary 13 appears on the cleaved cross section of the Si substrate 11, it becomes a surface with uniform characteristics in terms of crystal structure, and A
Since the u-film surface 12 follows, the boundary 13 is sharply formed, and there is no room for uncertain or unstable parts to occur as in the conventional method.

従って前記電流特性の実効的な傾斜間隔から高精度のビ
ーム径が得られる。
Therefore, a highly accurate beam diameter can be obtained from the effective slope interval of the current characteristics.

さらにその中心は高精度にへき開断面の5i−Auの境
界を示すことになる。
Furthermore, the center indicates the 5i-Au boundary of the cleaved cross section with high precision.

本発明はこのような特徴を有する素子を用いて位置検出
を行なうものである。
The present invention performs position detection using an element having such characteristics.

第4図は本発明の実施例の構成を示す説明図である。FIG. 4 is an explanatory diagram showing the configuration of an embodiment of the present invention.

すなわち第3図により得られたへき開断面を表面にした
素子を4個作り、これを211〜214で示すように別
の基板上に1対づつ直交させて配置する。
That is, four elements having the cleaved cross section obtained as shown in FIG. 3 on the surface are made, and each pair of these elements is arranged perpendicularly on another substrate as shown at 211 to 214.

このように配置することによりたとえば電子ビーム露光
装置で電子ビームの走査位置、走査領域、走査方向等の
位置補正を行なう場合の基準位置を示すマークとして用
いられる。
By arranging it in this manner, it can be used as a mark indicating a reference position when correcting the scanning position, scanning area, scanning direction, etc. of the electron beam in an electron beam exposure apparatus, for example.

すなわちX軸方向の基準位置として素子21□、214
が用いられ、X軸方向の基準位置として素子210,2
13が用いられる。
That is, the elements 21□, 214 are used as reference positions in the X-axis direction.
is used, and elements 210 and 2 are used as reference positions in the X-axis direction.
13 is used.

たとえばX走査方向20xの電子ビームで素子21□、
214のへき開断面の境界を横切り走査することにより
、第5図に示す電子検出器の出力が得られる。
For example, with an electron beam in the X scanning direction of 20x, the element 21□,
By scanning across the boundaries of the cleavage section 214, the electronic detector output shown in FIG. 5 is obtained.

これは第2図に相当するものである。This corresponds to FIG.

電子ビームが別の基板をベースとしてSi基板のレベル
に移り、次に境界を通過するに従い傾斜をたどりAu膜
のレベルに達する。
The electron beam moves from another substrate to the level of the Si substrate, then follows a slope as it passes through the boundary and reaches the level of the Au film.

この実効的な傾斜部の中心がへき開断面の5i−Auの
境界]を正確に示すことになる。
The center of this effective slope accurately indicates the 5i-Au boundary of the cleaved cross section.

図では傾斜部は殆ど垂直となっているが、傾斜の如何に
かかわらずこの中心で5i−Auの境界位置が確定され
基準マークとして利用することができるものである。
In the figure, the slope is almost vertical, but regardless of the slope, the 5i-Au boundary position is determined at the center and can be used as a reference mark.

X軸方向の素子210,213の場合も同様である。The same applies to the elements 210 and 213 in the X-axis direction.

従って・この信号を基にしてそのまままたは正確な境界
位置を示すパルスを形成して上記の補正に用いることが
できる。
Therefore, on the basis of this signal, it is possible to use it as is or to form a pulse indicating an accurate boundary position and use it for the above correction.

この傾斜の中心を求めるためには比較器を用いるとよい
A comparator may be used to find the center of this slope.

すなわち比較器の基準人力として、傾斜の中心に相当す
る電力を入力し、比)較入力には電子検知器からの出力
を入力し、入力が一致した時信号を出力するようにすれ
ばよい。
That is, the power corresponding to the center of the slope is inputted as the reference human power of the comparator, the output from the electronic detector is inputted to the comparison input, and a signal is output when the inputs match.

以上説明したように、本発明によれば、基板薄膜のへき
開断面の境界を利用して高精度の基準位置マークを設定
することができるものである。
As described above, according to the present invention, a highly accurate reference position mark can be set using the boundary of the cleaved cross section of the substrate thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例の説明図、第3図は提案例の構
成を示す説明図、第4図は本発明の構成を示す説明図、
第5図は第4図の実施例の動作説明図であり、図中、1
は基板、2は金属膜、3は・電子検出器、4は電子ビー
ム、11は基板へき開断面、12は金属膜断面、13は
境界、20xは電子ビーム走査方向、21□〜214は
へき開断面素子を示す。
1 and 2 are explanatory diagrams of the conventional example, FIG. 3 is an explanatory diagram showing the configuration of the proposed example, and FIG. 4 is an explanatory diagram showing the configuration of the present invention,
FIG. 5 is an explanatory diagram of the operation of the embodiment shown in FIG.
is a substrate, 2 is a metal film, 3 is an electron detector, 4 is an electron beam, 11 is a cleaved cross section of the substrate, 12 is a cross section of the metal film, 13 is a boundary, 20x is the electron beam scanning direction, 21□ to 214 are cleaved cross sections The element is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の材料基板上に該第1の基板に対して電子ビー
ムに対する反射または吸収する電子の量を異にする第2
の材料層を形成し、これを割ってへき開断面を作り、該
へき開断面を表面とする素子を基板の所定位置に設け、
電子ビームにより前記へき開断面の境界を横切り走査し
、その信号処理により電子ビームまたは基板の位置を検
出することを特徴とする位置検出法。
1 A second material substrate having a different amount of electrons reflected or absorbed by the electron beam with respect to the first substrate.
forming a material layer, splitting it to create a cleaved cross section, and providing an element having the cleaved cross section as a surface at a predetermined position on the substrate;
A position detection method comprising scanning an electron beam across the boundary of the cleaved cross section and detecting the position of the electron beam or the substrate through signal processing.
JP51096355A 1976-08-11 1976-08-11 Position detection method Expired JPS5819042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51096355A JPS5819042B2 (en) 1976-08-11 1976-08-11 Position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51096355A JPS5819042B2 (en) 1976-08-11 1976-08-11 Position detection method

Publications (2)

Publication Number Publication Date
JPS5321950A JPS5321950A (en) 1978-02-28
JPS5819042B2 true JPS5819042B2 (en) 1983-04-15

Family

ID=14162675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51096355A Expired JPS5819042B2 (en) 1976-08-11 1976-08-11 Position detection method

Country Status (1)

Country Link
JP (1) JPS5819042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125023U (en) * 1984-07-20 1986-02-14 日本電信電話株式会社 Wiring storage device on the building floor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125023U (en) * 1984-07-20 1986-02-14 日本電信電話株式会社 Wiring storage device on the building floor

Also Published As

Publication number Publication date
JPS5321950A (en) 1978-02-28

Similar Documents

Publication Publication Date Title
EP0024884B1 (en) Method of detecting the position of a substrate using an electron beam
EP0130819B1 (en) A method of positioning a beam to a specific portion of a semiconductor wafer
KR100288330B1 (en) How to Search for the Center of Band Area
JPH07119570B2 (en) Alignment method
JPH067043B2 (en) Position detection method
JPS5819042B2 (en) Position detection method
JP3814384B2 (en) Surface position detection method and surface position detection apparatus
US3428872A (en) Body comprising a mark for indirect detection of an objective part and method of detecting the position of said objective part
JPS5819041B2 (en) How to measure electron beam diameter
EP0300590B1 (en) Semiconductor device package structure
JP2001153629A (en) Print solder measuring device
JPH0554605B2 (en)
JP2692879B2 (en) Relative displacement measurement device
JPH02226001A (en) Method for detecting pattern edge
JP2903584B2 (en) Registration mark detection processing method
JPH05203413A (en) Noncontact method and instrument for measuring displacement and noncontact film thickness measuring instrument
JPH03270122A (en) Wafer alignment
JP2605111B2 (en) Electron beam correction method for electron beam exposure apparatus
JPH0713938B2 (en) Electronic beam exposure method
JPH0147892B2 (en)
JPH01293518A (en) Aligner having device for detecting variation of height of substrate
JPH0450522B2 (en)
JPH1022194A (en) Alignment mark and detecting method therefor
JPS5989415A (en) Alignment of semiconductor substrate
JPH0533496B2 (en)