JPH03270122A - Wafer alignment - Google Patents

Wafer alignment

Info

Publication number
JPH03270122A
JPH03270122A JP2070681A JP7068190A JPH03270122A JP H03270122 A JPH03270122 A JP H03270122A JP 2070681 A JP2070681 A JP 2070681A JP 7068190 A JP7068190 A JP 7068190A JP H03270122 A JPH03270122 A JP H03270122A
Authority
JP
Japan
Prior art keywords
film
light
alignment
intensity
projection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2070681A
Other languages
Japanese (ja)
Inventor
Shigeru Saito
茂 齋藤
Takatsugu Tazume
田爪 隆次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP2070681A priority Critical patent/JPH03270122A/en
Publication of JPH03270122A publication Critical patent/JPH03270122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To perform correct positioning in spite of asymmetrical adhesion of film by finding an intensity changing ratio of light K reflected from a second projection part of a film adhered a symmetrically to the central axis of a first projection part and finding length of the film corresponding to a fixed intensity changing ratio level about the edges of a pair of object positions and analyzing a deviation amount due to asymmetrical sticking of the film in order to perform correction of a detection position. CONSTITUTION:Variation of an optical signal is a variation ratio (y) of (variation ratio of the intensity of light (y) for an arbitrary unit length of a film y= I/ d) of light reflected from a second projection part 5 of a film 2 asymmetricaly stuck to the central axis of a first projection part 1a, and determined by momentarily operat ing and processing the intensity of an optical signal and a scanning distance while scanning a beam from a light source on the film 2. Using the thus determined variation rate 3 as an alignment signal 3 and finding length dK of the film corresponding to the level of a fixed variation rate yK for the edges at symmetrical positions of at least a pair of second projection parts as dK1, dK2, dK3,...dKn, and further analyzing from these measurement values a deviation amount R due to asymmetrical adhesion, detecting positions is corrected.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔概要l 半導体製造の縮小投影露光装置におけるウェーハアライ
メントに関し、 膜の片利きに関わらず正確に位置合わせするアライメン
トアルゴリズムを提供することを目的とし、 ウェーハの下地基板部の特定位置に形成された第1の凸
部からなるアラメントマーク上およびその周辺の下地基
板に半導体素子の構成要素になる膜を一体に被着する際
に、該アライメントマーク上で該膜が第2の凸部を形成
するように膜の被着を行い、第2の凸部に光りを当て、
第2の凸部の位置を光学的に検出し、該検出位置に対し
て前記膜のパターニングのためのアライメントを縮小投
影露光装置で行うウェーハアライメント方法において、 第1の凸部の中心軸に対して非対称に付着している前記
膜の第2の凸部に当てられた光の反射光の強度変化率y
(膜の任意の単位長さΔdに対する光強度変化率y=Δ
I/Δd)を求め、一定強度変化率y、レベルに対応す
る膜の長さdkを少なくとも1対の対象位置のエツジに
ついてd l+l+ cl、=、  dma、 、 、
 + 、 dmllとして求め、前記dm++ dm*
+ dmll 、 、 、 、 dmllから膜の非対
称付着によるずれ量Rを解析し、このずれ量Rにより前
記検出位置の補正を行うように構成する。
[Summary l] Regarding wafer alignment in a reduction projection exposure system used in semiconductor manufacturing, the purpose is to provide an alignment algorithm that accurately aligns the film regardless of whether the film is one-sided. When a film to be a component of a semiconductor element is integrally deposited on the base substrate on and around the alignment mark consisting of one convex part, the film forms a second convex part on the alignment mark. The film is deposited as shown, and the second convex part is exposed to light.
In a wafer alignment method in which the position of the second convex part is optically detected and alignment for patterning the film is performed with respect to the detected position using a reduction projection exposure apparatus, the central axis of the first convex part is The intensity change rate y of the reflected light applied to the second convex portion of the film asymmetrically attached to the
(Light intensity change rate y=Δ for any unit length Δd of the film
I/Δd) is calculated, and the length dk of the film corresponding to the constant intensity change rate y and level is calculated as d l+l+ cl,=, dma, , for at least one pair of edges at the target position.
+, dmll, and the above dm++ dm*
+ dmll , , , , dmll to analyze the amount of deviation R due to asymmetric adhesion of the membrane, and use this amount of deviation R to correct the detected position.

【産業上の利用分野〕[Industrial application field]

本発明は、半導体製造の縮小投影露光装置におけるウェ
ーハアライメントに関する。 【従来の技術】 半導体装置の製造プロセスでは、配線、眉間絶縁膜など
を膜付けした後のレジストを膜上に塗布し、レジストを
基板の特定位置に合わせてバターニングする工程が多数
回行われるが、膜下部のパターンとレジストパターンの
相対位置が正確に合わせられている必要がある。 第2図は、突起1aをアライメントマークとした下地基
板部1上に形成された膜2の表面輪郭を示している。膜
2の成長方向は下地基板部に対して直交方向のみではな
く斜め方向に6成長するような成長の方向性があるので
、膜2は不均一に付けられている。このように不均一膜
付は後のレジストバターニングであって6膜の付き方に
依存せず、膜下部のパターンとレジストパターンとの位
置関係が正確であることが要求されている。 従来の膜付は後のウェーハアライメントにおいては第2
図のような膜下部のパターン(1a)に対して不均一に
膜付けされた膜2のパターンをそのままアライメントマ
ークに使用し、ビームスキャンや画像処理で位置合わせ
を行っていた。 すなわち、従来のウェーハアライメントにおいては、第
2図の様にパターン上に光を当て、そのパターンエツジ
から反射する光から得られるアライメント信号(波形)
AとBより中心を求めていた。ところが、膜2の付き方
如何では、膜下部のパターンに対し膜の中心線がいずれ
かに偏ること(本願では「片利き」と称する)が発生し
ていることがあるので、これにともなって膜下部のパタ
ーンとレジストパターンとの位置関係が不正確になる。 したがって、本発明は、膜の片利きに関わらず正確に位
置合わせするアライメントアルゴリズムを提供すること
を目的とする。
The present invention relates to wafer alignment in a reduction projection exposure apparatus for semiconductor manufacturing. [Prior Art] In the manufacturing process of semiconductor devices, the process of coating wiring, glabellar insulating film, etc. on the film, applying resist on the film, and patterning the resist to match a specific position on the substrate is performed many times. However, the relative positions of the pattern at the bottom of the film and the resist pattern must be precisely aligned. FIG. 2 shows the surface contour of the film 2 formed on the base substrate portion 1 with the projections 1a as alignment marks. Since the growth direction of the film 2 is not only perpendicular to the underlying substrate but also diagonal, the film 2 is applied non-uniformly. In this way, the non-uniform film formation is a later resist patterning process, and does not depend on the way the six films are applied, and it is required that the positional relationship between the pattern under the film and the resist pattern be accurate. Conventional film coating is the second step in subsequent wafer alignment.
The pattern of the film 2, which is non-uniformly deposited with respect to the pattern (1a) at the bottom of the film as shown in the figure, is used as an alignment mark as it is, and alignment is performed by beam scanning or image processing. In other words, in conventional wafer alignment, light is shined onto the pattern as shown in Figure 2, and an alignment signal (waveform) obtained from the light reflected from the pattern edge.
I wanted the center more than A and B. However, depending on how the film 2 is attached, the center line of the film may be biased to one side with respect to the pattern at the bottom of the film (referred to as "one-handedness" in this application). The positional relationship between the pattern under the film and the resist pattern becomes inaccurate. Therefore, it is an object of the present invention to provide an alignment algorithm that accurately aligns regardless of the unilaterality of the membrane.

【課題を解決するための手段1 本発明は、下地のパターン上に膜付けされたそのパター
ンの形状から膜の付き方(片利きの量)を解析した上で
、ウェーハアライメントにおける各位置ずれパラメータ
(特にスケーリング)の補正量を決定することを要旨と
する。 本発明は、具体的には、ウェーハの下地基板部の特定位
置に形成された第1の凸部からなるアラインドマーク上
およびその周辺の下地基板に半導体素子の構成要素にな
る膜を一体に被着する際に、該アライメントマーク上で
該膜が第2の凸部を形成するように膜の被着を行い、第
2の凸部に光りを当て、第2の凸部の位置を光学的に検
出し、該検出位置に対して前記膜のバターニングのため
のアライメントを縮小投影露光装置で行うウェーハアラ
イメント方法に適用される。 かかる方法において、本発明は、第1の凸部の中心軸に
対して非対称に付着している前記膜の第2の凸部に当て
られた光の反射光の強度変化率y(膜の任意の単位長さ
Δdに対する光強度変化率y=ΔI/Δd)を求め、一
定強度変化率ykレベルにに対応する膜の長さdkを少
なくとも1対の対象位置のエツジについてd m+、 
d kl+d kl、 、 、 、 、 dmaとして
求め、前記d m lyd kll  dll!+ −
、、−dknから膜の非対称付着によるずれ量Rを解析
し、このずれ量Rにより前記検出位置の補正を行うこと
を特徴とする。 以下、本発明の詳細な説明する。 下地基板部とはシリコン基板のみならず、シリコン基板
の表面酸化膜、眉間絶縁膜、配線等の任意のn層目の層
が形成された多層基板も意味する。第1の凸部は下地基
板の特定位置を示すことによってレジストパターンの位
置合わせに使用される情報であって、通常は露光ショッ
ト毎に1枚のウェーハに多数形成される。第2の凸部は
第1の凸部と同じ場所に形成され、実際のアライメント
に使用されるように光学的に検出可能な大きさに形成さ
れる。 第2の凸部に光を当てると、光源からの距離に反比例し
た強度の光信号が得られる。以下、本発明が特徴とする
光信号処理のアルゴリズムを第1.2図を参照として説
明する。 [作用] 第2図中、lは下地基板、1aは突起または第1の凸部
、2は膜、3はアライメント信号、4は第1の凸部、5
は第2の凸部である。光信号の強度は光源から膜2まで
の距離に反比例し、光信号の変化量は膜2の平坦部では
ゼロになり(3f参照)、膜の輪郭が大きく変化してい
るところでは大きく変化する。ここで光信号の変化量と
は第2の凸部5に当てられた光の反射光の強度変化率y
(膜の任意の単位長さΔdに対する光り強度変化率y=
ΔI/Δd)であり、光源からのビームを膜2上を走査
しながら、光信号の強度と走査距離を時々刻々演算処理
することにより得られる。かかる光強度変化率をアライ
メント信号3として使用する。 ところで、第2図においては膜2が右側にずれているの
で、第2凸部5の左側のエツジ5aは右側エツジ5bよ
りも幅が狭く、急峻になっており、−万有側のエツジ5
bは幅が広くなだらかになっている。かかる片利きの結
果光強度変化率y=ΔI/Δdは5a上では幅が狭く、
5b上では幅が広くなっている。 このような光強度変化率をアライメント信号3として使
用し、一定強度変化率ym  (第1図)レベルに対応
する膜の長さdkを第2の凸部の対象位置のエツジ4a
、4bについて求めると、b’=dk、、・)  < 
c ’ = d m tab+  となり・エツジ4b
の方向に膜2がずれていることが分かる。 したがって、本発明では第2図のアライメント信号を基
に膜付きの片利き量を解析し、膜下部のアライメント信
号AおよびBを適正なスライスレベル技術(一定強度変
化率ykでアライメントマークを切断する信号処理技術
)を用いて片利きを補正することができる。 補正の方法を以下第1図を参照として説明する。 パターンエツジの中心ともう片側のパターンエツジの中
心の距離を求め、又その各々のアライメント信号から各
々のパターンエツジの幅の比を求める。aは、膜下部の
パターンの出来上がり幅である。 S=a十b/2+c/2 −−−■ c/b =c’  /b’      −−−■従って
、パターン片利きによる補正量Rは、■■を用いると、 R= (a+b/2+c/2)/2  (a/2+b/
2) 一c / 4− b / 4 となり、アライメント信号AおよびBより求めたX方向
の中心から、補正量Rを引いた値をそのパターンの位置
とする。 同様にウェーハ内の各位置の計測値d□。 dk□、dk、、、、、dk、、に対しても以上の計算
を行い、位置ずれの各パラメータの補正値を決定する。 【実施例】 断面で見て高さがlLLm、幅が4μmの突起(第1の
凸部)上に厚みが1μmのアルミニウムをスパッタリン
グにより膜付けした。 縮小投形炉呼応装置において、アルミスパッタしたウェ
ーハ内4点のXYをそれぞれ通常のアライメントアルゴ
リズムにより計測し、得られたアライメント信号を本発
明のアライメントアルゴリズムに代入し、アライメント
マーク上に付着している膜の非対称性の算出およびウェ
ーハのスケーリング補正値の決定を上記■、■式により
行った。なお、S=5.2μm、a=4μm。 b’  :c’ =1 : 1.4  であった。 補正値Rを縮小投影露光装置のステージ制御のパラメー
タに加え、露光を行う。 効果としては、通常のアライメントアルゴリズムのみの
場合、膜下部のパターンとレジストパターンとの間に約
0.15μm〜0.2μmの位置ずれが生じているのに
対し、上記方法を用いR=O,Iumの補正を行うと、
ずれ量は0゜05μm以下に抑えられた。 〔発明の効果〕 以上説明した様に、本発明によれば膜の付き方に依存せ
ず膜下部のパターンと膜上部のレジストパターンとの位
置関係が正確に合わせることが可能となるので、半導体
製造の信頼性向上に寄与するとことが大きい。
[Means for Solving the Problems 1] The present invention analyzes the way the film is attached (the amount of one-sidedness) from the shape of the pattern formed on the underlying pattern, and then performs each misalignment parameter in wafer alignment. The gist is to determine the amount of correction (especially scaling). Specifically, the present invention is directed to integrating a film that becomes a component of a semiconductor element onto a base substrate on and around an alignment mark consisting of a first convex portion formed at a specific position on a base substrate portion of a wafer. At the time of deposition, the film is deposited so that the film forms a second convex portion on the alignment mark, and the second convex portion is illuminated and the position of the second convex portion is determined optically. The present invention is applied to a wafer alignment method in which a reduction projection exposure apparatus performs alignment for patterning the film with respect to the detected position. In such a method, the present invention provides an intensity change rate y of reflected light of light applied to the second convex portion of the film that is attached asymmetrically with respect to the central axis of the first convex portion (an arbitrary value of the film). Find the rate of change in light intensity y=ΔI/Δd) with respect to the unit length Δd, and calculate the length dk of the film corresponding to the constant rate of change in intensity yk for at least one pair of edges at the target position d m+,
d kl+d kl, , , , , dma, and the above d m lyd kll dll! + −
, , -dkn, the amount of deviation R due to asymmetric adhesion of the film is analyzed, and the detected position is corrected based on this amount of deviation R. The present invention will be explained in detail below. The base substrate part means not only a silicon substrate but also a multilayer substrate on which an arbitrary n-th layer such as a surface oxide film of a silicon substrate, an insulating film between the eyebrows, and wiring is formed. The first convex portion is information used to align the resist pattern by indicating a specific position on the underlying substrate, and is usually formed in large numbers on one wafer for each exposure shot. The second protrusion is formed at the same location as the first protrusion, and has a size that is optically detectable so as to be used for actual alignment. When light is applied to the second convex portion, an optical signal with an intensity inversely proportional to the distance from the light source is obtained. Hereinafter, an algorithm for optical signal processing, which is a feature of the present invention, will be explained with reference to FIG. 1.2. [Function] In FIG. 2, l is the base substrate, 1a is the protrusion or first convex part, 2 is the film, 3 is the alignment signal, 4 is the first convex part, 5
is the second convex portion. The intensity of the optical signal is inversely proportional to the distance from the light source to the film 2, and the amount of change in the optical signal becomes zero at the flat part of the film 2 (see 3f), and changes greatly where the outline of the film changes significantly. . Here, the amount of change in the optical signal is the intensity change rate y of the reflected light of the light applied to the second convex portion 5.
(Light intensity change rate y for any unit length Δd of the film =
ΔI/Δd), which is obtained by scanning the film 2 with a beam from a light source and calculating the intensity of the optical signal and the scanning distance from time to time. This light intensity change rate is used as the alignment signal 3. By the way, in FIG. 2, since the membrane 2 is shifted to the right, the left edge 5a of the second convex portion 5 is narrower and steeper than the right edge 5b, and the -universal side edge 5 is narrower and steeper than the right edge 5b.
b is wide and gentle. As a result of such one-handedness, the light intensity change rate y=ΔI/Δd is narrow on 5a,
The width is wider on 5b. Using such a rate of change in light intensity as the alignment signal 3, the length dk of the film corresponding to the constant rate of change in intensity ym (Fig. 1) is determined by the edge 4a at the target position of the second convex portion.
, 4b, b'=dk, .) <
c' = d m tab+ next edge 4b
It can be seen that the film 2 is displaced in the direction of. Therefore, in the present invention, the one-handed amount with the membrane is analyzed based on the alignment signal shown in FIG. Unilateralism can be corrected using signal processing techniques (signal processing techniques). The method of correction will be explained below with reference to FIG. The distance between the center of the pattern edge and the center of the other pattern edge is determined, and the width ratio of each pattern edge is determined from each alignment signal. a is the finished width of the pattern at the bottom of the film. S=a+b/2+c/2 ---■ c/b =c'/b' ---■ Therefore, the correction amount R due to pattern one-handedness is as follows: R= (a+b/2+c/ 2)/2 (a/2+b/
2) 1c/4-b/4, and the value obtained by subtracting the correction amount R from the center in the X direction determined from the alignment signals A and B is the position of the pattern. Similarly, the measured value d□ at each position within the wafer. The above calculations are also performed for dk□, dk, . [Example] A film of aluminum having a thickness of 1 μm was formed by sputtering on a protrusion (first protrusion) having a height of LLm and a width of 4 μm when viewed in cross section. In the reduced pitching reactor reactor, the XY points at four points in the aluminum sputtered wafer are each measured using a normal alignment algorithm, and the obtained alignment signals are substituted into the alignment algorithm of the present invention, and the signals are deposited on the alignment marks. The film asymmetry was calculated and the wafer scaling correction value was determined using the above formulas (1) and (2). Note that S=5.2 μm and a=4 μm. b':c'=1:1.4. Exposure is performed by adding the correction value R to the stage control parameters of the reduction projection exposure apparatus. The effect is that when using only a normal alignment algorithm, a positional deviation of about 0.15 μm to 0.2 μm occurs between the pattern at the bottom of the film and the resist pattern, whereas using the above method, when R=O, When Ium correction is performed,
The amount of deviation was suppressed to 0°05 μm or less. [Effects of the Invention] As explained above, according to the present invention, it is possible to accurately match the positional relationship between the pattern at the bottom of the film and the resist pattern at the top of the film, regardless of the way the film is attached. This greatly contributes to improving manufacturing reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図、 第2図は片利きが生じた膜と、アライメンと信号の説明
図である。 l−下地基板、la−第1の凸部、2−膜、3−アライ
メント信号、4−第1の凸部、5−第2の凸部
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is an explanatory diagram of a membrane with one-sidedness, alignment, and signals. l - base substrate, la - first protrusion, 2 - film, 3 - alignment signal, 4 - first protrusion, 5 - second protrusion

Claims (1)

【特許請求の範囲】 1、ウェーハの下地基板部の特定位置に形成された第1
の凸部からなるアラメントマーク上およびその周辺の下
地基板に半導体素子の構成要素になる膜を一体に被着す
る際に、該アライメントマーク上で該膜が第2の凸部を
形成するように膜の被着を行い、第2の凸部に光りを当
て、第2の凸部の位置を光学的に検出し、該検出位置に
対して前記膜のパターニングのためのアライメントを縮
小投影露光装置で行うウェーハアライメント方法におい
て、 第1の凸部の中心軸に対して非対称に付着している前記
膜の第2の凸部に当てられた光の反射光の強度変化率y
(膜の任意の単位長さΔdに対する光強度変化率y=Δ
I/Δd)を求め、一定強度変化率y_kレベルにに対
応する膜の長さd_kを少なくとも1対の対象位置のエ
ッジについてd_k_1、d_k_2、d_k_3、.
...d_k_mとして求め、前記d_k_1、d_k
_2、d_k_3、....d_k_mから膜の非対称
付着によるずれ量Rを解析し、このずれ量Rにより前記
検出位置の補正を行うことを特徴とするウェーハアライ
メント方法。
[Claims] 1. A first
When a film that will become a component of a semiconductor element is integrally deposited on the base substrate on and around the alignment mark consisting of a convex part, the film forms a second convex part on the alignment mark. A film is deposited on the film, the second protrusion is irradiated with light, the position of the second protrusion is optically detected, and alignment for patterning the film is performed with respect to the detected position by reduction projection exposure. In a wafer alignment method performed using an apparatus, the intensity change rate y of the reflected light of light applied to the second convex part of the film that is attached asymmetrically with respect to the central axis of the first convex part is
(Light intensity change rate y=Δ for any unit length Δd of the film
d_k_1, d_k_2, d_k_3, .
.. .. .. d_k_m, and the above d_k_1, d_k
_2, d_k_3, . .. .. .. A wafer alignment method characterized in that the amount of deviation R due to asymmetric adhesion of the film is analyzed from d_k_m, and the detected position is corrected based on this amount of deviation R.
JP2070681A 1990-03-20 1990-03-20 Wafer alignment Pending JPH03270122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070681A JPH03270122A (en) 1990-03-20 1990-03-20 Wafer alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070681A JPH03270122A (en) 1990-03-20 1990-03-20 Wafer alignment

Publications (1)

Publication Number Publication Date
JPH03270122A true JPH03270122A (en) 1991-12-02

Family

ID=13438635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070681A Pending JPH03270122A (en) 1990-03-20 1990-03-20 Wafer alignment

Country Status (1)

Country Link
JP (1) JPH03270122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006413A2 (en) * 1998-12-01 2000-06-07 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
WO2000057126A1 (en) * 1999-03-24 2000-09-28 Nikon Corporation Position determining device, position determining method and exposure device, exposure method and alignment determining device, and alignment determining method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006413A2 (en) * 1998-12-01 2000-06-07 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
JP2000228356A (en) * 1998-12-01 2000-08-15 Canon Inc Position detecting method, positioning method and aligner
EP1006413A3 (en) * 1998-12-01 2005-01-26 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
WO2000057126A1 (en) * 1999-03-24 2000-09-28 Nikon Corporation Position determining device, position determining method and exposure device, exposure method and alignment determining device, and alignment determining method
US7106444B2 (en) 1999-03-24 2006-09-12 Nikon Corporation Position measuring device, position measurement method, exposure apparatus, exposure method, and superposition measuring device and superposition measurement method

Similar Documents

Publication Publication Date Title
JP2754609B2 (en) Method for manufacturing semiconductor device
JPH09148243A (en) Overlay inspection method of semiconductor element
TWI585550B (en) Pre-alignment measuring devices and methods
JPH03270122A (en) Wafer alignment
JP2856711B2 (en) Position detection method
JPH0827174B2 (en) Pattern detection method
JPH08316132A (en) Measurement for position of pattern and optical apparatus using method thereof
JPH1089921A (en) Method for correcting error of alignment measurement and production of semiconductor device
JPS59220604A (en) Method for detecting position between two objects opposed each other with minute gap therebetween
JP2623366B2 (en) Liquid crystal substrate alignment method
JPH097929A (en) Device and method for aligning for exposing device
JPS6324113A (en) Measuring method for pattern
CN115979142A (en) Elliptical polarimeter-oriented light spot size measuring device and measuring method
JPH01293518A (en) Aligner having device for detecting variation of height of substrate
JPH07111953B2 (en) Photolithography pattern dimension management method
JPH11176724A (en) Vernier device
JPS6236508A (en) Method of matching position of mask with position of wafer
JPS632346A (en) Method and apparatus for detecting position of work and work
JPH011232A (en) Pattern overlay accuracy measurement method
JPH10270304A (en) Method for evaluating exposure pattfrn, mark for evaluating exposure pattern, and device for evaluating exposure pattern
JPH04242107A (en) Caliabrating method for image sensing apparatus
JPS5819042B2 (en) Position detection method
JPH0743244B2 (en) Alignment device
JPH05136022A (en) Alignment method
JPH06120118A (en) Lens aberration measuring method and aligner using same