JPS59220604A - Method for detecting position between two objects opposed each other with minute gap therebetween - Google Patents

Method for detecting position between two objects opposed each other with minute gap therebetween

Info

Publication number
JPS59220604A
JPS59220604A JP58094017A JP9401783A JPS59220604A JP S59220604 A JPS59220604 A JP S59220604A JP 58094017 A JP58094017 A JP 58094017A JP 9401783 A JP9401783 A JP 9401783A JP S59220604 A JPS59220604 A JP S59220604A
Authority
JP
Japan
Prior art keywords
detection
pattern
optical
layer
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094017A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoneyama
米山 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58094017A priority Critical patent/JPS59220604A/en
Priority to EP84101569A priority patent/EP0116953A2/en
Priority to US06/580,709 priority patent/US4614431A/en
Publication of JPS59220604A publication Critical patent/JPS59220604A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position Or Direction (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable mutual positional alignment with high accuracy by determining an error, using a position aligning jig obtained by providing a transparent layer on the reflective layer provided on a substrate while providing the pattern of a detection body on said layer. CONSTITUTION:A position aligning jig is obtained by providing a reflective layer 27 on a substrate 26 being a mirror wafer while providing a transparent layer 28 on said layer 27. The pattern 29 of an optical detection body is provided on the transparent layer 28. Three patterns 29 of the detection body per one place are arranged to a position capable of being detected at once by the objective lens of a microscope provided to a constant position. Shift amounts delta, delta of an optical axis of which the image forming position is not changed even if magnification is changed and the optical axes 30 formed by connecting the patterns 29 of the detection body of a real image detected by the objective lenses 11a, 11b of the microscope and the pattern 29' of the detection body of a virtual image can be detected and the detected values come to the erroneous amounts generated by the inclination of the optical axes 30 of the objective lenses 11a, 11b of the microscope. By adding correction to the detection values of alignment marks 22, 24 according to a method for calculating the shift amounts deltaa, deltab or changing the inclination angle of the optical axis, mutual positional alignment can be realized with high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、微小間隙をおいて相対する2物体間の位置検
出力法に詠り、さらtこ峠しくはX線露光やプロキシミ
ティ露光のように、微小間隙f−Hいて相対するマスク
とウェハ等のアライメントマークラ慣用し、位置会わせ
する光学系の頗微鏡対物レンズの元軸の傾きによる誤M
量の、測定に経通な微小間隙を8いて相対する2吻体間
の位置検出方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a position detection force method between two objects facing each other with a minute gap between them, and furthermore, the present invention relates to a position detection force method between two objects facing each other with a minute gap between them. As shown in FIG.
The present invention relates to a method for detecting the position between two opposing proboscises with a minute gap through which the amount can be measured.

〔発明の背景〕[Background of the invention]

微小間隙をおいて相対ラーるマスクとウェハ等lこ印さ
れたアライメントマークラ慣用し、同一軸上に位置合わ
せする従来方法では、アライメントマークを検出する顕
微鏡対物レンズ力月唄いていることによって生ずる検出
誤差を求めるには、露光・現像を行い、その結果から推
定する1二うにしている。しかしl、1′から、この方
法では他の要因による誤差が含まれることになり、顕微
鏡対物レンズの傾きによる検出誤差を正1mに知ること
が難しい欠点がある。
In the conventional method of aligning the mask and wafer with a microscopic gap between them, the alignment marks are aligned on the same axis. To obtain the detection error, exposure and development are performed and estimation is made from the results. However, because of l and 1', this method includes errors due to other factors, and has the disadvantage that it is difficult to know the detection error due to the tilt of the microscope objective lens to within 1 m.

この点を、第1図〜第6図に沿って、さらに詳しく説明
する。
This point will be explained in more detail with reference to FIGS. 1 to 6.

従来技術によるマスクとウェハの相対位置検出方法を、
第1図(こ示す。
The conventional method for detecting the relative position of the mask and wafer is
Figure 1 (shown here).

この第1図に示す位置検出方法では、検出光学系1,2
および3によって、X、Yおよびθ軸の自動焦点合わせ
を行っている。
In the position detection method shown in FIG.
and 3 perform automatic focusing on the X, Y, and θ axes.

その詳細を、検出光学系1に基づいて説明する。The details will be explained based on the detection optical system 1.

光源4から光ファイバ5を通った照明光6は集光レンズ
7で集光され、ミラー8、ハーフプリズム9、ミラー1
0を通り、第2図に破線で示した矢印に従って顕微鏡対
物レンズ11からマスク12へ進み、下地がほぼ透明な
マスク12を透過してウェハ13上のアライメントマー
ク近傍に照射される。
Illumination light 6 that passes through the optical fiber 5 from the light source 4 is condensed by a condenser lens 7, and is then condensed by a mirror 8, a half prism 9, and a mirror 1.
0, the light passes from the microscope objective lens 11 to the mask 12 in accordance with the arrow shown by the broken line in FIG.

マスク12およびウェハ13から反射した光は、再び顕
微鏡対物レンズ115:逼り、第2図に実線で示した矢
印に従ってミラーlO、ハーフプリズム14を通り、プ
リズム15で反転され、再びプリズム14ヲ、先に通っ
た光路と対称な光路を形成して通過する。この光路形成
によってプリズム14の移動による誤差補正を行う。
The light reflected from the mask 12 and the wafer 13 enters the microscope objective lens 115 again, passes through the mirror IO and the half prism 14 according to the solid arrow in FIG. It passes through forming an optical path that is symmetrical to the optical path that it passed through earlier. Error correction due to movement of the prism 14 is performed by forming this optical path.

プリズム14を通った光は、ミラー16で反射され、ハ
ーフプリズム17で2光路に分離される。
The light passing through the prism 14 is reflected by a mirror 16 and separated into two optical paths by a half prism 17.

分WLgれた一方の光路は、リレーレンズ18を通って
リニアセンサ19に結像する。
One of the optical paths that has passed by WLg passes through the relay lens 18 and forms an image on the linear sensor 19 .

韮だ、分離された他方の光路はリレーレンズ20を通っ
てTV撮像画面21上に結像し、目視用に利用される。
The other separated optical path passes through the relay lens 20 and forms an image on the TV imaging screen 21, which is used for visual viewing.

結像する1家の種類は、顕微鏡対物レンズ11からリニ
アセンサ19またはTV撮像画面21までの光路長に依
存する。
The type of house to be imaged depends on the optical path length from the microscope objective lens 11 to the linear sensor 19 or the TV imaging screen 21.

このため、プリズム14を矢印aのように動かし、光路
長を任意の長さに変えてマスク12またはウェハ13の
アライメントマークの像をリニアセンサ19上に結像さ
せ、それぞれの位置を検出する。
For this purpose, the prism 14 is moved in the direction of arrow a, the optical path length is changed to an arbitrary length, and an image of the alignment mark on the mask 12 or wafer 13 is formed on the linear sensor 19 to detect the respective positions.

その検出原理を、第2図および第3図に示す。The detection principle is shown in FIGS. 2 and 3.

顕微説対物レンズ11からaつの距離にあるマスク12
のアライメントマーク22は、顕微鏡対物レンズ11か
らムの距離にそのアライメントマーク像23を結像する
。また、a微虜対物レンズ11から0..7の距離にあ
るウェハ13のアライメントマーク24は、顕微鏡対物
レンズ11から)Wの距離にそのアライメントマーク像
258結像する。このマスク12とウェハ13のアライ
メントマーク像23゜25ヲ、前述したフーリスム14
の移動により光路長ffえてリニアセンサ19上にそれ
ぞれ結像させ位置検−出を行う。
Mask 12 located at a distance a from the microscope objective lens 11
The alignment mark 22 forms an alignment mark image 23 at a distance of m from the microscope objective lens 11. Also, from the a-fine objective lens 11, 0. .. The alignment mark 24 of the wafer 13, which is at a distance of 7, forms an alignment mark image 258 at a distance of W) from the microscope objective lens 11. The alignment mark images 23 and 25 of this mask 12 and wafer 13, the aforementioned Fulism 14
The optical path length ff is changed by the movement of , and the respective images are formed on the linear sensor 19 for position detection.

し力)シ、光学レンズの結像法則により、リニアセンサ
19上に結像した隊の倍率は異なる。
However, due to the imaging law of the optical lens, the magnification of the image formed on the linear sensor 19 differs.

このため、マスク12とウェハ13の相対位置はマスク
12とウェハ13のアライメントマーク1g22325
の結像倍率差(“gyn 79 )に、倍率が変わって
lL、m   洗1 も結像位置が変化しない軸線である光軸30から、ウェ
ハ13のアライメントマーク25か結像した所までの距
離を乗算(LWX (’−=−iζ))シて、71)n
n   、!ZIF スフ12とウェハ13の相対位置を求めている。
Therefore, the relative position of the mask 12 and wafer 13 is determined by the alignment mark 1g22325 of the mask 12 and wafer 13.
The distance from the optical axis 30, which is the axis where the imaging position does not change even when the magnification changes (lL, m), to the position where the alignment mark 25 of the wafer 13 is imaged is determined by the imaging magnification difference (gyn 79) Multiply (LWX ('-=-iζ)), 71)n
n,! The relative position of ZIF frame 12 and wafer 13 is determined.

本来、マスク12とウェハ13の相対位置検出では、第
4図に示すごとくマスク12とウェハ13ヲ平行に配置
して、このマスク12とウェハ13の垂線上に顕微鏡対
物レンズ11..11企の光軸30ができるように配置
して検出しなければ、正確な相対位置を求めることかで
きないことは明らかである。
Originally, in detecting the relative positions of the mask 12 and the wafer 13, the mask 12 and the wafer 13 are arranged parallel to each other as shown in FIG. 4, and the microscope objective lens 11. .. It is clear that accurate relative positions cannot be determined unless the optical axes 30 are arranged and detected so that eleven optical axes 30 are formed.

しかし、実際には第5図および第6図に示すごとく、複
数の顕微鏡対物レンズ1】ユ、11県の光軸30を正確
にマスク12またはウェハ13に対し垂直にTることは
難しく、傾いた才ま使用しているのか現状である。
However, in reality, as shown in FIGS. 5 and 6, it is difficult to accurately align the optical axes 30 of multiple microscope objective lenses 1 and 11 perpendicular to the mask 12 or wafer 13, and The current situation is that it is still being used.

このとき、それぞれ傾いた顕微鏡対物レンズ11er−
+ I liによって生ずる検出誤差δは、第5図およ
び第6図に示す諸元において、 δ=IlJLmθ1−11 または δ=9・シθ2−11 ここで で表わすことができる。
At this time, the microscope objective lens 11er-
The detection error δ caused by +I li can be expressed as δ=IlJLmθ1-11 or δ=9·shiθ2-11 in the specifications shown in FIGS. 5 and 6.

従来、この誤差を求める方法としては、露光・現像を行
い、この結果から推定する以外になかった。しかし、こ
の方法では他の要因による誤差が多く含まれており、正
確な埴を出すことは難しいという欠点がある。
Conventionally, the only way to determine this error was to perform exposure and development and estimate it from the results. However, this method has the disadvantage that it contains many errors due to other factors, making it difficult to produce accurate hani.

なお、第5図中、19.19  はリニアセンサを示す
In addition, in FIG. 5, 19.19 indicates a linear sensor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の欠点をなくし、顕微鏡
対物レンズの光軸の傾きによって生じる誤差蓋を正確に
測定し得る微小間隙をおいて相対する2物体間の位置検
出方法を提供する。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art and provide a method for detecting a position between two objects facing each other with a minute gap in between, which can accurately measure the error cover caused by the inclination of the optical axis of a microscope objective lens.

ことにある。There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明は、基板上にアルミ蒸着膜等の反射層を設け、こ
の反射層上にポリイミド膜等の透明層を設け、この透明
層上に光字検出体パターンを設けた位置合わせ治具を用
い、前記光学検出体パターンと反射層に写った虚像の光
学検出体パターンを検出することにより、顕微説対物レ
ンズの光軸の傾きによって生じる誤差量を正確に測定す
るようにしたものである。
The present invention uses an alignment jig in which a reflective layer such as an aluminum vapor-deposited film is provided on a substrate, a transparent layer such as a polyimide film is provided on this reflective layer, and an optical character detector pattern is provided on this transparent layer. By detecting the optical detector pattern and a virtual image of the optical detector pattern reflected on the reflective layer, the amount of error caused by the inclination of the optical axis of the microscope objective lens is accurately measured.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を、第7図〜第13図に基づいて説明
する。
An embodiment of the present invention will be described based on FIGS. 7 to 13.

マスク12とウェハ13の相対位置合わせの基準となる
位置合わせ治具を第7図に示す。
FIG. 7 shows an alignment jig that serves as a reference for relative alignment of the mask 12 and wafer 13.

本発明において用いる位置合わせ治具は、ミラーウェハ
である基板26の上に、反射J@27が設・けられ、こ
の反射層27の上に、透明層28が設けられ、この透明
層28の上に、光学検出体パターン(以下、検出体パタ
ーンという)29が設けられている。
In the alignment jig used in the present invention, a reflective J@27 is provided on a substrate 26 which is a mirror wafer, a transparent layer 28 is provided on this reflective layer 27, and a transparent layer 28 is provided on this reflective layer 27. An optical detection object pattern (hereinafter referred to as detection object pattern) 29 is provided on the top.

前記反射層27は、アルミニウム蒸着膜等を照−着して
設けられている。
The reflective layer 27 is provided by depositing an aluminum vapor-deposited film or the like.

前記透明層28は、反射層27の上に、透明体であるポ
リイミド膜等をスピン塗布により付着して設けられてい
る。スピン塗布による膜厚は、塗布剤の粘度と回転数に
よってほぼ決まり、1回の塗布では0.8〜1μm程度
しか塗布することができな(コ。このため、数回に分け
て塗布する。
The transparent layer 28 is provided by attaching a transparent polyimide film or the like onto the reflective layer 27 by spin coating. The film thickness by spin coating is approximately determined by the viscosity of the coating material and the number of rotations, and it is possible to coat only about 0.8 to 1 μm in one coating.

一般に、スピン塗布による膜厚のバラツキは0.01μ
ms度であり、数回に分けて塗布しても膜厚のバラツキ
は問題とはならない。この透明層28の厚さtと、マス
ク12とウエノX13の間隙Jとの関係は、次式によっ
て表わすことができる\、 =  H* Ji+ ここで、 n−・・・透明層(ポリイミド膜)の屈折率である。
Generally, the variation in film thickness due to spin coating is 0.01μ
ms degree, so even if it is applied several times, variations in film thickness will not be a problem. The relationship between the thickness t of the transparent layer 28 and the gap J between the mask 12 and the Ueno X 13 can be expressed by the following formula\, = H* Ji+ where, n-...Transparent layer (polyimide film) is the refractive index of

一般に、点光源を用いるX線露光装置では、マスター2
とウエノX13の間@yは半影ボケの問題から5〜40
μm程度にしている。また、透明層28としてのポリイ
ミド膜の屈折率nは1.5程度であるため、ポリイミド
膜の場合、透明層28の厚さtはmJ記式から計算によ
り3.75〜40μmのものが多く用いられる。
Generally, in an X-ray exposure apparatus using a point light source, master 2
and Ueno X13 @y is 5-40 due to penumbra blur issue
It is about μm. In addition, since the refractive index n of the polyimide film as the transparent layer 28 is about 1.5, in the case of a polyimide film, the thickness t of the transparent layer 28 is often 3.75 to 40 μm as calculated from the mJ notation. used.

前記検出体パターン29は、透明層28上において、こ
の実施例では第7図に示すごとく、31同所に設けられ
、各個所の検出体パターン29とも3個ずつ配列されて
いる。また、この検出体パターン29はLSI製造工程
とほぼ同じ工程により設けることができる。ついで、検
出体パターン29の諸元について説明する。
In this embodiment, as shown in FIG. 7, 31 of the detection body patterns 29 are provided at the same location on the transparent layer 28, and three detection body patterns 29 are arranged at each location. Further, this detection object pattern 29 can be provided by substantially the same process as the LSI manufacturing process. Next, the specifications of the detection object pattern 29 will be explained.

顕微鏡対物レンズ11を用い、落射照明で前記した検出
体パターン29の裏面(検出体パターン29が透明層2
8と接する面)を検出するためには、第12図に示すよ
うに顕微鋭対物レンズ11からの照明光31が反射層2
7に反射し、次に検出体パターン29に反射して再び反
射層27に反射した反射光32が顕微鏡対物レンズ11
に戻らなければならない。しかし、検出体パターン29
0幅Wが広すぎると、一度検出体パターン29の裏面に
反射した光がまた検出体パターン29の裏面に戻ってし
まい、Me跳対物レンズ11に戻らないという問題が起
きて、検出することができない。このため、検出体パタ
ーン290幅Wおよび隣接する検出体パターン29との
隙間Sは過圧な範囲に設定しなけれはならない。
Using the microscope objective lens 11, epi-illumination is used to illuminate the back side of the detection object pattern 29 (the detection object pattern 29 is located on the transparent layer 2).
8), the illumination light 31 from the microscopic sharp objective lens 11 passes through the reflective layer 2 as shown in FIG.
The reflected light 32 that is reflected by the object pattern 29 and reflected again by the reflective layer 27 is reflected by the microscope objective lens 11.
have to go back to. However, the detection object pattern 29
If the 0 width W is too wide, a problem arises in that the light that has been reflected on the back surface of the detection object pattern 29 returns to the back surface of the detection object pattern 29 and does not return to the Me jump objective lens 11, making it impossible to detect it. Can not. For this reason, the width W of the detection body pattern 290 and the gap S between the detection body pattern 290 and the adjacent detection body pattern 29 must be set within an excessive pressure range.

検出体パターン29の:届Wの最大値は、第13図に示
すよつに、透明層28であるポリイミド膜の厚さtと屈
折率n郭よび顕微鏡対物レンズ11の開口数NAで定ま
り、次の弐で求めることができる。
As shown in FIG. 13, the maximum value of the distance W of the detection object pattern 29 is determined by the thickness t of the polyimide film that is the transparent layer 28, the refractive index n, and the numerical aperture NA of the microscope objective lens 11. You can find it in the next 2.

w=2・t−一(ニー1(Δ戊)) また、隣接する検出体パターン29間の最小隙間Sは、
検出体パターン29の最大幅Wを求める式と同じ式で求
めることができる。
w=2・t−1 (knee 1 (Δ戊)) Furthermore, the minimum gap S between adjacent detection object patterns 29 is
It can be determined using the same formula as the formula for determining the maximum width W of the detection object pattern 29.

・ −I  NA S=2・t−&L(−()) ただし、隣接する検出体パターン29間の隙間は、検出
体パターン290幅が十分に小さい場合は求めた最小の
隙間Sよりも小さい値でも検出は可能である。
・ -I NA S=2・t-&L(-()) However, if the width of the detection object patterns 290 is sufficiently small, the gap between adjacent detection object patterns 29 will be a value smaller than the calculated minimum gap S. However, detection is possible.

次に、検出体パターン290反射率について説明する。Next, the reflectance of the detection object pattern 290 will be explained.

本発明で用いる位置合わせ治具を落射照明で検出すると
、照明光31はほとんど全て反射層27で反射して顕微
鏡対物レンズに戻るため、視野内は非常に明るくなる。
When the alignment jig used in the present invention is detected by epi-illumination, almost all of the illumination light 31 is reflected by the reflective layer 27 and returns to the microscope objective lens, so the field of view becomes very bright.

したかって、コントラストを付けるために検出体パター
ン29は反射率の小さい黒色に近いものが袂求される。
Therefore, in order to add contrast, the detection object pattern 29 is required to have a low reflectance and be close to black.

このため、検出体パターン29はたとえば酸化クローム
等で作られている。
For this reason, the detection object pattern 29 is made of, for example, chromium oxide.

また、1個所につき3個宛の検出体パターン29は、定
められた位置に設置された顕微鏡対物レンズ11で、1
度に検出し得る位置に配置されている。
In addition, the detection object pattern 29, which targets three objects per location, can be detected by the microscope objective lens 11 installed at a predetermined position.
It is placed in a position where it can be detected at any time.

前記位置付イっせ治具そ第9図、第10図および第11
図に示すように顕微説対物レンズ”a+117で検出す
ると、まさに間隙gをおいてマスク12とウェハ13が
理想的に相対位置合わせされたような状態で、マスク1
2のアライメントマーク22に相当する実像の検出体パ
ターン29、ウェハ13のアライメントマーク24に相
当する虚像の検出体パターン29′ヲ検出することがで
きる。
The positioning jig shown in FIGS. 9, 10, and 11
As shown in the figure, when detected with a microscope objective lens "a+117," the mask 12 and the wafer 13 are ideally aligned with each other with a gap g.
A real image detection object pattern 29 corresponding to the alignment mark 22 on the wafer 13 and a virtual image detection object pattern 29' corresponding to the alignment mark 24 on the wafer 13 can be detected.

このとき、第10図に示すように、倍率(光路長)が変
わっても結像位置か変化しない光軸と、顕微鏡対物レン
ズ11め、11Jで検出された実像の検出体パターン2
9と虚像の検出体パターン29′を結んだ光軸30との
ずれ量δ、δ を検出することができる。
At this time, as shown in FIG. 10, the optical axis does not change the imaging position even if the magnification (optical path length) changes, and the object pattern 2 of the real image detected by the microscope objective lenses 11 and 11J.
9 and the optical axis 30 connecting the virtual image detection object pattern 29' can be detected.

この検出値かそれぞれの顕微鏡対物レンズ1駐。This detection value is determined by each microscope objective lens.

11ノの光軸30の1頃きによって生じる誤差量である
O そして、前記ずれ童δ9.δlの検出後、実際にマスク
12とウェハ13の相対位置合わせをする場合には、そ
れぞれのアライメントマーク22 、24の検出、値ζ
こ対して、このすれ責δ4.δイを計算才たは光軸の1
頃き角を変える方法等で補正することによって、尚梢度
の相対位置合わせを実現できる。
O is the error amount caused by the optical axis 30 of 11 degrees, and the deviation δ9. After the detection of δl, when actually aligning the mask 12 and the wafer 13 relative to each other, the detection of the respective alignment marks 22 and 24 and the value ζ
On the other hand, this slippage δ4. Calculate δ or 1 of the optical axis
By correcting by changing the roll angle, etc., it is possible to achieve relative positioning with a higher degree of rotation.

なお、第9図および第10図中、19.19  はリニ
アセンサを示す。
Note that in FIGS. 9 and 10, 19.19 indicates a linear sensor.

また、位置合わせ治具の基板26、反射層27、透明層
28の材料は、前記実施例に限らす、検出体パターン2
90個数も前記実施例に限らない。
Furthermore, the materials of the substrate 26, reflective layer 27, and transparent layer 28 of the positioning jig are limited to those of the above-mentioned embodiments.
The number of 90 pieces is not limited to the above embodiment.

さらに、本発明はマスク12とウェハ13の位置検出に
限らす、これら2物体と類似の2物体間の位置検出に適
用できる。
Further, the present invention is not limited to detecting the positions of the mask 12 and the wafer 13, but can be applied to detecting the positions of two similar objects.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれは、基板上に反射層を設け、
反射層上に透明層を設け、この透明層上に検出体パター
ンを設けた位置合わせ治具を用いて、顕微鏡対物レンズ
の光軸の傾きによる誤差量を測定するようにしているの
で、前記誤差量を正確に測定し得る効果を有し、かかる
誤差量を把握し、現実の2物体間の位置合わせに際して
補正を加えることができるので、高精度の相対位置合わ
せを実現し得る派生的効果がある。
According to the present invention described above, a reflective layer is provided on the substrate,
A transparent layer is provided on the reflective layer, and an alignment jig with a detecting object pattern provided on this transparent layer is used to measure the amount of error due to the inclination of the optical axis of the microscope objective lens. It has the effect of being able to accurately measure the amount, grasping the amount of error, and making corrections when actually aligning two objects, so it has the derivative effect of realizing high-precision relative alignment. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は従来技術をかすもので、第1図は2物
体間の位置検出光学系を示す図、第2図は位置検出の原
理を示す図、第3図は第2図の用部分の拡大図、第4図
および第5図は顕微鏡対物レンズの光軸が真直ぐの場合
と傾いている場合との位置検出を示す図、第6図は第5
図のv1部分の拡大図、第7図〜第13図は本発明方法
の一夾施態様を示すもので、その第7図は本発明方法で
用いる位置合わせ治具の斜視図、第8囚は第7図の■−
■線拡大縦断面図、第9図および第10図は顕微鏡対物
レンズの光軸が勇直ぐな場合と傾いている場合について
、位置合わせ治具を用いて検出している状態を示す図、
第11図は同検出状態の一部拡大図、第12図および第
13図は位置合わせ治具の検出体パターンの幅2間隙を
設定する場合の説明図である。 11LL、 IIJ  ・・・顕微鏡対物レンズ12.
13・・・微小間隙をおいて相対する2物体としてのマ
スクとウェハ 26・・・位置合わせ治具の基板 27・・・同反射J@     28・・・同透明層2
9・・・同検出体パターン 29′・・・反射層の反射面に写った虚像の検出体ノぐ
ターン 30・・・顕微鏡対物レンスの光軸 へ、δ戎・・・倍率(光路長)が変わっても結律位置が
変化しない光軸と位置合わせ治具の 検出体パターンの実像と反射面に写っ た虚像とを結んだ光軸とのずれ量 〜\、 \−,ノ 第 1 口 第2膓 躬4n 拓 7呂 第ど邑 第720
Figures 1 to 6 show the prior art. Figure 1 is a diagram showing the position detection optical system between two objects, Figure 2 is a diagram showing the principle of position detection, and Figure 3 is Figure 2. 4 and 5 are diagrams showing position detection when the optical axis of the microscope objective lens is straight and when it is tilted.
FIGS. 7 to 13, which are enlarged views of the v1 portion of the figure, show one embodiment of the method of the present invention, and FIG. 7 is a perspective view of the positioning jig used in the method of the present invention, and FIG. is ■− in Figure 7.
■ Line enlarged vertical cross-sectional views, Figures 9 and 10 are diagrams showing detection using a positioning jig for cases where the optical axis of the microscope objective lens is straight and tilted,
FIG. 11 is a partially enlarged view of the same detection state, and FIGS. 12 and 13 are explanatory views when setting a gap of two widths between the detection object patterns of the positioning jig. 11LL, IIJ...Microscope objective lens 12.
13...Mask and wafer as two objects facing each other with a minute gap 26...Substrate 27 of alignment jig...Same reflection J@ 28...Same transparent layer 2
9...Detection object pattern 29'...Virtual image of the detection object reflected on the reflective surface of the reflective layer Turn 30...Towards the optical axis of the microscope objective lens, δ...Magnification (optical path length) The amount of deviation between the optical axis, which does not change the convergence position even if the position changes, and the optical axis that connects the real image of the object pattern on the alignment jig and the virtual image reflected on the reflective surface. 2nd 膓萬 4n Taku 7ro dōmura 720

Claims (1)

【特許請求の範囲】 1、基板上に反射層を設け、反射層上に透明層を設け、
この透明層上に光学検出体パターンを設けた位置合わせ
治具を用いて、Th!鏡対物レンズの光軸の傾きによる
誤差蓋を6111定することを特徴とする微小間隙をお
いて相対する2物体間の位置検出方法。 2、前記位置合わせ治具の透明ノーを、ポリイミド膜に
より3.75〜40μmに形成したことを特徴とする特
許請求の範囲第1項記載の微小間隙をおいて相対する2
物対間の位置検出方法。 3、 前記位置合わせ治具の光学検出体パターンの幅−
Wを、下記計算式で表す値よりも狭くしたことを特徴と
する特許請求の範囲第1項記載の微小間隙をおいて相対
する2物体間の位置検出方法。 、−I  NA W=s 2・t −y (4(−7−))ただし、 t・・・透明膜の厚さ n・・・透明膜の屈折率 NA・・・光学検出体パターンの検出に使用する顕微説
対物レンズの開口数
[Claims] 1. A reflective layer is provided on the substrate, a transparent layer is provided on the reflective layer,
Using a positioning jig with an optical detector pattern provided on this transparent layer, Th! A method for detecting a position between two objects facing each other with a minute gap between them, characterized by determining an error cover due to the inclination of the optical axis of a mirror objective lens. 2. The transparent holes of the positioning jig are made of a polyimide film and have a diameter of 3.75 to 40 μm.
A method for detecting the position between objects. 3. Width of the optical detection object pattern of the alignment jig -
2. A method for detecting a position between two objects facing each other with a minute gap as claimed in claim 1, wherein W is made narrower than a value expressed by the following calculation formula. , -I NA W=s 2 ·t -y (4(-7-)) However, t...Thickness of the transparent film n...Refractive index of the transparent film NA...Detection of the optical detector pattern Numerical aperture of the microscope objective lens used for
JP58094017A 1983-02-18 1983-05-30 Method for detecting position between two objects opposed each other with minute gap therebetween Pending JPS59220604A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58094017A JPS59220604A (en) 1983-05-30 1983-05-30 Method for detecting position between two objects opposed each other with minute gap therebetween
EP84101569A EP0116953A2 (en) 1983-02-18 1984-02-16 Alignment apparatus
US06/580,709 US4614431A (en) 1983-02-18 1984-02-16 Alignment apparatus with optical length-varying optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094017A JPS59220604A (en) 1983-05-30 1983-05-30 Method for detecting position between two objects opposed each other with minute gap therebetween

Publications (1)

Publication Number Publication Date
JPS59220604A true JPS59220604A (en) 1984-12-12

Family

ID=14098737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094017A Pending JPS59220604A (en) 1983-02-18 1983-05-30 Method for detecting position between two objects opposed each other with minute gap therebetween

Country Status (1)

Country Link
JP (1) JPS59220604A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262519A (en) * 1985-09-13 1987-03-19 Canon Inc Position detector
JPS6332304A (en) * 1986-07-28 1988-02-12 Hitachi Ltd Method and device for measurement
JPS6356917A (en) * 1986-08-28 1988-03-11 Nikon Corp Projection exposure device
JPH02171604A (en) * 1988-12-23 1990-07-03 Matsushita Electric Works Ltd Method for inspecting size of plate material
US7355675B2 (en) 2004-12-29 2008-04-08 Asml Netherlands B.V. Method for measuring information about a substrate, and a substrate for use in a lithographic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262519A (en) * 1985-09-13 1987-03-19 Canon Inc Position detector
JPS6332304A (en) * 1986-07-28 1988-02-12 Hitachi Ltd Method and device for measurement
JPH0658206B2 (en) * 1986-07-28 1994-08-03 株式会社日立製作所 Positioning assembly device
JPS6356917A (en) * 1986-08-28 1988-03-11 Nikon Corp Projection exposure device
JPH02171604A (en) * 1988-12-23 1990-07-03 Matsushita Electric Works Ltd Method for inspecting size of plate material
US7355675B2 (en) 2004-12-29 2008-04-08 Asml Netherlands B.V. Method for measuring information about a substrate, and a substrate for use in a lithographic apparatus

Similar Documents

Publication Publication Date Title
US4737920A (en) Method and apparatus for correcting rotational errors during inspection of reticles and masks
US4614431A (en) Alignment apparatus with optical length-varying optical system
KR950012572A (en) Exposure method
KR970016827A (en) Exposure method and exposure apparatus
US7576858B2 (en) Position detecting method
US6061119A (en) Method of measuring image-forming error of projection optical system, method of manufacturing exposure apparatus, and method of manufacturing semiconductor device
JP2000088702A (en) Method for evaluating image forming performance
US5572325A (en) Apparatus for optically detecting a position of mark
TWI803710B (en) Determination method, exposure method, exposure device and article manufacturing method
US5640243A (en) Position detection method
US7986409B2 (en) Method for determining the centrality of masks
US6198527B1 (en) Projection exposure apparatus and exposure method
JP2003151879A (en) Mark position detector
JPS59220604A (en) Method for detecting position between two objects opposed each other with minute gap therebetween
JPH0581046B2 (en)
JPH04146437A (en) Method and device for inspecting mask for phase shift
CN117957497A (en) Calibration measurement using overlay error of small targets
JPH0510748A (en) Device for detecting information on position and transfer device using it
JPS62171126A (en) Projection-type exposure apparatus
JPH06258182A (en) Method and apparatus for measuring eccentricity of aspherical lens
KR20040022401A (en) Reticle focus measurement system and method using multiple interferometric beams
JP2006228890A (en) Alignment method and exposure device
JP3327627B2 (en) Original exposure plate and projection exposure apparatus using the same
JPH1089921A (en) Method for correcting error of alignment measurement and production of semiconductor device
JPH04102019A (en) Double focus apparatus using reference reticle