JPH0713938B2 - Electronic beam exposure method - Google Patents

Electronic beam exposure method

Info

Publication number
JPH0713938B2
JPH0713938B2 JP60255956A JP25595685A JPH0713938B2 JP H0713938 B2 JPH0713938 B2 JP H0713938B2 JP 60255956 A JP60255956 A JP 60255956A JP 25595685 A JP25595685 A JP 25595685A JP H0713938 B2 JPH0713938 B2 JP H0713938B2
Authority
JP
Japan
Prior art keywords
deflection distortion
value
deflection
distortion value
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60255956A
Other languages
Japanese (ja)
Other versions
JPS62115828A (en
Inventor
牧夫 吹田
樹一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60255956A priority Critical patent/JPH0713938B2/en
Publication of JPS62115828A publication Critical patent/JPS62115828A/en
Publication of JPH0713938B2 publication Critical patent/JPH0713938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造などに用いられる電子ビーム露光にお
いて、 被露光基板を載置するステージ上に設けた重金属の第一
のマークからの反射電子を用いて描画領域全域の第一の
偏向歪値を求め、ステージ上に載置された被露光基板上
の第二マークを用いて求めた特定点の第二の偏向歪値に
より第一の偏向歪値を修正して、露光時の偏向歪の補正
値を定めることにより、 偏向歪補正の精度を長期に渡り確保させたものである。
DETAILED DESCRIPTION [Outline] In electron beam exposure used for manufacturing a semiconductor device or the like, a drawing area is formed by using reflected electrons from a first mark of a heavy metal provided on a stage on which a substrate to be exposed is mounted. The first deflection distortion value of the entire area is obtained, and the first deflection distortion value is corrected by the second deflection distortion value of the specific point obtained using the second mark on the exposed substrate placed on the stage. Then, the correction value of the deflection distortion at the time of exposure is determined to ensure the accuracy of the deflection distortion correction for a long period of time.

〔産業上の利用分野〕 本発明は、電子ビーム露光方法に係り、特に、電子ビー
ムの偏向歪補正の方法に関す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam exposure method, and more particularly to a method for correcting deflection distortion of an electron beam.

微細化され高密度化されるLSIや超LSIなどのパターン形
成には、電子ビームを偏向させて描画する直接露光技術
が用いられる。
Direct exposure technology, in which electron beams are deflected for writing, is used for pattern formation of miniaturized and highly densified LSIs and VLSIs.

この場合露光装置には、電子ビームを所望の位置に偏向
させようと偏向系を操作しても、実際の偏向点はその位
置からずれると言う偏向歪が存在するのが一般である。
In this case, in the exposure apparatus, even if the deflection system is operated to deflect the electron beam to a desired position, there is a deflection distortion in which the actual deflection point deviates from that position.

即ち例えば第3図(a)に示す方形の描画領域1の4辺
を所望のパターン2としてこれを描画するように露光装
置の偏向系D(図省略)を操作すると、第3図(b)に
示す如く描画されるパターンは3の如くなり所望パター
ン2から上記偏向歪による描画の偏向歪値4だけずれた
ものになる。
That is, for example, if the deflection system D (not shown) of the exposure apparatus is operated so that four sides of the rectangular drawing area 1 shown in FIG. The pattern drawn as shown in FIG. 3 becomes 3 and is shifted from the desired pattern 2 by the deflection distortion value 4 of the drawing caused by the deflection distortion.

従ってこの偏向歪は、パターン精度を劣化させることに
なり、微細パターン形成の際には補正が必要となる。そ
して描画の偏向歪値4は後述するように露光装置の使用
経過と共に変化するので、この補正はその変化に追随出
来ることが望まれる。
Therefore, this deflection distortion deteriorates the pattern accuracy and requires correction when forming a fine pattern. Since the drawing deflection distortion value 4 changes as the exposure apparatus is used, as will be described later, it is desirable that this correction can follow the change.

〔従来の技術〕[Conventional technology]

上記偏向歪値4は描画する位置によって異なるため、偏
向歪の補正は描画領域1の全域に渡って行う必要があ
る。
Since the deflection distortion value 4 differs depending on the drawing position, it is necessary to correct the deflection distortion over the entire drawing area 1.

第4図は従来の補正方法の例を示す図(a)(b)で、
(a)は補正値、(b)は補正後の描画パターン、であ
る。
FIG. 4 is a diagram (a) and (b) showing an example of a conventional correction method.
(A) is a correction value, (b) is a drawing pattern after correction.

同図は第3図と同様に描画領域1の4辺を所望パターン
2とした場合を示している。
Similar to FIG. 3, this figure shows a case where four sides of the drawing area 1 are set as the desired pattern 2.

従来の補正方法は、マークを用いた測定により描画領域
1の全域についての偏向歪値5(図(a)図示)を予め
求め、これを偏向系D(図省略)の制御部メモリに入れ
ておき、この偏向歪値5を補正値6としてパターン描画
の際の補正に適用することによって、所望パターン2を
描画した補正後の描画パターン3a(図(b)図示)を所
望パターン2に略一致させている。
In the conventional correction method, the deflection distortion value 5 (shown in FIG. (A)) for the entire drawing area 1 is obtained in advance by measurement using a mark, and this is stored in the controller memory of the deflection system D (not shown). Then, by applying the deflection distortion value 5 as the correction value 6 to the correction at the time of pattern drawing, the corrected drawing pattern 3a (shown in FIG. (B)) in which the desired pattern 2 is drawn is substantially matched with the desired pattern 2. I am letting you.

第5図は偏向歪値5の測定方法説明図である。FIG. 5 is an explanatory diagram of a method for measuring the deflection distortion value 5.

なお偏向歪値5は後述する第一の偏向歪値となる。The deflection distortion value 5 is the first deflection distortion value described later.

同図において、11は露光装置における被露光基板を載置
するステージ、12は重金属例えばタンタル(Ta)からな
りステージ11上に設けられたマーク、Bは露光用電子ビ
ーム、Eは電子ビームBが照射された部分より放出され
る反射電子である。
In the figure, 11 is a stage on which the substrate to be exposed in the exposure apparatus is placed, 12 is a mark made of heavy metal such as tantalum (Ta) and provided on the stage 11, B is an exposure electron beam, and E is an electron beam B. The reflected electrons are emitted from the irradiated part.

描画領域における所望位置の偏向歪値5の測定は次の如
くに行う。
The deflection distortion value 5 at the desired position in the drawing area is measured as follows.

即ち、先ずステージ11の移動によりマーク12の中心を上
記所望位置に合わせる。次いで電子ビームBを走査しな
がらマーク12からの反射電子Eを露光装置の反射電子検
出器(図省略)で検出し、マーク12の中心に至る偏向量
を求める。この偏向量は、偏向歪のために偏向系D(図
省略)が予め目する偏向量と異なり、その差がその位置
における偏向歪値5になる。
That is, first, the center of the mark 12 is aligned with the desired position by moving the stage 11. Next, while scanning the electron beam B, the backscattered electrons E from the mark 12 are detected by a backscattered electron detector (not shown) of the exposure device, and the deflection amount reaching the center of the mark 12 is obtained. This deflection amount is different from the deflection amount that the deflection system D (not shown) previously sees due to the deflection strain, and the difference is the deflection strain value 5 at that position.

従って、第3図図示描画領域1内に出来るだけ多くの測
定個所を取って上述の測定方法により各測定個所の偏向
歪値5を求め、各測定個所間については補間法により求
めることによって、描画領域1の全域についての偏向歪
値5を求めることが出来る。
Therefore, by drawing as many measurement points as possible in the drawing area 1 shown in FIG. 3, the deflection distortion value 5 of each measurement point is obtained by the above-mentioned measurement method, and between each measurement point is obtained by the interpolation method. The deflection distortion value 5 for the entire area 1 can be obtained.

ここでマーク12の材料を重金属にしてあるのは、電子ビ
ームBがマーク12を照射した際の反射電子Eの強度を高
めて上記測定を確実に且つ容易にさせるためである。
Here, the material of the mark 12 is made of heavy metal so that the intensity of the backscattered electron E when the electron beam B irradiates the mark 12 is increased to surely and easily perform the above measurement.

そしてこの測定は、通常露光装置のコラムを分解清掃し
た直後に毎度行う。これは上記分解によりコラムの状態
が変わって偏向歪値5が変わってくるからである。
Then, this measurement is usually performed immediately after disassembling and cleaning the column of the exposure apparatus. This is because the state of the column is changed and the deflection strain value 5 is changed by the above-mentioned disassembly.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記偏向歪値5は、コラムを分解清掃した直後の偏向歪
値でその時点における第3図に示す描画の偏向歪値4に
一致しており、その後の露光に対し暫の間は補正の精度
を確保することが出来る。
The deflection distortion value 5 is the deflection distortion value immediately after the column is disassembled and cleaned, and coincides with the deflection distortion value 4 of the drawing shown in FIG. 3 at that time, and the accuracy of the correction for a while for the subsequent exposure. Can be secured.

しかしながら、上記清掃後の使用が長期に渡ると、例え
は露光基板から飛散したレジストなどがコラム下部に付
着し、露光の際にそこに帯電(チャージアップ)が生じ
て電子ビームの偏向に影響を与え、第6図(a)に示す
如く、描画の偏向歪値4は偏向歪値5からずれて来る
(このずれをチャージアップドリフトと称する)。そし
てこのチャージアップドリフトは、上記レジストなどの
付着が増加する即ち露光回数が増加するにつれて増加す
る。
However, if the use after the cleaning is continued for a long period of time, for example, the resist scattered from the exposure substrate adheres to the lower part of the column, and there is a charge (charge-up) at the time of exposure, which affects the deflection of the electron beam. Given that, as shown in FIG. 6A, the deflection distortion value 4 of drawing deviates from the deflection distortion value 5 (this deviation is called charge-up drift). The charge-up drift increases as the adhesion of the resist or the like increases, that is, as the number of exposures increases.

偏向歪補正の精度は、補正値が描画の偏向歪値4に一致
していることにより確保される。
The accuracy of the deflection distortion correction is ensured when the correction value matches the drawing deflection distortion value 4.

従って上記チャージアップドリフトが目立つようになる
と、偏向歪値5を補正値とした従来の補正方法では、十
分な補正が出来なくなる問題がある。
Therefore, when the charge-up drift becomes noticeable, there is a problem that the conventional correction method using the deflection distortion value of 5 as a correction value cannot perform sufficient correction.

この対策として、チャージアップドフトが存在する状態
で偏向歪値5を測定し直すことが考えられる。しかしこ
の方策は、重金属であるマーク12からの反射電子Eの強
度が実際の露光の際より略1桁程度強いため上記チャー
ジアップが大きくなり、その測定によって得られる偏向
歪値5は、第6図(b)に示す如く、やはり描画の偏向
歪値4からずれて上記問題の解決にならない。
As a countermeasure against this, it is conceivable to remeasure the deflection distortion value 5 in the presence of charge-up drift. However, in this method, since the intensity of the reflected electrons E from the mark 12 which is a heavy metal is stronger by about one digit than in the actual exposure, the charge-up becomes large, and the deflection distortion value 5 obtained by the measurement is the sixth. As shown in FIG. 3B, the above-mentioned problem cannot be solved by deviating from the drawing deflection distortion value of 4.

しかも偏向歪5の測定は、かなりの時間を要するので、
比較的頻繁に行うのは実用的でない。
Moreover, since the measurement of the deflection distortion 5 requires a considerable time,
It is not practical to do it relatively often.

言うまでもなく、チャージアップドリフトが問題になる
程度に大きくなったところでコラムを分解清掃すれば良
いが、それは露光装置の稼働を極端に低下させるので望
ましいものではない。
Needless to say, the column may be disassembled and cleaned when the charge-up drift becomes large enough to cause a problem, but this is not desirable because it extremely reduces the operation of the exposure apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、 電子ビーム露光装置における被露光基板を載置するステ
ージ上に重金属からなる第一のマークを設け、電子ビー
ム照射による該第一のマークからの反射電子を用いて第
一のマークを基準として描画領域全域における第一の偏
向歪値を求め、 更に該ステージ上に載置された被露光基板上の第二のマ
ークを用いて該描画領域における特定位置の第二の偏向
歪値を求め、 該特定位置における該第一の偏向歪値に対する該第二の
偏向歪値の比を比例係数にし、該描画領域全域における
該第一の偏向歪値に該比例係数を乗じた修正値を露光時
の偏向歪の補正値とする本発明の電子ビーム露光方法に
よって解決される。
The above problem is that the first mark made of heavy metal is provided on the stage on which the substrate to be exposed in the electron beam exposure apparatus is mounted, and the first mark is formed by using the reflected electrons from the first mark by the electron beam irradiation. The first deflection distortion value in the entire drawing area is determined with reference to, and the second deflection distortion value at a specific position in the drawing area is further determined by using the second mark on the exposed substrate placed on the stage. And a correction value obtained by multiplying the ratio of the second deflection distortion value to the first deflection distortion value at the specific position by a proportional coefficient, and multiplying the first deflection distortion value in the entire drawing area by the proportional coefficient. Is solved by the electron beam exposure method of the present invention in which is the correction value of the deflection distortion during exposure.

本発明によれば上記特定位置として、方形をなす上記描
画領域の各辺中央部の4個所を取り、上記比例係数は該
4個所における上記比の平均値にすることが望ましい。
According to the present invention, it is preferable that the specific position is set at four points in the center of each side of the rectangular drawing area, and the proportional coefficient is an average value of the ratios at the four points.

〔作用〕[Action]

一般に被露光基板上のマークは、形状加工などで形成さ
れ重金属を用いることはない。従って上記第二の偏向歪
値は、露光装置のコラム下部をチャージアップさせる反
射電子に関して露光の際と略同じ条件で求められること
になり、チャージアップドリフトがあっても描画の偏向
歪値と略一致する。
Generally, the mark on the substrate to be exposed is formed by shape processing or the like and does not use heavy metal. Therefore, the above-mentioned second deflection distortion value is obtained under substantially the same conditions as in the case of exposure for the backscattered electrons that charge up the lower part of the column of the exposure apparatus, and even if there is a charge-up drift, it is approximately the same as the drawing deflection distortion value. Match.

然も、第二の偏向歪値の方向が従来の補正値と同一であ
る第一の偏向歪値と同じであることから、第二の偏向歪
値の測定が上記特定位置のみで行われたとしても、上記
比例係数を乗ずる修正により得られた新しい補正値は、
上記特定位置以外に位置いおいても描画の偏向歪値と略
一致する。
However, since the direction of the second deflection distortion value is the same as the first deflection distortion value which is the same as the conventional correction value, the second deflection distortion value was measured only at the specific position. Even if, the new correction value obtained by the correction by multiplying the proportional coefficient is
Even at a position other than the specific position, the deflection distortion value of drawing substantially matches.

そして第二の偏向歪値の測定は、上記特定位置のみであ
ることから第一の偏向歪値の測定より簡便で頻繁に行う
ことが可能でるため、第一の偏向歪値の測定をコラムの
分解清掃後に行っておけば、チャージアップドリフトに
より描画の偏向歪値が変化してもその変化に追随した補
正が可能になり、偏向歪補正の精度を長期に渡り確保す
ることが出来る。
And since the measurement of the second deflection strain value can be performed more simply and frequently than the measurement of the first deflection strain value because it is only at the specific position, the measurement of the first deflection strain value of the column If it is performed after the disassembly and cleaning, even if the deflection distortion value of drawing changes due to charge-up drift, the correction can be performed in accordance with the change, and the accuracy of the deflection distortion correction can be ensured for a long period of time.

偏向歪値を測定する場合、被露光基板上のマークの如き
マークを使用すると、測定精度の確保が困難な場合があ
る。このため基本となる第一の偏向歪値を求める際には
該マークの使用を避けている。そして第二のマークを基
準とする第二の偏向歪値を求める際には、上記特定位置
を上述のように複数にし然も描画領域の4方向に取るこ
とにより、この問題を緩和している。
When measuring the deflection distortion value, if a mark such as a mark on the substrate to be exposed is used, it may be difficult to secure the measurement accuracy. Therefore, the use of the mark is avoided when obtaining the basic first deflection distortion value. Then, when obtaining the second deflection distortion value based on the second mark, the above-mentioned specific positions are made plural as described above, but are taken in four directions of the drawing area, thereby alleviating this problem. .

〔実施例〕〔Example〕

第1図は本発明方法の実施例を示す図(a)〜(d)
で、(a)は第一の偏向歪値、(b)は第二の偏向歪
値、(c)は補正値、(d)は補正後の描画パターン、
であり、第2図は第二の偏向歪値の測定方法説明図であ
る。
FIG. 1 is a view showing an embodiment of the method of the present invention (a) to (d).
Where (a) is the first deflection distortion value, (b) is the second deflection distortion value, (c) is the correction value, and (d) is the corrected drawing pattern.
FIG. 2 is an explanatory diagram of the second method for measuring the deflection distortion value.

第1図は第3図および第4図と同様に描画領域1の4辺
を所望パターンとした場合を示している。
Similar to FIGS. 3 and 4, FIG. 1 shows a case where four sides of the drawing area 1 are formed into desired patterns.

即ち第1図において、先ずコラムの分解清掃の後、第5
図に示す方法により露光領域1全域の偏向歪値(第一の
偏向歪値)5(第1図(a)図示)を測定し偏向系D
(図省略)の制御部メモリに入れる。測定に使用するマ
ーク12は前記第一のマークに該当する。この第一の偏向
歪値5は第4図(a)に示す偏向歪値5即ち補正値6と
同一のものである。
That is, in FIG. 1, first, after disassembling and cleaning the column,
The deflection strain value (first deflection strain value) 5 (shown in FIG. 1 (a)) in the entire exposure area 1 is measured by the method shown in FIG.
It is put in the control unit memory (not shown). The mark 12 used for measurement corresponds to the first mark. This first deflection distortion value 5 is the same as the deflection distortion value 5 shown in FIG.

次いで、被露光基板に露光する際に、第1図(b)に示
す特定位置7a〜7dの第二の偏向歪値8a〜8dを第2図に示
す方法で測定する。
Next, when the substrate to be exposed is exposed, the second deflection strain values 8a to 8d at the specific positions 7a to 7d shown in FIG. 1B are measured by the method shown in FIG.

第2図において、11とBとEは前述のステージと電子ビ
ームと反射電子、13はスステージ11上に載置されたシリ
コンウェーハなどの被露光基板である。また14は、基板
13上の描画領域1の各辺中央部の4個所を特定位置7a〜
7dとなし、該特定位置での歪値を測定するためにウェー
ハ上に設けられた例えば直方体状窪み(大きさ数μm程
度)をなす第二のマークであり、描画領域1の位置検知
用として通常描画領域1の4隅に設けるマークと同様の
ものである。
In FIG. 2, 11 and B and E are the above-mentioned stage, electron beam and backscattered electrons, and 13 is an exposed substrate such as a silicon wafer placed on the stage 11. Also, 14 is a substrate
Four specific locations on the center of each side of the drawing area 1 on 13 are specified positions 7a-
7d, which is, for example, a second mark formed on the wafer to measure the strain value at the specific position and which is, for example, a rectangular parallelepiped recess (size of about several μm), is used for detecting the position of the drawing area 1. It is similar to the marks provided at the four corners of the normal drawing area 1.

第二の偏向歪値8a〜8dの測定は次の如くに行う。The measurement of the second deflection strain values 8a to 8d is performed as follows.

先ず、ステージ11のステップアンドレピートにより基板
13の描画領域1を露光する所定の位置に位置させる。次
いで通常行われる電子ビームBの走査による描画領域1
の位置及び第二のマーク14のそれぞれの位置を検知し、
そこに至る偏向量を求める。この検知は、被露光基板13
からの反射電子Eを露光装置の反射電子検出器(図省
略)で監視し、マーク14の段差部で発生する変化を検出
することにより行われる。さすれば、第二のマーク14の
基板13に設けられた位置から算出される計算上の偏向量
と上記検知による偏向量との差が第二の偏向歪値8a〜8d
になる。
First, the substrate is formed by step and repeat of the stage 11.
13 drawing areas 1 are positioned at predetermined positions for exposure. Next, the drawing area 1 by the scanning of the electron beam B which is normally performed
And the respective positions of the second mark 14 are detected,
The amount of deflection to reach there is calculated. This detection is performed by the exposed substrate 13
This is performed by monitoring the backscattered electrons E from the above with a backscattered electron detector (not shown) of the exposure apparatus and detecting the change occurring at the stepped portion of the mark 14. By the way, the difference between the calculated deflection amount calculated from the position of the second mark 14 provided on the substrate 13 and the deflection amount by the above detection is the second deflection distortion values 8a to 8d.
become.

この方法によれば、被露光基板13からの反射電子Eの強
度が露光で描画する際と略同じであるため、チャージア
ップドリフトがある場合でも、求められた第二の偏向歪
値8a〜8dは、特定位置7a〜7dにおける描画の偏向歪値と
略一致する。
According to this method, the intensity of the reflected electrons E from the substrate to be exposed 13 is substantially the same as that at the time of drawing by exposure, so that even if there is a charge-up drift, the obtained second deflection distortion values 8a to 8d are obtained. Is substantially the same as the drawing deflection distortion value at the specific positions 7a to 7d.

第二の偏向歪値8a〜8dの測定が済んだところで、特定位
置7a〜7dの第一の偏向歪値5a〜5d(第1図(a)図示)
に対する第二の偏向歪値8a〜8dの比をそれぞれ算出し、
その平均値を比例係数Cとし、これを偏向系Dの制御部
レジスタに入れる。
After the measurement of the second deflection distortion values 8a to 8d, the first deflection distortion values 5a to 5d at the specific positions 7a to 7d (shown in FIG. 1 (a))
To calculate the ratio of the second deflection strain value 8a ~ 8d,
The average value is set as the proportional coefficient C, and this is put in the control unit register of the deflection system D.

次いで、描画に際して描画位置の第一の偏向歪値4に比
較係数Cを乗じ、得られた値を本発明の補正値6a(第1
図(c)図示)として補正を行い描画する。かくして所
望パターン2を描画すると、チャージアップドリフトが
あるにもかかわらず、第1図(d)に示すように補正後
の描画パターン3bは所望パターン2に略一致する。
Next, in drawing, the first deflection distortion value 4 of the drawing position is multiplied by the comparison coefficient C, and the obtained value is used as the correction value 6a (first
Drawing (c) (illustration) is performed after correction. Thus, when the desired pattern 2 is drawn, the drawn pattern 3b after correction substantially coincides with the desired pattern 2 as shown in FIG.

上記第二の偏向歪値8a〜8dの測定は、個々の被露光基板
毎に行うのが望ましい。そうすることによりチャージア
ップドリフトの変化に対し偏向歪補正を常に追随させる
ことが出来る。
It is desirable to measure the second deflection distortion values 8a to 8d for each individual substrate to be exposed. By doing so, the deflection distortion correction can be made to always follow the change in the charge-up drift.

なお、何かの都合によりチャージアップドリフトのある
状態で第一の偏向歪値5が測定されその偏向歪値5が適
用されたとしても、本発明は、その原理からして有効で
ある。
Even if the first deflection distortion value 5 is measured and the deflection distortion value 5 is applied in the state where there is charge-up drift for some reason, the present invention is effective from the principle.

また、上記実施例においては、比例係数Cの効果を描画
領域1の全域に対して均等化させ、且つ第二の偏向歪値
を測定する特定位置の数を少なくするのが望ましいた
め、特定位置の設定を上記8a〜8dの4個所にしたが、本
発明は、特定位置の設定を上記に限定するものではな
い。
Further, in the above embodiment, it is desirable to equalize the effect of the proportionality coefficient C over the entire drawing area 1 and reduce the number of specific positions for measuring the second deflection distortion value. However, the present invention is not limited to the above-mentioned setting of the specific position.

また、上記比較係数Cを乗ずる計算は、第二の偏向歪値
8a〜8dの測定が済んだところで描画に先立ち描画領域1
の全域について行い、その結果をメモリにいれておくよ
うにしても良い。
Further, the calculation for multiplying the comparison coefficient C is the second deflection distortion value.
Drawing area 1 before drawing after measurement of 8a to 8d
It is also possible to carry out for the entire area and store the result in the memory.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の構成によれば、電子ビーム
露光において、描画の偏向歪値の変化に追随した偏向歪
補正が出来て、偏向歪補正の精度を長期に渡り確保する
ことを可能にさせる効果がある。
As described above, according to the configuration of the present invention, in the electron beam exposure, the deflection distortion correction can be performed in accordance with the change in the deflection distortion value of drawing, and the accuracy of the deflection distortion correction can be ensured for a long period of time. Has the effect of

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施例を示す図(a)〜(d)
で、(a)は第一の偏向歪値、(b)は第二の偏向歪
値、(c)は補正値、(d)は補正後の描画パターン、 第2図は第二の偏向歪値の測定方法説明図、 第3図は偏向歪の説明図(a)(b)で、(a)は所望
パターン、(b)は描画パターン、 第4図は従来の補正方法の例を示す図(a)(b)で、
(a)は補正値、(b)は補正後の描画パターン、 第5図は第一の偏向歪値の測定方法説明図、 第6図は従来方法の問題点を示す図(a)(b)、 である。 図において、 1は描画領域、2は所望パターン、3は補正前の描画パ
ターン、3a、3bは補正後の描画パターン、4は描画の偏
向歪値、5は偏向歪値(第一の偏向歪値)、5a〜5dは7a
〜7dの第一の偏向歪値、6は従来の補正値、6aは本発明
による補正値、7a〜7dは特定位置、8a〜8dは第二の偏向
歪値、11はステージ、12はマーク(第一のマーク)、13
は被露光基板、14は第二のマーク、Bは電子ビーム、E
は二次電子、 である。
FIG. 1 is a view showing an embodiment of the method of the present invention (a) to (d).
Where (a) is the first deflection distortion value, (b) is the second deflection distortion value, (c) is the correction value, (d) is the corrected drawing pattern, and FIG. 2 is the second deflection distortion value. FIG. 3 is an explanatory diagram of a value measurement method, and FIGS. 3A and 3B are explanatory diagrams of deflection distortion, where FIG. 4A is a desired pattern, FIG. 4B is a drawing pattern, and FIG. 4 is an example of a conventional correction method. In Figures (a) and (b),
(A) is a correction value, (b) is a drawing pattern after correction, FIG. 5 is an explanatory view of a first deflection distortion value measuring method, and FIG. 6 is a view showing problems of the conventional method (a) (b) ), In the figure, 1 is a drawing area, 2 is a desired pattern, 3 is a drawing pattern before correction, 3a and 3b are drawing patterns after correction, 4 is a deflection distortion value of drawing, and 5 is a deflection distortion value (first deflection distortion). Value), 5a-5d is 7a
First deflection distortion value of 7d, 6 is a conventional correction value, 6a is a correction value according to the present invention, 7a to 7d are specific positions, 8a to 8d are second deflection distortion values, 11 is a stage, and 12 is a mark. (First mark), 13
Is the substrate to be exposed, 14 is the second mark, B is the electron beam, E
Is the secondary electron ,.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子ビーム露光装置における被露光基板を
載置するステージ上に重金属からなる第一のマークを設
け、電子ビーム照射による該第一のマークからの反射電
子を用いて該装置の描画領域全域における第一の偏向歪
値を求め、 更に該ステージ上に載置された被露光基板上の第二のマ
ークを用いて該描画領域における特定位置の第二の偏向
歪値を求め、 該特定位置における該第一の偏向歪値に対する該第二の
偏向歪値の比を比例係数にし、該描画領域全域における
該第一の偏向歪値に該比例係数を乗じた修正値を描画時
の偏向歪の補正値とすることを特徴とする電子ビーム露
光方法。
1. An electron beam exposure apparatus is provided with a first mark made of a heavy metal on a stage on which a substrate to be exposed is mounted, and drawing of the apparatus is performed by using reflected electrons from the first mark by electron beam irradiation. A first deflection distortion value in the entire area is calculated, and a second deflection distortion value at a specific position in the drawing area is calculated by using a second mark on the exposed substrate placed on the stage, A ratio of the second deflection distortion value to the first deflection distortion value at a specific position is set as a proportional coefficient, and a correction value obtained by multiplying the first deflection distortion value in the entire drawing area by the proportional coefficient is used. An electron beam exposure method, characterized in that a deflection distortion correction value is used.
【請求項2】上記特定位置は、方形をなす上記描画領域
の各辺中央部の4個所であり、上記比例係数は該4個所
における上記比の平均値であることを特徴とする特許請
求の範囲第1項記載の電子ビーム露光方法。
2. The specific positions are four points in the center of each side of the rectangular drawing area, and the proportional coefficient is an average value of the ratios at the four points. The electron beam exposure method according to claim 1.
JP60255956A 1985-11-15 1985-11-15 Electronic beam exposure method Expired - Lifetime JPH0713938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255956A JPH0713938B2 (en) 1985-11-15 1985-11-15 Electronic beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255956A JPH0713938B2 (en) 1985-11-15 1985-11-15 Electronic beam exposure method

Publications (2)

Publication Number Publication Date
JPS62115828A JPS62115828A (en) 1987-05-27
JPH0713938B2 true JPH0713938B2 (en) 1995-02-15

Family

ID=17285913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255956A Expired - Lifetime JPH0713938B2 (en) 1985-11-15 1985-11-15 Electronic beam exposure method

Country Status (1)

Country Link
JP (1) JPH0713938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828610B2 (en) * 2007-07-12 2015-12-09 株式会社ニューフレアテクノロジー Charged particle beam drawing method and charged particle beam drawing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114778A (en) * 1980-02-15 1981-09-09 Jeol Ltd Measuring method for distortion of deflection

Also Published As

Publication number Publication date
JPS62115828A (en) 1987-05-27

Similar Documents

Publication Publication Date Title
EP0024884B1 (en) Method of detecting the position of a substrate using an electron beam
EP0130819B1 (en) A method of positioning a beam to a specific portion of a semiconductor wafer
JPH0220921B2 (en)
EP0033138B1 (en) A method for correcting deflection distortions in an apparatus for charged particle lithography
JPH0713938B2 (en) Electronic beam exposure method
EP0130497B1 (en) Alignment technique for a scanning beam
JP2001085300A (en) Method for detecting mark and manufacture of electron beam device and semiconductor device
US6337486B2 (en) Electron beam drawing process and electron beam drawing apparatus
JPH0922859A (en) Compensation method for sample surface height in electron beam exposure process
JP2786662B2 (en) Charged beam drawing method
JPS6244686B2 (en)
JPS6320376B2 (en)
JPH01136332A (en) Electron beam lithography method
JPS58186009A (en) Measuring method of length
JPH0533496B2 (en)
JPH02262326A (en) Charged beam pattern drawing method
JPS59181616A (en) Electron beam exposure method
JPH07174546A (en) Method for measuring film thickness
JPH02262327A (en) Charged beam pattern drawing method
JPH0287517A (en) Position control method of electron beam lithography equipment
JPS63215910A (en) Section measurement
JPS5819042B2 (en) Position detection method
JPS58223325A (en) Method and device for exposure of electron beam
JPH0882515A (en) Electron beam length measuring method
JPH0147892B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term