JPS58186009A - Measuring method of length - Google Patents

Measuring method of length

Info

Publication number
JPS58186009A
JPS58186009A JP6825782A JP6825782A JPS58186009A JP S58186009 A JPS58186009 A JP S58186009A JP 6825782 A JP6825782 A JP 6825782A JP 6825782 A JP6825782 A JP 6825782A JP S58186009 A JPS58186009 A JP S58186009A
Authority
JP
Japan
Prior art keywords
pattern
scanning
moving
line width
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6825782A
Other languages
Japanese (ja)
Inventor
Kazumitsu Tanaka
一光 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP6825782A priority Critical patent/JPS58186009A/en
Publication of JPS58186009A publication Critical patent/JPS58186009A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure pattern line width or line interval with high accuracy, by slightly moving a material in the measuring direction, scanning a charge particle beam when said material is moving, and measuring a distance between desired two points and a moving extent of the material. CONSTITUTION:A command for moving a material stage 10 in the pattern line width measuring direction, and a command for digitally scanning a beam in the X direction on a material are sent to a motor controlling circuit 11 from a CPU6, and the same part on the material 4 is digitally scanned plural times when the stage 10 is moving. When each scanning beam crosses the edge of a pattern P0, a reflecting electronic signal is inputted to the CPU6, the CPU6 relates this signal to a digital scanning signal, A corresponding to a moving distance of the stage 10 and B corresponding to a distance between edges of the pattern P0 are detected, and simultaneously, L corresponding to the moving distance of the stage 10 is measured by a laser measuring instrument 12. As for the measured value L, its reliability is high as 2X10<-7>m, A is calculated in terms of the measured value L, B is calibrated, and line width of the pattern P0 is calculated with high accuracy by operation of B/AXL.

Description

【発明の詳細な説明】 本発明は荷電粒子ビームによる副長方法に関する。[Detailed description of the invention] The present invention relates to a sub-length method using a charged particle beam.

LSI素子や超t−sr素・子の製作過程において、材
料上に作成したパターン等の線幅や線間隔の測長等のパ
ターン検査が行なわれる。これらのパターンの線幅等は
り′ブミクロン単位にも達しているので光学的に測長す
ることは不可能である。
In the manufacturing process of LSI devices and ultra-T-SR devices, pattern inspections such as measuring the line width and line spacing of patterns created on materials are performed. Since the line widths of these patterns reach the micron level, it is impossible to measure them optically.

そこで、電子ビームやイオンビームを使って線幅等の副
長を行なうことが考えられる。即ち、何れかの荷電ビー
ムを材料上でデジタル的に走査し、該材料上から発せら
れる反射電子等を捕えることにより測定しようとする線
の二[ツジや凹凸の位置を検出し、この検出を前記デジ
タル的走査に関係付けて、線幅や線間隔を測定するので
ある。しかl)、一般に材料自身に反りや凹凸等の変位
があり、又材料ステージにも同様な変位や水平移動時の
がた等があるので、同−材料中や材料毎にワークデスタ
ンスの異なりが生じ、その結果、誤った測長が行なわれ
てしまう。第1図はその一例を示したもので、同一材料
M中のワークデスタンスの異なる箇所でのパターン線幅
を測長する例を示しており、ワークデスタンスDの箇所
に形成されたパターンPの線幅と、ワークデスタンスD
′の箇所に形成された前記パターンPと同じ線幅のパタ
ーンP′の線幅を、偏向器DFによりビームBを矢印Q
方向にデジタル走査し各々の線幅を副長すると、パター
ンPの線幅は該パターン1つのエツジからエツジ迄のビ
ームの移動(偏向)角度αに対応した値が得られ、パタ
ーンP′の線幅はα′(〈α)に対応した伯が得られる
。しかし、α、α′を知ることは出来ても、ワークデス
タンスD、D’ が既知でなければ線幅を算出すること
は出来ない。
Therefore, it is conceivable to use an electron beam or an ion beam to measure the line width and other sub-lengths. In other words, by digitally scanning a charged beam over a material and capturing reflected electrons emitted from the material, the positions of the lines and irregularities to be measured are detected. The line width and line spacing are measured in relation to the digital scanning. However, in general, the material itself has displacements such as warping and unevenness, and the material stage also has similar displacements and backlash during horizontal movement, so the work distance may vary within and between materials. occurs, resulting in incorrect length measurement. FIG. 1 shows an example of this, in which pattern line widths are measured at different workpiece distances in the same material M, and a pattern P formed at a workpiece distance D is shown. line width and work distance D
The line width of the pattern P', which has the same line width as the pattern P formed at the location ', is directed by the deflector DF to the beam B
By digitally scanning in the direction and sub-lengthening each line width, the line width of pattern P is obtained corresponding to the movement (deflection) angle α of the beam from edge to edge of one pattern, and the line width of pattern P' is obtained. obtains the number corresponding to α′ (〈α). However, even if α and α' can be known, the line width cannot be calculated unless the work distances D and D' are known.

又、ワークデスタンスD、 I’)’ は一般的に高精
度に決定することは困難である。従って、結果的に、同
じ線幅を測長じているのに(α−α′ )に対応した測
定誤差が生じてしまう。この誤差はサブミクロン単位を
問題にしている線幅等の測長においてはゆゆしき問題で
ある。
Further, it is generally difficult to determine the work distance D, I')' with high precision. As a result, a measurement error corresponding to (α-α') occurs even though the same line width is measured. This error is a serious problem when measuring line widths in submicron units.

本発明はこの様り点に鑑みてなされたもので、ワークデ
スタンスを知ることなく、パターンの線幅や線間隔を精
確に測長出来るようにした新規な測長方法に関している
The present invention has been made in view of these points, and relates to a novel length measuring method that allows the line width and line spacing of a pattern to be accurately measured without knowing the workpiece distance.

さて、月利を副長方向に成る所定量移動させ、その間ビ
ームを材料上でデジタル走査させ、該走査にJ:り月利
上から得られた信号を該走査に関係付(づて、材料上の
パターンの線幅〈測長値をbどする)と月利の移動量を
測定しく all+定価をaどする)、同時に該月利の
移動量をレーザ測長系でも測定しておき(測定値を)と
する)、前記パターン線幅測定値1)と材料移動吊測定
値aとの比にレーザ測長系で測長した月利移動mノを掛
けたものは、レーザ測長系の信頼性に依る精疫を持つパ
ターン線幅値どなる。そして、線幅が同じなら異なるワ
ークデスタンスの箇所にあるパターンのビ゛−ムのデジ
タル走査によるパターン線幅測定値b′と祠料移動聞測
定値a′との比は、前記比b/aと同じである。従って
、同じ線幅ならワークデスタンスが異なろうと同じパタ
ーン線幅値が測長される。しかも、この測長値はレーザ
測長系の信頼性に依る高精度のものである。本発明はこ
の様な原理に基づくもので、材料を副長方向に微量移り
」させ、その移動開始時と移動停止時の間に少なくとも
皿回荷電粒子ビームを材料上で走査させ、該走査により
々オ利上から検出された信号を基に該走査に関係付けて
材料上の所望の二点間距離及び材3− 判の移動mを測定し、前記材料の移動時にその移動量を
レーザ測長系で測定し、前記走査に関係付けて測定した
材料の移動量を前記レーザ測長系で■1[定1)た値で
換粋し、該換算値に基づいて前記測定したパターンの線
幅又は線間隔を校正した新規/r測長方法を提供するも
のである。
Now, the beam is moved by a predetermined amount in the direction of the sub-length, while the beam is digitally scanned over the material. Measure the line width of the pattern (set the length measurement value to b) and the amount of movement of the monthly interest rate (set all + list price to a), and at the same time measure the amount of movement of the monthly interest rate using a laser length measurement system (measure The ratio of the pattern line width measurement value 1) to the material movement height measurement value a multiplied by the monthly rate of movement m measured by the laser length measurement system is the value of the laser length measurement system. The pattern line width value depends on reliability. If the line widths are the same, the ratio of the pattern line width measurement value b' obtained by digital scanning of the beam of the pattern at different work distances to the abrasive movement measurement value a' is the ratio b/ Same as a. Therefore, if the line width is the same, the same pattern line width value will be measured regardless of the work distance. Furthermore, this length measurement value is highly accurate due to the reliability of the laser length measurement system. The present invention is based on such a principle, in which the material is moved by a small amount in the direction of the sub-length, and at least a plate-spinning charged particle beam is scanned over the material between the start of movement and the time of stop of movement. Based on the signal detected from above, the desired distance between two points on the material and the movement m of the material 3-size are measured in relation to the scanning, and when the material is moved, the amount of movement is measured using a laser length measuring system. Convert the amount of movement of the material measured in relation to the scanning with the value determined by the laser length measurement system, and calculate the line width or line of the measured pattern based on the converted value. A new/r length measurement method with calibrated spacing is provided.

第2図は本発明の一実施例を示したものである。FIG. 2 shows an embodiment of the present invention.

図中1は電子銃で、該電子銃から射出された電子ビーム
は電子レンズ2,3によりパターン(マーク等のパター
ンも含む)の作成された材料4上に集束される。5は偏
向器で、通常はX方向走査用のものとY方向走査用のも
の1対が設けられる。
In the figure, reference numeral 1 denotes an electron gun, and an electron beam emitted from the electron gun is focused by electron lenses 2 and 3 onto a material 4 on which a pattern (including patterns such as marks) is formed. Reference numeral 5 denotes a deflector, and usually a pair of deflectors are provided, one for scanning in the X direction and the other for scanning in the Y direction.

該偏向器は中央処理装置(CPUと称す)6の指令によ
り作動するデジタル走査信号発生回路7から送られて来
るデジタル走査信号により作動し、電子ビームを利わ1
4上で走査させる。8は反射電子検出器で、該走査によ
り材料4上から発生した反射電子を検出する。9は材料
ステージ10を移動させる為のモータで、前記CPU6
の指令により作動づ−る土−夕制御回路11によりコン
トロー−4= ルされる。12は該材料ステージ10の移動量を検出す
るレーザ測長器で、その検出値を前記CPU 6へ送る
The deflector is actuated by a digital scanning signal sent from a digital scanning signal generation circuit 7 which is actuated by a command from a central processing unit (called CPU) 6, and uses an electron beam.
Scan on 4. Reference numeral 8 denotes a backscattered electron detector, which detects backscattered electrons generated from the material 4 by the scanning. 9 is a motor for moving the material stage 10, and the CPU 6
It is controlled by the Saturday-to-evening control circuit 11 which is activated in response to a command. A laser length measuring device 12 detects the amount of movement of the material stage 10, and sends the detected value to the CPU 6.

ざ゛て、第2図の実施例を次の様に動作させる。First, the embodiment shown in FIG. 2 is operated as follows.

先ず、CPU6からモータ制御回路11へ、材料ステー
ジ10をパターン線幅測長方向(例えばX方向)に、例
えば10−移動させる指令を、デジタル走査信号発生回
路7に、ビームを材料4−トのX方向にデジタル走査さ
せる指令を送る。この際、第3図に示す様に材料ステー
ジ10が10戸移動する間に、材料4上の同一箇所が複
数回デジタル走査される。各走査によりビームがパター
ンPOのエツジを横切った時、反射電子検出器8を介し
て該エツジの情報を持った反射電子信号が前記CPU6
へ入る。該CPUはこの信号を前記デジタル走査信号に
関係ずけて、材料ステージ10の移動した距離に対応し
たちのAとパターンP。
First, the CPU 6 sends a command to the motor control circuit 11 to move the material stage 10 in the pattern line width measuring direction (for example, the Sends a command to digitally scan in the X direction. At this time, as shown in FIG. 3, while the material stage 10 moves ten doors, the same location on the material 4 is digitally scanned multiple times. When the beam crosses an edge of the pattern PO in each scan, a backscattered electron signal having information about the edge is sent to the CPU 6 via the backscattered electron detector 8.
Enter. The CPU correlates this signal with the digital scanning signal to generate patterns A and P corresponding to the distance moved by the material stage 10.

のエツジ間の距離に対応したちのBを検出する。Detect B corresponding to the distance between the edges.

第4図(a)、(b)及び(0)は、夫々材料ステージ
10の開始前又は移動し始めて最初のビーム走査により
CP U 6に検出された信号、第1回[1のビーム走
査により検出された信号、最後のビーム走査により検出
された信号で、パルス状の部分【;1パターンPOのエ
ツジ部の検出によるものである。尚、この様にして検出
された+1判ステージ10の移動した距離に対応したち
の△とパターンPaのエツジ間距饋に対応したものBは
、デジタル走査のステップの数として検出されたもので
ある。さて、この様にΔ、Bが検出される間、同時に、
レーザ測長器12にJ、って材料ステージ10の移動即
成1に対応したちの1−が測定される。レーザ測長器1
2により測定された値1−は信頼性が2X10−7mと
非常に昌い。そこで、CPU6は、前記デジタル走査に
関係付けて検出した材料ステージ10の移動部に対応し
たちの△を、この信頼性の高いレーザ測長器12により
測定した値りで換粋し、該換算値に基づいて前記デジタ
ル走査に関係イ1けて検出したパター・ンPOのエツジ
間距離、即ちパターンPoの線幅に対応したちのBを校
正J−る。即ち、B/△×l−の演算により精度の高い
パターンPOの線幅を算出する。
4(a), (b) and (0) respectively show the signals detected by the CPU 6 during the first beam scanning before the material stage 10 starts or after the material stage 10 starts moving, and the signals detected by the first beam scanning [1]. The detected signal is a signal detected by the last beam scan, and is due to the detection of the edge portion of the pulse-like portion [;1 pattern PO. Incidentally, △ corresponding to the distance traveled by the +1 size stage 10 detected in this way and B corresponding to the distance between edges of the pattern Pa are detected as the number of digital scanning steps. . Now, while Δ and B are detected in this way, at the same time,
The laser length measuring device 12 measures J, which corresponds to the movement of the material stage 10 (1-). Laser length measuring device 1
The value 1- measured by 2 has a very high reliability of 2×10-7 m. Therefore, the CPU 6 converts the △ corresponding to the moving part of the material stage 10 detected in relation to the digital scanning with the value measured by this highly reliable laser length measuring device 12, and converts it into Based on the value, the distance between the edges of the pattern PO detected in relation to the digital scanning, that is, the distance B corresponding to the line width of the pattern Po is calibrated. That is, a highly accurate line width of the pattern PO is calculated by calculating B/Δ×l−.

尚、CP U 6には拐利ステージ10の移動開始直前
又は移動し始めてから停止する迄の間、最初のビーム走
査による材料4からの信号と最後のビーム走査ににる材
114からの信号が得られれば良いので、中間のビーム
走査による材料4からの信号を自動的に無視するように
してもよい。
It should be noted that the CPU 6 receives the signal from the material 4 during the first beam scan and the signal from the material 114 during the last beam scan immediately before the removal stage 10 starts moving or from the time it starts moving until it stops. Since it is sufficient if the signal is obtained, the signal from the material 4 due to intermediate beam scanning may be automatically ignored.

本発明によればワークデスタンスを知ることなく、レー
ザ測長系の信頼性に依る高精度なパターン線幅又は線間
隔測長が可能どなる。
According to the present invention, it is possible to measure the pattern line width or line spacing with high precision without knowing the workpiece distance, depending on the reliability of the laser length measurement system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は材料上での電子ビーム走査による副長方法を示
1)、第2図は本発明の一実施例を表わし第3図及び第
4図は第2図に示した実施例の動作の説明を補足する為
に用いたものである。 4:月1′31.5:偏向器、6:中央処理装置(CP
LJ)、7:デジタル走査信号発生回路・、8:反則電
子検出器、10:材料ステージ、12:レーザ測長器。
Fig. 1 shows a sub-length method using electron beam scanning on a material1), Fig. 2 shows an embodiment of the present invention, and Figs. 3 and 4 show the operation of the embodiment shown in Fig. 2. This is used to supplement the explanation. 4: Month 1'31.5: Deflector, 6: Central processing unit (CP
LJ), 7: Digital scanning signal generation circuit, 8: Foul electron detector, 10: Material stage, 12: Laser length measuring device.

Claims (1)

【特許請求の範囲】[Claims] 材料を測長方向に微量移動させ、その移動開始時と移動
停止時の間に少なくとも皿回荷電粒子ビームを材料上で
走査させ、該走査により材料上から検出された信号を基
に該走査に関係付けて材料1−の所望の二点間距離及び
材料の移動量を測定し、前記材料の移動時にその移動量
をレーザ測長系で測定し、前記走査に関係付けて測定し
た材料の移動量を前記レーザ測長系で測定した値で換算
し、該換算値に基づいて前記測定したパターンの線幅又
は線間隔を校正した副長方法。
The material is moved by a small amount in the length measurement direction, and at least a plate-spinning charged particle beam is scanned on the material between the start of the movement and the time of the stop of the movement, and the signals detected from the material by the scanning are related to the scanning. Measure the desired distance between two points of material 1- and the amount of movement of the material, measure the amount of movement with a laser length measurement system when moving the material, and measure the amount of movement of the material measured in relation to the scanning. A sub-length method in which a value measured by the laser length measurement system is converted, and the line width or line spacing of the measured pattern is calibrated based on the converted value.
JP6825782A 1982-04-23 1982-04-23 Measuring method of length Pending JPS58186009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6825782A JPS58186009A (en) 1982-04-23 1982-04-23 Measuring method of length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6825782A JPS58186009A (en) 1982-04-23 1982-04-23 Measuring method of length

Publications (1)

Publication Number Publication Date
JPS58186009A true JPS58186009A (en) 1983-10-29

Family

ID=13368520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6825782A Pending JPS58186009A (en) 1982-04-23 1982-04-23 Measuring method of length

Country Status (1)

Country Link
JP (1) JPS58186009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177566A1 (en) * 1984-03-20 1986-04-16 Nixon Larry Sheldon Method for precision sem measurements.
JP2007171193A (en) * 2005-12-21 2007-07-05 Carl Zeiss Nts Gmbh Method and instrument for measuring distance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755183A (en) * 1980-09-19 1982-04-01 Tokyo Juki Industrial Co Ltd Controller for sewing machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755183A (en) * 1980-09-19 1982-04-01 Tokyo Juki Industrial Co Ltd Controller for sewing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177566A1 (en) * 1984-03-20 1986-04-16 Nixon Larry Sheldon Method for precision sem measurements.
JPS61502486A (en) * 1984-03-20 1986-10-30 マノクエスト・カナダ・インコーポレイテッド Method and apparatus for precision SEM measurements
JP2007171193A (en) * 2005-12-21 2007-07-05 Carl Zeiss Nts Gmbh Method and instrument for measuring distance

Similar Documents

Publication Publication Date Title
JPH0220921B2 (en)
JP2771594B2 (en) Method and apparatus for measuring displacement of object
US4788431A (en) Specimen distance measuring system
JP3036081B2 (en) Electron beam drawing apparatus and method, and sample surface height measuring apparatus thereof
JPS58186009A (en) Measuring method of length
JP3640012B2 (en) Method for measuring level of mask or wafer in exposure apparatus and measurement control apparatus
JP2946336B2 (en) Sample surface height detector
EP0201858A2 (en) Electron beam substrate height sensor
JP2952019B2 (en) Charged beam intensity profile measuring apparatus and measuring method using the same
JPH02126108A (en) Length measuring instrument by electron beam
JP2629768B2 (en) Electron beam exposure system
JPS6253049B2 (en)
JPH01184825A (en) Electron beam patterning device
JP3404609B2 (en) Charged beam drawing equipment
JPS6319002B2 (en)
JPH02215120A (en) Distortion correction in charged particle beam lithography
JP3238827B2 (en) Reference deflection angle setting method for charged particle beam writing system
JPH09106945A (en) Alignment method of particle beam, irradiation method and device using the method
JP2786662B2 (en) Charged beam drawing method
JPS6320376B2 (en)
JPH0125004B2 (en)
JP2658871B2 (en) Method and apparatus for detecting mark position in electron beam exposure
JP3016843B2 (en) Electron beam writing method and apparatus
JPH01293518A (en) Aligner having device for detecting variation of height of substrate
JPS61134605A (en) Measuring device of surface height of object