JPH0554605B2 - - Google Patents

Info

Publication number
JPH0554605B2
JPH0554605B2 JP60131760A JP13176085A JPH0554605B2 JP H0554605 B2 JPH0554605 B2 JP H0554605B2 JP 60131760 A JP60131760 A JP 60131760A JP 13176085 A JP13176085 A JP 13176085A JP H0554605 B2 JPH0554605 B2 JP H0554605B2
Authority
JP
Japan
Prior art keywords
edge
signal
pattern
sample
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60131760A
Other languages
Japanese (ja)
Other versions
JPS61290313A (en
Inventor
Toshiaki Ichinose
Takanori Ninomya
Yasuo Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60131760A priority Critical patent/JPS61290313A/en
Publication of JPS61290313A publication Critical patent/JPS61290313A/en
Publication of JPH0554605B2 publication Critical patent/JPH0554605B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、測定対象物を破壊または加工するこ
となく、走査電子顕微鏡(以下、本文ではSEM
と略す)の2次電子像から立体形状を計測する装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a scanning electron microscope (hereinafter referred to as SEM in the main text) without destroying or processing the object to be measured.
The present invention relates to a device for measuring a three-dimensional shape from a secondary electron image (abbreviated as ).

〔発明の背景〕[Background of the invention]

従来、半導体ウエハのパターン幅はSEM等を
使つて測定され製造プロセス状態の管理が行なわ
れていた。しかし、パターンの微細化に伴ない単
に平面的な寸法管理だけでなく立体的な形状管理
が要求されてきている。
Conventionally, the pattern width of semiconductor wafers has been measured using an SEM or the like to control the manufacturing process status. However, as patterns become finer, not only two-dimensional dimensional control but also three-dimensional shape control is required.

このような微細なパターンの立体形状の非破壊
計測法としては従来は、SEMの2次電子像を使
つて求める方法があつた。それは、「反射率地図
に基づき、二次元濃淡像より三次元形状を再構成
する2手法」(電子通信学会論文誌、82/7、
Vol.J 65−D,pp842〜pp849)と題する論文に
おいて論じられているもので、2次電子信号の明
るさから面の傾きを求める方法である。
Conventionally, a method for non-destructive measurement of the three-dimensional shape of such a fine pattern has been to use a secondary electron image of an SEM. It is ``Two methods for reconstructing a three-dimensional shape from a two-dimensional grayscale image based on a reflectance map'' (Transactions of the Institute of Electronics and Communication Engineers, 82/7,
Vol. J 65-D, pp842-pp849) is a method for determining the inclination of a surface from the brightness of a secondary electron signal.

しかし、この方法を半導体ウエハのパターンの
うち鋭いエツジを持つパターンに適用するには次
の2つの点で問題があつた。
However, there are two problems in applying this method to patterns on semiconductor wafers that have sharp edges.

第1には、滑らかな形状のパターンに対しては
比較的精度良く形状を求められるが、鋭いエツジ
のパターンでは精度が悪くなる。第2に、鋭いエ
ツジを持つパターンでは、SEM特有のエツジ効
果と呼ぶ現象、すなわちエツジ近傍での2次電子
像の明るさが面の傾き以外の要因にも左右される
現象があり、上記方法ではエツジ近傍での形状誤
差がきわめて大きくなつてしまうという点であ
る。
First, the shape of a pattern with a smooth shape can be determined with relatively high precision, but the precision becomes poor for a pattern with sharp edges. Second, in patterns with sharp edges, there is a phenomenon called the edge effect, which is unique to SEM, in which the brightness of the secondary electron image near the edge is affected by factors other than the surface inclination. However, the shape error near the edge becomes extremely large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来方式の問題点
を解決し、どのようなパターンに対しても高精度
に形状を計測する装置を提供することにある。
An object of the present invention is to solve the problems of the conventional method and provide an apparatus that can measure the shape of any pattern with high precision.

〔発明の概要〕[Summary of the invention]

本発明は、まず対象パターンへの電子ビームの
照射角度を変えて、エツジ効果の有無を2次電子
信号波形から検出し、この結果によりパターンの
分類を行なう。そして、エツジ効果のないものは
後述するように滑らかな形状のパターンであるの
で、面の傾きと明るさの関係を使つて立体形状を
求め、エツジ効果のあるものについては後述する
方法によりまずエツジの高さを求め、つぎにエツ
ジ効果を補正したSEM信号から面の傾きと明る
さの関係を使つてエツジ間の形状を求め、エツジ
高さと合わせて全体の形状を求めるものである。
In the present invention, first, the irradiation angle of the electron beam on the target pattern is changed, the presence or absence of an edge effect is detected from the secondary electron signal waveform, and the pattern is classified based on this result. Patterns with no edge effect have smooth shapes as described later, so the three-dimensional shape is determined using the relationship between the slope of the surface and the brightness.For patterns with edge effects, the pattern is first Then, the shape between the edges is determined using the relationship between the surface inclination and the brightness from the SEM signal with the edge effect corrected, and the overall shape is determined by combining this with the edge height.

ここでパターンの分類はエツジ効果の有無によ
り行なう。第2図a,bに示すような形状のパタ
ーンに真上からビームを照射した場合の2次電子
信号からはエツジ効果の有無を識別することがで
きない。そこで、第2図c,dに示すように試料
を傾ける、もしくはビーム照射角度を変えること
によつて第2図c,dに見られる波形のピークが
エツジ効果によるものかどうかを識別する。
Here, patterns are classified based on the presence or absence of edge effects. The presence or absence of an edge effect cannot be determined from the secondary electron signal obtained when a beam is irradiated onto a pattern shaped as shown in FIGS. 2a and 2b from directly above. Therefore, by tilting the sample or changing the beam irradiation angle as shown in FIGS. 2c and d, it can be determined whether the waveform peaks shown in FIGS. 2c and d are due to the edge effect.

第2図cに示すようにエツジ効果がある場合に
は、パターンを傾けても波形のピークが2つ存在
するが、エツジ効果がない場合にはdに示すよう
にピークは1つになる。そこでこれを検出するこ
とによつてエツジ効果の有無を識別する。
If there is an edge effect, as shown in FIG. 2c, there will be two waveform peaks even if the pattern is tilted, but if there is no edge effect, there will be one peak, as shown in d. By detecting this, the presence or absence of an edge effect can be determined.

つぎにエツジ効果補正について述べる。エツジ
効果はビームの加速電圧、試料の材質、形状など
に依存している。特にライン状パターンの場合に
は、形状のパラメータとしてエツジ段差の高さと
エツジ斜面の傾きに依存している。そこで、エツ
ジ効果のあるパターンについて、これらのパラメ
ータをSEM信号から計測する。エツジ段差の高
さとエツジ斜面の傾きは、試料と照射ビームのな
す角度を変えて得た2つの波形から、それぞれエ
ツジ位置を検出して対応をとり、第3図に示す高
さh、斜面の傾斜角αを次式により求める。
Next, edge effect correction will be described. The edge effect depends on the beam accelerating voltage, sample material, shape, etc. In particular, in the case of a line pattern, the shape parameters depend on the height of the edge step and the slope of the edge slope. Therefore, for patterns with edge effects, these parameters are measured from SEM signals. The height of the edge step and the slope of the edge slope are determined by detecting the edge position from two waveforms obtained by changing the angle between the sample and the irradiation beam, and taking correspondence. Obtain the inclination angle α using the following formula.

h=L/sinθ−l/tanθ …(1) α=tan1(h/l) …(2) 計測したエツジ段差の高さと斜面の傾きをもと
に、あらかじめ立体形状計測時と同じ加速電圧
で、同じ材質のものに関してエツジ段差の高さと
傾きを変えて測定しておいたエツジ効果成分のデ
ータの中で最適なものを選択する。これを使つて
入力信号のエツジ部分からエツジ効果成分を補正
し、明るさが面の傾きだけの関数になるようにす
る。
h=L/sinθ−l/tanθ …(1) α=tan 1 (h/l) …(2) Based on the measured height of the edge step and slope slope, set the same acceleration voltage as when measuring the three-dimensional shape in advance. Then, the optimum edge effect component data is selected from among the edge effect component data that has been measured with different heights and inclinations of edge steps for objects made of the same material. This is used to correct the edge effect component from the edge portion of the input signal, so that the brightness is a function only of the slope of the surface.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を以下に示す。 An example of the present invention is shown below.

第1図は本実施例の全体構成図である。1は、
SEMであり、試料台の傾きを変える機構2を有
することにより試料に対する電子ビームの照射角
度を変えることができる。他の方法として、試料
台は固定で、電気的に電子ビームの照射角度を変
えてもよい。3は偏向信号発生回路であり、4の
偏向信号設定部により設定された範囲を走査する
信号を発生させる。試料から発生した電子は検出
器5により検出され、6へ表示される。また検出
信号はAD変換器等で構成されたSEM信号入力部
7で入力する。AD変換のタイミングは3から入
力する。AD変換された信号は、試料台の傾き角
θ=0とθ=θ0に応じてそれぞれ8,9のメモリ
に格納される。
FIG. 1 is an overall configuration diagram of this embodiment. 1 is
This is a SEM, and by having a mechanism 2 that changes the inclination of the sample stage, the irradiation angle of the electron beam on the sample can be changed. As another method, the sample stage may be fixed and the irradiation angle of the electron beam may be electrically changed. A deflection signal generating circuit 3 generates a signal for scanning the range set by the deflection signal setting section 4. Electrons generated from the sample are detected by detector 5 and displayed on 6. Further, the detection signal is inputted to the SEM signal input section 7, which is composed of an AD converter or the like. The AD conversion timing is input from 3. The AD-converted signals are stored in memories 8 and 9, respectively, depending on the inclination angle θ=0 and θ=θ 0 of the sample stage.

試料台の傾き角の設定値は、エツジ効果の有無
がいちばん感度よく検出できる値にすればよい
が、その値が未知またはパターン種類によつて特
定できない場合は、エツジ効果の有無を検出でき
るようにいくつでも設定値を設ければよい。本実
施例では、傾き角θ=0とθ=θ0の2つの波形を
入力する。傾き軸とライン状パターンの方向の関
係は、傾き軸とパターンの方向が垂直でなければ
原理的にエツジ効果の有無の検出や三角測量の原
理によるエツジ高さの計測が可能である。本実施
例では、検出感度がいちばん高くなるように、傾
き軸とパターンの方向が平行になるようにする。
またビームの走査方向は、パターンと垂直になる
ようにする。
The tilt angle of the sample stage should be set to a value that allows the presence or absence of an edge effect to be detected with the highest sensitivity. However, if the value is unknown or cannot be determined depending on the pattern type, it is best to set the tilt angle to a value that allows the presence or absence of an edge effect to be detected with the highest sensitivity. Any number of setting values may be set for . In this embodiment, two waveforms with tilt angles θ=0 and θ=θ 0 are input. Regarding the relationship between the tilt axis and the direction of the line pattern, if the tilt axis and the pattern direction are not perpendicular, it is theoretically possible to detect the presence or absence of an edge effect and to measure the edge height based on the principle of triangulation. In this embodiment, the direction of the tilt axis and the pattern are made parallel to each other so that the detection sensitivity is maximized.
Further, the scanning direction of the beam is made perpendicular to the pattern.

8,9それぞれから読み出した信号波形は、ま
ず、エツジ検出部10,11で波形のピーク位置
および個数を検出する。エツジ検出部10,11
は、たとえば第4図に示すような構成となつてい
る。メモリ8(または9)から順次読み出された
データはシフトレジスタ401に送られる。40
2はエツジ検出オペレータの係数を格納するメモ
リである。401と402のそれぞれの要素は4
03で乗算され、404で加え合わせられる。4
05の出力は、2値化回路406で適当なしきい
値T1以上となる値を1とする2値化をし、40
7の極大位置検出回路により406の出力の1の
始まる位置X1と終了する位置X2より極大位置
(X1+X2)/2を出力する。また極大値の個数は
カウントしておき、メモリ8のすべてのデータの
処理終了後、この個数を出力する。一方、2値化
回路410で適当なしきい値T2以下となる値を
1とする2値化をし、411の極小位置検出回路
により410の出力の1の始まる位置X3と終了
する位置X4より極小位置(X3+X4)/2を出力
する。また極小値の個数はカウントしておき、メ
モリ8のすべてのデータの処理終了後この個数を
出力する。エツジ検出オペレータの例としてはた
とえば、m=5として A(1)=A(2)=A(4)=A(5)=−1 A(3)=4 などとする。ここでは、エツジ検出部をハードウ
エアで構成したがソフトウエアで構成してもよ
い。
For the signal waveforms read from each of the signal waveforms 8 and 9, edge detection units 10 and 11 first detect the peak position and number of the waveforms. Edge detection parts 10, 11
has a configuration as shown in FIG. 4, for example. Data sequentially read from memory 8 (or 9) is sent to shift register 401. 40
2 is a memory that stores coefficients of edge detection operators. Each element of 401 and 402 is 4
Multiplied by 03 and added by 404. 4
The output of 05 is binarized by a binarization circuit 406, with a value equal to or greater than an appropriate threshold value T1 being set to 1 , and the output of 40
The maximum position detection circuit 7 outputs the maximum position (X 1 +X 2 )/2 from the starting position X 1 and ending position X 2 of the output 406 . Further, the number of local maximum values is counted, and after processing of all data in the memory 8 is completed, this number is output. On the other hand, a binarization circuit 410 binarizes the value that is less than or equal to an appropriate threshold T 2 as 1, and a minimum position detection circuit 411 determines the starting position X 3 and ending position X 3 of the output 1 of the output 410. Outputs the minimum position (X 3 + X 4 )/2 from 4 . Further, the number of minimum values is counted, and this number is output after processing all the data in the memory 8. As an example of the edge detection operator, for example, m=5, A(1)=A(2)=A(4)=A(5)=-1, A(3)=4, etc. Although the edge detection section is constructed of hardware here, it may also be constructed of software.

ピークの個数はエツジ効果判定部12で比較さ
れる。ここでは、極大値の個数をピーク値の個数
とする。
The number of peaks is compared by the edge effect determination section 12. Here, the number of local maximum values is defined as the number of peak values.

もし、ピークの個数が一致したならば、エツジ
効果ありと判定され、計算機等で構成される高さ
演算部13でエツジ段差の高さおよびエツジの傾
斜角が計算される。この高さと傾斜角の値をもと
にエツジ効果データ15の中から最適なものを選
択し、計算機等で構成されるエツジ効果補正部1
4にて、エツジ部に相当する波形位置近傍からエ
ツジ効果を補正する。補正方法の例としては、た
とえば第5図に示すように、エツジ位置をもとに
エツジ効果成分501を加算または減算して明る
さが面の傾きの関数になるようにする。
If the numbers of peaks match, it is determined that there is an edge effect, and the height of the edge step and the inclination angle of the edge are calculated by the height calculating section 13, which is composed of a computer or the like. An edge effect correction unit 1 comprising a computer etc. selects the optimum one from the edge effect data 15 based on the values of the height and inclination angle.
In step 4, the edge effect is corrected from the vicinity of the waveform position corresponding to the edge portion. For example, as shown in FIG. 5, an example of a correction method is to add or subtract an edge effect component 501 based on the edge position so that the brightness becomes a function of the inclination of the surface.

補正された信号から、明るさと面の傾きの関係
を与える傾きデータ17を使つて、計算機等で構
成される形状演算部16で各点の面の傾きを求め
る。
From the corrected signal, a shape calculation section 16 comprising a computer or the like calculates the slope of the surface at each point using slope data 17 that provides a relationship between brightness and surface slope.

一方、エツジ効果判定部12でエツジ効果あり
と判定されたならば、パターンは鋭いエツジを持
つているので、この高さを高さ演算部13で求め
る。エツジ高さは、エツジ位置をもとに(1)式を使
つて求める。実際の寸法L及びlは画素数にサン
プルクロツクの長さに相当する数値を乗ずること
により得ることができる。
On the other hand, if the edge effect determination unit 12 determines that there is an edge effect, the pattern has sharp edges, and the height of the pattern is determined by the height calculation unit 13. The edge height is calculated using equation (1) based on the edge position. The actual dimensions L and l can be obtained by multiplying the number of pixels by a number corresponding to the length of the sample clock.

そして、全体形状演算部18でパターンの断面
形状を求める。エツジ効果ありと判定され、パタ
ーンが鋭いエツジを持つ場合は、エツジ高さを初
期値として各点の傾きを積分し、形状を求める。
エツジ効果を持たない場合は、初期値の高さを0
として各点の傾きを積分して全体形状を求める。
Then, the cross-sectional shape of the pattern is determined by the overall shape calculating section 18. If it is determined that there is an edge effect and the pattern has sharp edges, the slope of each point is integrated using the edge height as an initial value to determine the shape.
If you do not have an edge effect, set the initial height to 0.
The overall shape is determined by integrating the slope of each point.

本実施例によれば、エツジ効果を判別するだけ
でなく高さやエツジ斜面の傾斜角の異なるパター
ンに対しても自動的にこれを識別し最適なエツジ
効果補正用データを選択できるため、高精度な形
状検出が可能である。
According to this embodiment, it is possible to not only discriminate edge effects, but also automatically identify patterns with different heights and slope angles of edge slopes, and select the optimal data for edge effect correction, resulting in high accuracy. shape detection is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、自動的にエツジ効果の有無を
判定し補正することにより高精度な立体形状を求
めることができる。
According to the present invention, a highly accurate three-dimensional shape can be obtained by automatically determining the presence or absence of an edge effect and correcting it.

具体的には、パターン高さ1.5μmに対し、エツ
ジ効果補正なしの形状誤差0.5μmから補正した場
合には形状誤差0.15μmと改善された。
Specifically, for a pattern height of 1.5 μm, when the shape error was corrected from 0.5 μm without edge effect correction, the shape error was improved to 0.15 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2図はパター
ン断面と信号波形図、第3図は高さ計測の原理
図、第4図はエツジ検出部の構成図、第5図はエ
ツジ効果補正方法を示す原理図である。 1……走査電子顕微鏡、2……試料台、3……
偏向信号発生部、4……偏向信号設定部、5……
検出器、6……CRT、7……信号入力部、8,
9……メモリ、10,11……エツジ検出部、1
2……エツジ効果判定部、13……高さ演算部、
14……エツジ効果補正部、15……エツジ効果
補正データ、16……形状演算部、17……傾き
データ、18……全体形状演算部、19……出力
装置、401……シフトレジスタ、402……エ
ツジ検出オペレータ用メモリ、403……乗算回
路、404……加算回路、405,409……し
きい値、406,410……2値化回路、40
7,411……エツジ位置検出回路、501……
エツジ効果成分。
Figure 1 is an overall configuration diagram of the present invention, Figure 2 is a pattern cross section and signal waveform diagram, Figure 3 is a principle diagram of height measurement, Figure 4 is a diagram of the configuration of the edge detection section, and Figure 5 is the edge effect. FIG. 3 is a principle diagram showing a correction method. 1... Scanning electron microscope, 2... Sample stage, 3...
Deflection signal generation section, 4... Deflection signal setting section, 5...
Detector, 6...CRT, 7...Signal input section, 8,
9...Memory, 10, 11...Edge detection section, 1
2...Edge effect determination section, 13...Height calculation section,
14...Edge effect correction unit, 15...Edge effect correction data, 16...Shape calculation unit, 17...Tilt data, 18...Overall shape calculation unit, 19...Output device, 401...Shift register, 402 ...Memory for edge detection operator, 403...Multiplication circuit, 404...Addition circuit, 405, 409...Threshold value, 406, 410...Binarization circuit, 40
7,411...Edge position detection circuit, 501...
Edge effect ingredient.

Claims (1)

【特許請求の範囲】 1 試料に電子線を照射する手段と、試料と電子
線のなす角度を変える手段と、電子ビームの走査
を制御する偏向信号発生手段と、試料から発生す
る電子を検出する手段と、前記検出信号をデジタ
ル値に変換する手段と、変換した信号を記憶する
手段と、信号波形から少くともパターンエツジ位
置、高さ、傾斜角を含むパターン形状の特徴量を
抽出する手段と、前記特徴量をもとに最適なデー
タを選んで信号強度を補正する手段と、信号強度
値から面の傾きを求め前記特徴量と合わせて全体
の形状を求める手段とからなる立体形状測定装
置。 2 特許請求の範囲第1項記載の立体形状測定装
置において、 試料と電子線のなす角度を変えて得た信号波形
のピーク値の個数をパターン形状の特徴量とする
ことを特徴とする立体形状測定装置。 3 特許請求の範囲第1項記載の立体形状測定装
置において、 入力信号強度を面の傾きと明るさの関係に合う
ように補正することを特徴とする立体形状測定装
置。
[Claims] 1. A means for irradiating a sample with an electron beam, a means for changing the angle between the sample and the electron beam, a deflection signal generating means for controlling scanning of the electron beam, and a means for detecting electrons generated from the sample. means for converting the detection signal into a digital value; means for storing the converted signal; and means for extracting feature quantities of the pattern shape including at least pattern edge positions, heights, and inclination angles from the signal waveform. , a three-dimensional shape measuring device comprising means for correcting the signal intensity by selecting optimal data based on the feature amount, and means for determining the inclination of the surface from the signal intensity value and calculating the overall shape by combining it with the feature amount. . 2. The three-dimensional shape measuring device according to claim 1, characterized in that the number of peak values of the signal waveform obtained by changing the angle formed between the sample and the electron beam is used as the feature quantity of the pattern shape. measuring device. 3. The three-dimensional shape measuring device according to claim 1, wherein the three-dimensional shape measuring device is characterized in that the input signal intensity is corrected to match the relationship between the inclination of the surface and the brightness.
JP60131760A 1985-06-19 1985-06-19 Solid shape measuring apparatus Granted JPS61290313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131760A JPS61290313A (en) 1985-06-19 1985-06-19 Solid shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131760A JPS61290313A (en) 1985-06-19 1985-06-19 Solid shape measuring apparatus

Publications (2)

Publication Number Publication Date
JPS61290313A JPS61290313A (en) 1986-12-20
JPH0554605B2 true JPH0554605B2 (en) 1993-08-13

Family

ID=15065532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131760A Granted JPS61290313A (en) 1985-06-19 1985-06-19 Solid shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61290313A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621785B2 (en) * 1985-06-28 1994-03-23 日本電気株式会社 Shape measurement method
JP2002131252A (en) * 2000-10-13 2002-05-09 Applied Materials Inc Method and apparatus for inspecting substrate
WO2010073360A1 (en) * 2008-12-26 2010-07-01 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method

Also Published As

Publication number Publication date
JPS61290313A (en) 1986-12-20

Similar Documents

Publication Publication Date Title
US4766311A (en) Method and apparatus for precision SEM measurements
JPH0646550B2 (en) Electronic beam fixed position irradiation control method and electronic beam fixed position irradiation control device
JPS633450B2 (en)
US4639604A (en) Method and apparatus for detecting an edge position of a pattern and eliminating overlapping pattern signals
US4670652A (en) Charged particle beam microprobe apparatus
KR101808470B1 (en) Pattern measurement device and computer program
JP2007227193A (en) Charged particle beam device
JPS61290312A (en) Sectional shape measuring apparatus
JP4215220B2 (en) Surface inspection method and surface inspection apparatus
JPH0554605B2 (en)
JP4911113B2 (en) Height measuring apparatus and height measuring method
JPH0416707A (en) Pattern recognizing method by electron beam
JP3351671B2 (en) Measurement method of charged particle beam
JPS6347334B2 (en)
JP2787928B2 (en) Image signal processing method
JP2571110B2 (en) Pattern dimension measuring method and apparatus using charged beam
JPH0372923B2 (en)
JP2644257B2 (en) Beam detection target
JP2986995B2 (en) Secondary electron image deformation correction device
JP2507566B2 (en) Electronic beam measuring method and apparatus
JPH04269614A (en) Pattern-position detecting method and executing apparatus thereof
JPH0261544A (en) Reflected electron diffraction measuring apparatus
JP2758979B2 (en) Mark position detection method
JPH04274711A (en) Measuring method of size of pattern using charged beam
JP3069401B2 (en) Inspection method of roundness by image processing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term