JPS58183244A - Heat-resistant composite material - Google Patents

Heat-resistant composite material

Info

Publication number
JPS58183244A
JPS58183244A JP6630882A JP6630882A JPS58183244A JP S58183244 A JPS58183244 A JP S58183244A JP 6630882 A JP6630882 A JP 6630882A JP 6630882 A JP6630882 A JP 6630882A JP S58183244 A JPS58183244 A JP S58183244A
Authority
JP
Japan
Prior art keywords
heat
base material
layer
resistant
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6630882A
Other languages
Japanese (ja)
Other versions
JPS6155863B2 (en
Inventor
英一 馬場
博光 竹田
隆夫 鈴木
霜鳥 一三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6630882A priority Critical patent/JPS58183244A/en
Publication of JPS58183244A publication Critical patent/JPS58183244A/en
Publication of JPS6155863B2 publication Critical patent/JPS6155863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は舖熱機関の耐熱部品に用いられて耐熱複合材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant composite material used for heat-resistant parts of a heat engine.

耐熱部品にはNi基またはC・基合金などの耐熱合金が
用いられている。まえ、史に高温化を図るためにセラき
、り材料から耐熱部品を形成すると七が考えられている
が、脆性の点で実用化は困難であった。
Heat-resistant alloys such as Ni-based or C-based alloys are used for heat-resistant parts. Previously, it was thought that heat-resistant parts could be made from ceramic materials in order to increase the temperature, but it was difficult to put them into practical use due to their brittleness.

このようなことから、耐熱合金基材にセラミック層を被
蝋した複合耐熱材料が知られている。
For this reason, composite heat-resistant materials are known in which a heat-resistant alloy base material is coated with a ceramic layer.

しかしながら、かかる複合耐熱材料は熱すイクルによっ
てセラミ、り層が剥離し易いために、n期間に亘って使
用し得ないという問題かめった。
However, such a composite heat-resistant material has a problem in that it cannot be used for a long period of time because the ceramic layer tends to peel off when heated.

そこで、Nl基、Co基又はF・基合金を主成分とする
基材に対し、皺基材とセラミック層との密着力或いは基
材とセラミック層との熱膨張差を緩和する目的で、基材
とセラi、り層の闇に金si!!を金層(例えばN1−
0r 、 N1−AA e CoCrAtY。
Therefore, in order to reduce the adhesion between the wrinkled base material and the ceramic layer or the difference in thermal expansion between the base material and the ceramic layer, it is necessary to Material and cellar i, gold si in the darkness of the layer! ! the gold layer (e.g. N1-
0r, N1-AAeCoCrAtY.

NI CrALY 、 F@CrAjY等)を設けた複
合耐熱材料が考えられている。しかしながら、前dピ金
J!11&結合層は合金粉の溶射法により形成されてい
るため耐久性の面において不十分であった。
Composite heat-resistant materials are being considered that include NI CrALY, F@CrAjY, etc.). However, Maeda Pikin J! No. 11 & bonding layer was formed by thermal spraying of alloy powder, so it was insufficient in terms of durability.

ところで、セラミ、り層、をコーティングした場合の轡
曾の劣化因子としては次の点が考えられている。
By the way, the following points are considered to be the factors that cause deterioration of the sill when coated with a ceramic layer.

(L)&温安定性(セラミック層、金属結合層などの耐
酸化性高温腐食などの耐食性)。
(L) & Temperature stability (oxidation resistance of ceramic layers, metal bonding layers, etc., corrosion resistance such as high temperature corrosion).

■ 基材、金属結合層、セラミック層の熱膨張差による
剥離。
■ Peeling due to differences in thermal expansion between the base material, metal bonding layer, and ceramic layer.

■ 金属結合層、セラミック層中の温厩勾配による破壊
■ Failure due to thermal gradient in metal bonding layer or ceramic layer.

■ セラミック層の組織不安定性(例えに気孔)。■ Structure instability of the ceramic layer (for example, pores).

上述した問題の改゛善策するためにセラi、り材として
、熱伝導率が小さく高温まで安定であplかつ熱膨張率
が合金基材、金属結合材に近いZ r Oz系のものを
使用したヤ、或いは、Zr01と金属とからなる、いわ
ゆるサーメット系分歓体を基材とセラず、り層の間に介
在させて熱膨張係数差の緩和を図9、もって耐剥離性を
付与することが試みられているが、高温腐食性、熱衝撃
性に対して充分満足するものではなかった。
In order to improve the above-mentioned problems, we used ZrOz-based materials, which have low thermal conductivity, are stable up to high temperatures, and have thermal expansion coefficients close to those of alloy base materials and metal bonding materials. Alternatively, a so-called cermet-based dispersion element made of Zr01 and metal is interposed between the base material and the ceramic layer to alleviate the difference in coefficient of thermal expansion (Figure 9), thereby imparting peeling resistance. Although attempts have been made to do so, the high temperature corrosion resistance and thermal shock resistance have not been fully satisfactory.

本発明は上記事情に鑑みなされたもので、^温安定性に
擾れ、セラミ、り層の熱膨張差による別層、セラミ、り
層中の温度勾配による破壊等のない耐熱複合材料を提供
しようとするものである。
The present invention was made in view of the above circumstances, and provides a heat-resistant composite material that does not deteriorate in temperature stability and is free from destruction due to separate layers due to differences in thermal expansion between the ceramic and laminate layers, and temperature gradients in the ceramic and laminate layers. This is what I am trying to do.

4     すなわち、本発明は耐熱性合金基材と、こ
の基材表面に被債され九番孔質のセラi、り層と、前記
基材に一体化され、他端が該基材の気孔中に延びた樹枝
状の強化層とを具備したことを特徴とするものである。
4 In other words, the present invention includes a heat-resistant alloy base material, a highly porous ceramic layer bonded to the surface of the base material, and a heat-resistant alloy base material that is integrated into the base material, with the other end extending into the pores of the base material. It is characterized by comprising a dendritic reinforcing layer extending from the top to the bottom.

本発明における耐熱合金としては例えは歯基合金、co
基合金等を挙けることができる。
Examples of heat-resistant alloys in the present invention include tooth-based alloys, co
Examples include base alloys.

本発明に用いるセラミ、りとしては、例えばZr02−
MgOj Zr02−CaO、Zr02−Y2O2vt
挙けることができる。セラミ、り層の気孔率は通常10
52011M!度である。
As the ceramic used in the present invention, for example, Zr02-
MgOj Zr02-CaO, Zr02-Y2O2vt
can be mentioned. The porosity of the ceramic layer is usually 10.
52011M! degree.

本発明における樹枝状の強化層の材質としては、例えば
基材と他の金属と゛の合金、或いは晶相とセラミ、り層
を界面に設けられた金鵜結合層と他の金属との合金等を
挙げることができる。
Examples of the material for the dendritic reinforcing layer in the present invention include an alloy of a base material and another metal, or an alloy of a crystalline phase and a ceramic layer, and an alloy of another metal and a gold bonding layer provided at the interface. can be mentioned.

なお、本発明に係る耐熱複合材料は例えば次のような方
法により造られる。まず、Ni、4もしくはCO基合金
からなる基材をツラスチングや脱脂などの前処理を施す
。つづいて、必要に応して Ni−Cr   、  N
1−AL   、   C@CrAtY  、   N
1CrAtY  。
Note that the heat-resistant composite material according to the present invention is manufactured, for example, by the following method. First, a base material made of Ni, 4, or CO-based alloy is subjected to pretreatment such as polishing and degreasing. Next, Ni-Cr, N as necessary.
1-AL, C@CrAtY, N
1CrAtY.

F@CrAIY等の金属合金層を被着し、溶射法にょp
セラミ、り層を被着する。次いで、この基駒をクロム粉
末、アルミニウム粉末、シリコン粉末、鉄粉の少なくと
もl&、セラミック粉床及びハロゲノを含む粉末処理剤
からなる混合粉末の共存下で加熱処理を施し、基材との
拡散を行なわせることによシ該基材と一体化され他端が
該基材の界面付近のセラi、り層O気孔中に姑びた樹枝
状の強化層を形成する。
Deposit a metal alloy layer such as F@CrAIY and use thermal spraying method.
Apply a layer of ceramic acid. Next, this base piece is heat-treated in the coexistence of a mixed powder consisting of at least one of chromium powder, aluminum powder, silicon powder, iron powder, a ceramic powder bed, and a powder treatment agent containing halide to prevent diffusion with the base material. By doing so, a dendritic reinforcing layer is formed which is integrated with the base material and whose other end is in the pores of the cell layer near the interface of the base material.

しかして、本発明の耐熱覆合材料は基材とセラき、り層
の界面付近に該基材に一体化されかつセラミック層の気
孔中に延びた樹枝状の強化層が設けられているため該樹
枝状の強化層によるクサビ作用によって熟サイクル時の
耐熱衝撃性を著しく向上でき、ひいて抹竜ラミック層の
破壊や剥jIiIを防止できる。また、高温の石油燃焼
ガスによって生じる基材の高温腐食に対しても著しく、
優れた耐食性を発揮できる。即ち、前記有枝状の強化層
の存在によって、腐食がス等がセラミック層の気孔を介
して浸透拡散してセラミ、り層の魔化或いは基材の腐食
を防止できる・ 次に、本発明の実施例ta明する。
Therefore, the heat-resistant cladding material of the present invention is provided with a dendritic reinforcing layer that is integrated with the base material and extends into the pores of the ceramic layer near the interface between the base material and the ceramic layer. The wedge action of the dendritic reinforcing layer can significantly improve the thermal shock resistance during ripening cycles, thereby preventing destruction and peeling of the ramic layer. It is also extremely effective against high-temperature corrosion of base materials caused by high-temperature oil combustion gas.
Demonstrates excellent corrosion resistance. That is, due to the presence of the branched reinforcing layer, corrosive substances and the like can permeate and diffuse through the pores of the ceramic layer, thereby preventing the ceramic layer from deteriorating or corroding the base material. An example of this will be explained.

実施例1 まず、N1−15.7cr−8,23Co−3,35A
t−3,29Ti−2,5W−1,67Mo −0,7
NbのN1基合金基材を表面脱脂し、j!にアルミナグ
リッドのサンドブラスト処11を施した。つついて、N
1基合金基材の表面にZrO2+ a Y、O,t 1
1射距離100〜150■、電R値800A、電圧値3
4Vの条件で溶射して厚さ約g 00 Amのセラミッ
ク層を形成した0次いで、アルミニウム粉末201゜鉄
粉lO%、アルミナを含むセラミック粉末67優、粉末
処理剤としての塩化アンモニウム3囁からなる混合粉末
中[1込み、水素雰囲気中で1100℃に加熱し、0.
5時曲保持した。
Example 1 First, N1-15.7cr-8,23Co-3,35A
t-3,29Ti-2,5W-1,67Mo-0,7
The surface of the Nb N1-based alloy base material is degreased, and j! Alumina grid sandblasting treatment 11 was applied to the surface. Poke, N
ZrO2+ a Y, O, t 1 on the surface of the 1-based alloy base material
Single shot distance 100-150■, electric R value 800A, voltage value 3
A ceramic layer having a thickness of approximately g 00 Am was formed by thermal spraying under 4 V conditions.Then, aluminum powder was 201°, iron powder was 10%, ceramic powder containing alumina was 67%, and ammonium chloride was 3% as a powder treatment agent. In the mixed powder [1 included, heated to 1100°C in a hydrogen atmosphere, 0.
I kept the 5 o'clock tune.

その結果、JI1図に示すように基材1の表面上にセラ
ミック層2、基材とセラミック層の間に樹枝状の強化層
3を有する耐熱複合材料を得た、実施例2 実施例1と同組成のN1基合金基材の表面全脱脂し、ア
ルミナグリッドのサンドブラスト処理を施した後、基材
表向に金属結合材としてのNICrAIY (N1−1
7 Cr −6At−0,6Y )の合金粉末を溶射距
1m19010m、電流f[700A、 11E圧i[
32Vの条件で溶射して約200μmの金属結合層を形
成した。次い°で、アルミニウム粉末20チ、鉄粉末l
Oチ、アルきす粉末67s1塩化アンモニウム3%から
なる混合粉末中に堀込み水素雰囲気中で、110″CK
加熱し0.5時間保持して耐熱複合材料を得た・ しかして、上記実施例1.2の耐熱複合材料、及び#I
2図(a)に示す如(Nl基合金基材1表面に直接セラ
ミック層2を被着した耐熱複合材料(比較例1)、第2
図(b)に示す如< Ni基合金基材1の表面に金属結
合層4を介してセラi、り層2t−被着した耐熱複合材
料(比較例2)における熱衝撃性、ホットコローゾ、ン
性(高温腐食性)を調べた。その結果を下記表に示した
As a result, a heat-resistant composite material having a ceramic layer 2 on the surface of the base material 1 and a dendritic reinforcing layer 3 between the base material and the ceramic layer was obtained as shown in Figure JI1. After completely degreasing the surface of the N1-based alloy base material with the same composition and performing sandblasting treatment with alumina grid, NICrAIY (N1-1
7Cr-6At-0,6Y) alloy powder was sprayed at a spraying distance of 1m19010m, current f[700A, 11E pressure i[
A metal bonding layer of about 200 μm was formed by thermal spraying at 32V. Then 20 g of aluminum powder, 1 l of iron powder
Dig into a mixed powder consisting of 67s of alkaline powder and 3% of ammonium chloride and heat to 110"CK in a hydrogen atmosphere.
A heat-resistant composite material was obtained by heating and holding for 0.5 hours. Therefore, the heat-resistant composite material of Example 1.2 and #I
As shown in Figure 2 (a) (heat-resistant composite material in which ceramic layer 2 is directly adhered to the surface of Nl-based alloy base material 1 (comparative example 1),
As shown in Figure (b), the thermal shock resistance, hot corozo, The properties (high temperature corrosivity) were investigated. The results are shown in the table below.

!     なお、熱衝撃性は耐熱複合材料を1100
℃l    の電気炉に5分間保持した後水中に投入す
る急熱急冷を繰り返し行なった時の特性である。ホ、ト
コローノ、ン性は表TkiK20〜/dの80 Na2
S04−20 V2O5(2)合脹灰t−m布して90
0℃又は1100℃で3#i#間大気中で加熱し1損傷
度合t4’t1足し建・       rA千未宕。
! The thermal shock resistance of the heat-resistant composite material is 1100.
This is the characteristic when the material was kept in an electric furnace at ℃1 for 5 minutes and then repeatedly heated and cooled in water. E, Tokorono, N property is 80 Na2 of table TkiK20~/d
S04-20 V2O5 (2) Combined ash t-m cloth 90
Heating in the atmosphere at 0°C or 1100°C for 3 days will result in 1 degree of damage t4't1.

以上詳述した如く、本発明によれば高温安定性に優れ、
かつセラミ、り層の熱膨張差による剥離やセラミック層
中の温贋勾配による破壊等を改善した各種熱機関の耐熱
部品に好適な耐熱複合材料全提供できるものである。
As detailed above, the present invention has excellent high temperature stability,
Moreover, it is possible to provide a heat-resistant composite material suitable for heat-resistant parts of various heat engines, which has improved peeling due to differences in thermal expansion between ceramic layers and destruction due to thermal gradients in the ceramic layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す耐熱複合材料の断面図
、第2図(a) 、 (b)Fi夫々従来の耐熱複合材
料の断面図である。 1・・・Nl基合金基材、2・・・セラミック層、3・
・・樹枝状の強化層。
FIG. 1 is a cross-sectional view of a heat-resistant composite material showing an embodiment of the present invention, and FIGS. 2(a) and (b) are cross-sectional views of conventional heat-resistant composite materials. DESCRIPTION OF SYMBOLS 1... Nl-based alloy base material, 2... Ceramic layer, 3...
...dendritic reinforcement layer.

Claims (1)

【特許請求の範囲】[Claims] 耐熱性合金基材と、この基材表面に被覆した多孔質のセ
ラミック層と、前記基材に一体にされ、他端が該基材の
界面付近のセラミ、り層の気孔中に延びた樹枝状の強化
層とを具備したことを特徴とする耐熱複合#科。
A heat-resistant alloy base material, a porous ceramic layer coated on the surface of this base material, and a tree branch that is integrated with the base material and has the other end extending into the pores of the ceramic layer near the interface of the base material. A heat-resistant composite material characterized by comprising a reinforcing layer of the shape.
JP6630882A 1982-04-22 1982-04-22 Heat-resistant composite material Granted JPS58183244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6630882A JPS58183244A (en) 1982-04-22 1982-04-22 Heat-resistant composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6630882A JPS58183244A (en) 1982-04-22 1982-04-22 Heat-resistant composite material

Publications (2)

Publication Number Publication Date
JPS58183244A true JPS58183244A (en) 1983-10-26
JPS6155863B2 JPS6155863B2 (en) 1986-11-29

Family

ID=13312050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6630882A Granted JPS58183244A (en) 1982-04-22 1982-04-22 Heat-resistant composite material

Country Status (1)

Country Link
JP (1) JPS58183244A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982713A (en) * 1972-12-13 1974-08-09
JPS53102310A (en) * 1977-02-18 1978-09-06 Tokyo Shibaura Electric Co Heat conducting base plates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982713A (en) * 1972-12-13 1974-08-09
JPS53102310A (en) * 1977-02-18 1978-09-06 Tokyo Shibaura Electric Co Heat conducting base plates

Also Published As

Publication number Publication date
JPS6155863B2 (en) 1986-11-29

Similar Documents

Publication Publication Date Title
US4405660A (en) Method for producing metallic articles having durable ceramic thermal barrier coatings
US4321310A (en) Columnar grain ceramic thermal barrier coatings on polished substrates
JP4831381B2 (en) Ceramic superalloy articles
US4851300A (en) Precoat for improving platinum thin film adhesion
JPH0715141B2 (en) Heat resistant parts
JP2001295076A (en) Thermal insulating film and method for forming the same
JP3881489B2 (en) Superalloy turbine part repair method and superalloy turbine part
JPS60190651A (en) Engine piston and manufacturing method thereof
US6709711B1 (en) Method for producing an adhesive layer for a heat insulating layer
JPS62250142A (en) High temperature protective layer
US6855212B2 (en) Elevated temperature oxidation protection coatings for titanium alloys and methods of preparing the same
JP2001521992A (en) Structural member subjected to hot gas impulse and method of forming coating on the structural member
JPS58183244A (en) Heat-resistant composite material
JP3077410B2 (en) Turbocharger turbine housing
JPH0570708B2 (en)
JPS62211390A (en) Ceramic coated heat resistant member and its production
JP3005637B2 (en) Metal-ceramic joint
JPS63216980A (en) Composite heat-resisting member
JP2000511236A (en) Structural component having superalloy substrate and layer structure provided thereon, and method of manufacturing the same
JPS61207567A (en) Formation of thermally sprayed ceramic film
JPS6028903B2 (en) Surface treatment method for metal materials
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPH0147277B2 (en)
JPH0610354B2 (en) Ceramic coated heat resistant member and method for manufacturing the same
JPH0827559A (en) Thermal insulation coating method