JPS58182602A - Brewster window - Google Patents

Brewster window

Info

Publication number
JPS58182602A
JPS58182602A JP57064749A JP6474982A JPS58182602A JP S58182602 A JPS58182602 A JP S58182602A JP 57064749 A JP57064749 A JP 57064749A JP 6474982 A JP6474982 A JP 6474982A JP S58182602 A JPS58182602 A JP S58182602A
Authority
JP
Japan
Prior art keywords
light
brewster window
brewster
transparent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57064749A
Other languages
Japanese (ja)
Other versions
JPS6212881B2 (en
Inventor
Takeo Miyata
宮田 威男
Takuhiro Ono
小野 拓弘
Masami Honma
本間 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57064749A priority Critical patent/JPS58182602A/en
Publication of JPS58182602A publication Critical patent/JPS58182602A/en
Publication of JPS6212881B2 publication Critical patent/JPS6212881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To form a Brewster window having excellent water resistance and less evolution of heat and to improve the durability thereof by providing a protective film consisting of chalcogenide glass or ThF4 which is transparent to IR light at specific film thickness on both surfaces of an alkali halide substrate. CONSTITUTION:Chalcogenide glass such as As2S3, As2Se or the like or ThF4 or the like is vapor-deposited on both surfaces of an alkali halide parallel plate of KCl or the like which is transparent to IR light and has small optical distortion at the film thickness satisfying the relation expressed by the equation (lambda is the wavelength of light, nF is the refractive index of the film when the wavelength lambda, thetaB is the Brewster angle specific to the parallel flat plate), whereby a Brewster window formed with the protective film is provided. The Brewster window which is coated with the surface of the substrate, such as alkali halide, having deliquescence, has substantial water resistance under high humidity, has zero reflectivity to P polarized light, evolves less heat even with the large output like CO2 laser light and has excellent durability is thus obtained.

Description

【発明の詳細な説明】 本発明は耐水性の優れた保護膜を有し、アルカリハライ
ドを基板としたブリュースター窓に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Brewster window having a protective film with excellent water resistance and having an alkali halide substrate.

従来、特に赤外線領域におけるブリュースター窓の材料
としては材料それ自身、耐水性が有り透明な物質に限ら
れた。例えばZn5a、GaAs。
Conventionally, materials for Brewster windows, particularly in the infrared region, have been limited to water-resistant and transparent materials. For example, Zn5a, GaAs.

CdTe 、Ge、KH2−5等が挙げられるがそれぞ
れ大きさや、透明な波長領域等に限りがあったり、光学
歪が大きく高価であったり又有毒性であったりして非常
に使用条件が厳しいものであった。一方透明で光学歪が
小さく、安価なアルカリハライド(KCd、Na(Jな
ど)は潮解性があり湿度の多い環境での長時間使用に耐
えられないという欠点を有していた。本発明はこれらの
透明で光学歪が小さく安価なアルカリハライドの様な材
料の利点を生゛かしかつ欠点である潮解性を透明で耐水
性の優れた保護膜を附することにより解決し、特に我が
国の様な多湿な状況下でかつ犬パフ−の炭酸ガスレーザ
光に対しても使用出来る発生熱の少ないブリュースター
窓を提供するものである。
Examples include CdTe, Ge, KH2-5, etc., but each has limitations in size and transparent wavelength range, has large optical distortion, is expensive, and is toxic, making it difficult to use. Met. On the other hand, alkali halides (KCd, Na (J, etc.) that are transparent, have low optical distortion, and are inexpensive have the disadvantage that they are deliquescent and cannot be used for long periods of time in humid environments. We take advantage of the advantages of materials such as alkali halides, which are transparent, have low optical distortion, and are inexpensive, while solving the disadvantage of deliquescent properties by attaching a transparent and highly water-resistant protective film. To provide a Brewster window that generates less heat and can be used under humid conditions and even with the carbon dioxide laser beam of dog puffs.

保護膜の材料としては水に溶けにくく、かつ透明で、さ
らに薄膜状になった時にピンホールの出来にくいアモル
ファヌ状態を示す三硫化ヒ素ム52s5.三硫化セレン
ム82B65等を代表とするカルコゲナイドガラスや四
弗化トリウム(ThF、 )が挙げられる。
As a material for the protective film, arsenic trisulfide 52s5. is difficult to dissolve in water, is transparent, and exhibits an amorphous state in which pinholes are difficult to form when formed into a thin film. Examples include chalcogenide glasses such as selenium trisulfide 82B65, and thorium tetrafluoride (ThF).

屈折率nsなる基板はかならずP偏光の光に7・1して
反状率が零になる角度を一つもち、これを物−質固有の
ブリュースター角θBといい、屈折率nSとθBとの間
には一定の関係がある。
A substrate with a refractive index ns always has one angle at which the reciprocal index becomes zero when it is 7.1 for P-polarized light, and this is called the Brewster angle θB, which is unique to the material, and the refractive index nS and θB There is a certain relationship between them.

θB =tan’ (”s)   ・・・・・・・・・
・・ (1)さてこの様な基板の上に屈折率nyなる保
護膜を厚さa、だけ附した場合、一般にはP偏光に対す
る反射は零にならない。
θB = tan' (”s) ・・・・・・・・・
(1) Now, when a protective film having a refractive index ny and a thickness a is attached to such a substrate, the reflection of P-polarized light generally does not become zero.

波長と同じ程度の厚さの薄膜が屈折率nsの基板上に着
いている場合の反射率を求めるには、干渉現象を考慮に
入れなければいけない。従って、膜厚と光の波長との関
係が問題になってくる。膜厚をdF+膜の屈折率をny
 、基板と反対側の屈折率をno(通常空気などでno
=1)とし、光の波長をλとすると、この境界面での反
射率は次の様に求めることが出来る(今簡単のだめに垂
直入射を考える)。
To determine the reflectance when a thin film with a thickness similar to the wavelength is deposited on a substrate with a refractive index of ns, interference phenomena must be taken into account. Therefore, the relationship between the film thickness and the wavelength of light becomes a problem. The film thickness is dF + the refractive index of the film is ny
, the refractive index on the side opposite to the substrate is set to no (usually air, etc.)
= 1) and the wavelength of the light is λ, the reflectance at this boundary surface can be calculated as follows (for simplicity, let's consider normal incidence).

1+γ、′・γ2z+2r、 * f2cos (4y
rnFdF/λ)ここでnFdFは光学的膜厚で、4π
nydy/λは膜厚の往復の距離をラジアン単位で表わ
したものである。rl、γ2は振幅反射率で、rlはn
oとny の境界;r2はnpとnBの境界での振幅反
射率である。したがって の関係にある。
1+γ,'・γ2z+2r, * f2cos (4y
rnFdF/λ) where nFdF is the optical thickness, 4π
nydy/λ is the round trip distance of the film thickness expressed in radians. rl, γ2 is the amplitude reflectance, rl is n
o and ny boundary; r2 is the amplitude reflectance at the np and nB boundary. Therefore, there is a relationship.

り)式においてny(1y=’  の条件を満足すると
(2)式は (6)式に+319 [41を代入するととなり、これ
は正さに基板そのものの反射率を表わし、膜が光学厚み
nydy=”の条件を満足すると膜のない状態を示すこ
とになる。
If the condition of ny(1y=' is satisfied in the equation), the equation (2) becomes by substituting +319 [41 into the equation (6), which exactly represents the reflectance of the substrate itself, and the film has an optical thickness of nydy If the condition =" is satisfied, it indicates a state where there is no film.

今まで考えて来たのは垂直入射の場合である力;今度は
入射角が基板のブリュースター角である:1箱合を考え
ることにする。屈折率ny、厚さ+iFなる保護膜が形
成された基板に入射角θBで光力;人身、1す゛ると光
は屈折角θFとなり、屈折角θF9人身4角θB、屈折
率ny、n□との間にはスネノL−の関係式力;有る0 よって なる関係式が得られる。
What we have considered so far is the force in the case of normal incidence; this time, the angle of incidence is the Brewster angle of the substrate: Let's consider a one-box case. Light power at an incident angle θB on a substrate on which a protective film with a refractive index ny and a thickness + iF is formed; There is a relational expression of Suneno L- between: 0 Therefore, a relational expression is obtained.

一方(2)式に対応する入射角が垂直でない式における
cosの項は、 となるので(91式の値が1になるような膜厚を選べば
薄膜の影響は除去される。すなわち膜厚がdF”nF憎
/ωSθF なる条件を満足すれば膜があっても膜のない状態すなわ
ち入射角θBでP偏光の反射率が零となり、ブリュース
ター窓となる。
On the other hand, the cos term in the equation where the angle of incidence is not perpendicular to equation (2) is If it satisfies the condition dF''nF/ωSθF, even if there is a film, the reflectance of P-polarized light becomes zero at the incident angle θB, that is, when there is no film, resulting in a Brewster window.

この様にして本発明は透明で光学歪が小さく、安価なア
ルカ1し・ライドの様な材料の利点を生め1し7、かつ
欠点である潮解性を保護膜を附することにより解決した
もので、特に我が国の様な多湿な状況下でかつ大パワー
の炭酸ガスレーザ光に対しても使用出来る発生熱の少な
いプIJ ユースター窓を提供するものである。
In this way, the present invention has the advantages of a transparent, low optical distortion, and inexpensive material such as Alkaline 1 and Ride, 1 and 7 while solving the disadvantage of deliquescent property by adding a protective film. The purpose of the present invention is to provide a PU-IJ Eustar window that generates less heat and can be used in humid conditions such as those in Japan and even with high-power carbon dioxide laser light.

〈実施例1〉 炭酸ガスレーザ発振波長10.6μm用KGe 基板を
使った本発明によるブリュースター窓について説明する
。保護膜としては三硫化ヒ素ks2S sを用い、平行
に仕・七げられたKCjIL基板の両面に真空蒸着法に
より附するものとする。蒸着すべき厚みは式(10)を
使い2.37μmである。ここでλは10.6 pm、
 nFは2.3B 、θBは66.4をf史った。
<Example 1> A Brewster window according to the present invention using a KGe substrate for a carbon dioxide laser oscillation wavelength of 10.6 μm will be described. As the protective film, arsenic trisulfide ks2Ss is used, and it is applied by vacuum evaporation to both sides of the KCjIL substrate, which is arranged in parallel. The thickness to be deposited is 2.37 μm using equation (10). Here, λ is 10.6 pm,
nF was 2.3B and θB was 66.4.

この様にして作られた保護膜付ブリュースター窓を光軸
に対して65.4°傾けておいだ場合のS 4M光とP
偏光に対する反射率の計算値を図に示す。図において■
はS偏光に対する反射率で、■はP−1桶尤に対する反
射率で、■は波長10.6μmでPIln’+光に対す
る反射率が零になりブリュースター窓として動作するこ
とが示されている。
S 4M light and P when the Brewster window with a protective film made in this way is tilted 65.4 degrees with respect to the optical axis.
The calculated reflectance values for polarized light are shown in the figure. In the diagram■
is the reflectance for S-polarized light, ■ is the reflectance for P-1 Okei, and ■ is the reflectance for PIln'+ light at a wavelength of 10.6 μm, which indicates that it operates as a Brewster window. .

次に本発明のブリユーズター窓に10KWという大パワ
ーの炭酸ガスレーザー光が入射したとした時の中心点と
周囲の冷却部との温度差を計算してみる。ブリュースタ
ー窓は直径10CrILで厚みが1確のKCe平行平板
の両面に三硫化ヒ素As 2S 3が2.37μmづつ
蒸着されている。このブリュースター窓はその周辺で冷
却されているものとする。
Next, let us calculate the temperature difference between the center point and the surrounding cooling section when a carbon dioxide laser beam with a high power of 10 KW is incident on the brewster window of the present invention. The Brewster window has arsenic trisulfide As 2 S 3 deposited in a thickness of 2.37 μm on both sides of a KCe parallel flat plate with a diameter of 10 CrIL and a thickness of 1 cm. It is assumed that this Brewster window is cooled around it.

計算を簡単にするために、ブリュースター窓全面に一様
な強度分布のレーザ光が入射した場合の温度分布を熱伝
導方程式より計算すると結果は(11)式の様になる。
To simplify the calculation, the temperature distribution when a laser beam with a uniform intensity distribution is incident on the entire surface of the Brewster window is calculated using the heat conduction equation, and the result is as shown in equation (11).

ここでT (℃)は中心部での温度で、To(’C) 
 は冷却されている周囲の温度で、β(Cm−”)はブ
リュースター窓の吸収係数であり、D (crIL)は
ブリュースター窓の直径、Kは熱伝導率(Wす「1・’
C’)Iはレーザ光強度(W−cIn−2)である。
Here, T (℃) is the temperature at the center, and To ('C)
is the temperature of the surrounding area being cooled, β (Cm-'') is the absorption coefficient of the Brewster window, D (crIL) is the diameter of the Brewster window, and K is the thermal conductivity (W
C')I is the laser light intensity (W-cIn-2).

ブリュースター窓の吸収係数βはKCeの厚みdにくら
べ膜の厚みdFが無視出来る時には(12)式で求めら
れる。
The absorption coefficient β of the Brewster window can be obtained by equation (12) when the thickness dF of the film can be ignored compared to the thickness d of KCe.

β=βAs255丁+βKG/十βxB2s、丁−(1
2)ここでβA32s、−1cIrL−1,βKC1’
;lX10 ”am ’dF=2.37 μm1l−=
2.37X10 ’l ’、d:=1C1llの値を代
入すると、 β−5,7X 10 ’cm−1・−旧(13)レーザ
光強度工は(14)式で求められる。
β=βAs255 units + βKG/10βxB2s, units – (1
2) Here βA32s, -1cIrL-1, βKC1'
;lX10"am'dF=2.37 μm1l-=
By substituting the value of 2.37X10'l', d:=1C1ll, the laser light intensity factor β-5,7X10'cm-1.-old (13) can be obtained by equation (14).

ニー* OKW/ yr D2  、、、、、、、、、
 (,4)D−1oCrnを代入すると r = 127 W −cm−2−−−−−(1s)と
なる。(11)式にβ1−i57X10 ’l ’ 、
I!。
Knee* OKW/yr D2 ,,,,,,,,,
(,4) Substituting D-1oCrn gives r = 127 W -cm-2 ----(1s). In equation (11), β1-i57X10 'l',
I! .

127W acm−2,に=0.066W*cm ’ 
m℃−’の値を代入して、中心部と周囲との温度差(T
−To)を計算すると、約7℃におさえることが出来、
十分実用に耐える。
127W acm-2, = 0.066W*cm'
By substituting the value of m℃−', the temperature difference between the center and the surroundings (T
-To), it can be kept at about 7℃,
Sufficient for practical use.

〈実施例2〉 KCl基板の両面に四弗化トリウム(ThF4)を蒸着
してなる保護膜付ブリュースター窓。ny=1.36.
θB = 55.4°、λ= I Q、6 pm を使
って(1o)式より蒸着すべきThF4の厚みdyは4
.95μmとなる。実施例1と同様に55.4°の入射
角で入射して来るP偏光に対する反射率は10.6μm
で零となりブリュースター窓として動作する。
<Example 2> A Brewster window with a protective film formed by depositing thorium tetrafluoride (ThF4) on both sides of a KCl substrate. ny=1.36.
Using θB = 55.4°, λ = IQ, 6 pm, the thickness dy of ThF4 to be deposited is 4 from equation (1o).
.. It becomes 95 μm. As in Example 1, the reflectance for P-polarized light incident at an incident angle of 55.4° is 10.6 μm.
becomes zero and operates as a Brewster window.

以上の実施例で示した様に本発明は、透明で光学歪が小
さく安価なKC,の様なアルカリハライドの材料の利点
を生かし欠点である潮解性を、水に溶けずアモルファス
状態の膜が得られるム52s3 。
As shown in the above examples, the present invention takes advantage of the advantages of alkali halide materials such as KC, which are transparent, have low optical distortion, and are inexpensive. The obtained mu 52s3.

ム82862等のカルコゲナイドガラスやThF 4等
の保護膜を附す事により解決したもので、10KWとい
う大パワーの炭酸ガスレーザ光にも使える安価なブリュ
ースター窓が得られる利点を有する。
This problem was solved by attaching a protective film such as chalcogenide glass such as 82862 or ThF 4, and it has the advantage of providing an inexpensive Brewster window that can be used for carbon dioxide laser light with a high power of 10 kW.

【図面の簡単な説明】[Brief explanation of drawings]

図はKCeの平行平板の両面に保護膜としてム8283
を厚み2.37μm附したブリュースター窓の入射角6
6.4°に対する反射率の波長依存性を示す図である。
The figure shows Mu8283 as a protective film on both sides of a parallel plate of KCe.
The angle of incidence of a Brewster window with a thickness of 2.37 μm is 6.
FIG. 6 is a diagram showing the wavelength dependence of reflectance at 6.4°.

Claims (1)

【特許請求の範囲】 赤外光に対して透明であるアルカリハライドからなる平
行平板の両面に膜厚((iF)が次式で与えられ、赤外
光に対して透明なカルコゲナイドガラスあるいは四弗化
トリウムからなる保膿梗を設けたことを特徴とするブリ
ュースター窓。 における膜の屈折率、θBは平行平板に固有のブリ、−
スター角である。
[Claims] The film thickness ((iF) on both sides of a parallel plate made of alkali halide that is transparent to infrared light is given by the following formula, and chalcogenide glass or tetrafluorocarbon glass that is transparent to infrared light is Brewster's window is characterized by having an impulsion made of thorium chloride.The refractive index of the membrane at
It is the star angle.
JP57064749A 1982-04-20 1982-04-20 Brewster window Granted JPS58182602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57064749A JPS58182602A (en) 1982-04-20 1982-04-20 Brewster window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57064749A JPS58182602A (en) 1982-04-20 1982-04-20 Brewster window

Publications (2)

Publication Number Publication Date
JPS58182602A true JPS58182602A (en) 1983-10-25
JPS6212881B2 JPS6212881B2 (en) 1987-03-23

Family

ID=13267116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57064749A Granted JPS58182602A (en) 1982-04-20 1982-04-20 Brewster window

Country Status (1)

Country Link
JP (1) JPS58182602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295439A (en) * 1985-10-22 1987-05-01 Nippon Telegr & Teleph Corp <Ntt> Measuring instrument for transmission loss spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883214A (en) * 1972-06-14 1975-05-13 Westinghouse Electric Corp Protective anti-reflective coatings for alkali-metal halide optical components
US4075885A (en) * 1977-02-23 1978-02-28 Iowa State University Research Foundation, Inc. Rock borehole shear tester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883214A (en) * 1972-06-14 1975-05-13 Westinghouse Electric Corp Protective anti-reflective coatings for alkali-metal halide optical components
US4075885A (en) * 1977-02-23 1978-02-28 Iowa State University Research Foundation, Inc. Rock borehole shear tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295439A (en) * 1985-10-22 1987-05-01 Nippon Telegr & Teleph Corp <Ntt> Measuring instrument for transmission loss spectrum

Also Published As

Publication number Publication date
JPS6212881B2 (en) 1987-03-23

Similar Documents

Publication Publication Date Title
JPH0772330A (en) Mirror for reflecting light having selected frequency and formation thereof
JPH01300202A (en) Reflector and interference device using said reflector
US5198922A (en) Specularly transmitting and diffuse reflecting optical shutter
JPS58182602A (en) Brewster window
JP2002048911A (en) Beam splitter and laser system using the same
US3493289A (en) Coated optical devices
JPH10133253A (en) Light quantity stopping device
US5581395A (en) Non-linear optical crystal element
JPS58182605A (en) Composite polarizing plate
JPS6161641B2 (en)
JPS58221803A (en) Antireflection film for potassium chloride
JPS6187104A (en) Reflection preventive film
JPH05264813A (en) Wide wavelength area beam splitter, optical device, production of wide wavelength area beam splitter, and method for merging optical beams
JPS60263901A (en) Antireflection film for rotassium chloride
JPS6161642B2 (en)
JP2001108802A (en) Antireflection film
JPS6028603A (en) Prism type beam splitter
KR100266539B1 (en) Ktp antireflection film for a second harmonic generation
JP2725043B2 (en) Broadband half mirror
JPS6239401B2 (en)
JPS6259281B2 (en)
JPS6378103A (en) Reflection preventing film for tellurium dioxide
JPH10154345A (en) Polarizing beam splitter
JPH058403B2 (en)
JPH03122610A (en) Anamorphic prism