JPS6161642B2 - - Google Patents

Info

Publication number
JPS6161642B2
JPS6161642B2 JP59135311A JP13531184A JPS6161642B2 JP S6161642 B2 JPS6161642 B2 JP S6161642B2 JP 59135311 A JP59135311 A JP 59135311A JP 13531184 A JP13531184 A JP 13531184A JP S6161642 B2 JPS6161642 B2 JP S6161642B2
Authority
JP
Japan
Prior art keywords
film
layer
kcl
reflectance
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59135311A
Other languages
Japanese (ja)
Other versions
JPS6115101A (en
Inventor
Takeo Myata
Takuhiro Ono
Takashi Iwabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59135311A priority Critical patent/JPS6115101A/en
Publication of JPS6115101A publication Critical patent/JPS6115101A/en
Publication of JPS6161642B2 publication Critical patent/JPS6161642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は炭酸ガスレーザをはじめとする赤外光
学機器に使用される光学部品(ウインドウ、レン
ズ、ビームスプリツタ等)の素材である塩化カリ
ウム用の反射防止膜に関するものである。 従来例の構成とその問題点 従来、大パワーの炭酸ガスレーザ用の窓、レン
ズ、ビームスピリツタ等の透明光学部品の基板材
料としては、ZnSe,GaAs等が挙げられる。 ZnSeにあつては波長10.6μmと0.6328μmにお
いて透明であり耐水性に優れかつ大型の結晶が得
られるという利点の反面、欠点としては、高価で
あり、大パワー照射により生ずる光学歪が大き
く、又結晶育成時に有毒なH2Seガスを使つた
り、結晶表面研麿加工工程において有毒なセレン
系ガスを発生するなど安全対策上あつかいにくい
ということが挙げられる。GaAsにあつては波長
10.6μmにおいて透明であり、その熱伝導度が
ZnSeの約3倍良いということ、さらには耐水性
に優れているという利点の反面直径約8cm以上の
大きさのものが入手出来ない、可視光重畳用の波
長0.6328μmのHe−Neレーザ光を透過しないこ
と、高価であること、光学歪が大きい事、さらに
はヒ素(As)という有害元素をその構成要素に
含むため育成、加工時の安全対策が必要であると
いう多くの欠点を有している。 一方、波長10.6μm,0.6328μmにおいて透明
で、光学歪が小さく、毒性がなく、安価であると
いう多くの利点を持つKClが実用透明光学部品の
基板として使用されない最大の理由は潮解性があ
り水に溶けるため、湿度の多い環境での長時間使
用に耐えられないということである。この場合、
KClの基板の表面に附加する反射防止膜が反射率
が零に近く、波長0.6328μmに対して透明である
という光学的特性はもちろんのこと、耐水性をも
かねそなえることが出来るならば、KClの水に対
して弱い欠点は克服されるので上記の多くの利点
を有したKClの窓、レンズが実現出来る事にな
る。しかし、現在光学特性、耐水性、耐摩耗性を
同時に満足した長寿命な反射防止膜が存在しない
状況にある。KCl窓、レンズ用の反射防止膜とし
ても最も簡単な構造のものはNaF単層膜が知られ
ている。NaFの波長10.6μmでの屈折率は1.23と
KClの屈折率の平方根(√1.45=1.204)に非常に
近いために光学的膜厚nd=λ/4=2.65μmを蒸
着すれば反射率としては0.05%と理想に近い値い
が期待出来る。実際に直径1インチ、厚み5mmの
KCl研麿基板の両面にNaFよりなる反射防止膜を
形成し、KCl窓を試作して反射率を10.6μm波長
で測定したところ約0.4%,吸収率は約0.3%と光
学特性上は十分実用に耐えるものであることが判
明したが、温度45℃,相対湿度95%の環境試験に
おいて、6時間後にNaF膜の剥離が明確に観測さ
れた。それ故に耐水性という点では満足なもので
はなく実用性が無いと判断せざるを得ない。 単層で反射防止膜の条件を満足するものはNaF
以外には無いので、二層、三層構造の反射防止膜
が検討されている。反射防止膜の材料として満足
しなければならない条件としては、水に溶けにく
く、波長10.6μm,0.6328μmで透明で、基板と
の密着性が良く、さらに薄膜状になつた時にピン
ホールの出来にくいアモルフアス状態を示す物質
が選ばれなければならない。そこで有望な材料と
して三硫化ヒ素(As2S3),三硫化セレン
(As2Se3)を代表とするカルコゲナイドガラスや
四弗化トリウム(ThF4)が挙げられる。 二層反射防止膜の構造については以下の様なも
のが考えられる。 イ KClGATS/As2S3 ロ KClAs2S3/ThF4 イ)の構造のものはいずれもカルコゲナイドガ
ラスより構成されているので耐水性、発生熱(波
長10.6μmでの吸収率が少ない)の点で優れてい
るがGATSは波長0.6328μm光を透過しないとい
う欠点を有す。ロ)はいずれもアモルフアス状態
を示しかつThF4の機械的強度が強いという利点
があるが、ThF4は放射性を持つていて使用しに
くくかつ吸収の少ない高純度の材料を入手する事
が困難であるという欠点を有す。 以上の欠点を解決すべく三層構造の反射防止膜
が検討された。低屈折率物質のThF4が使用出来
ないので吸収の小さなNaF,KCI,PbF2を使つ
た以下の様な三層反射防止膜が検討された。 イ KClAs2Se3/NaF/As2Se3 ロ KClAs2S3/KCl/As2S3 ハ KClAs2S3/PbF2/As2S3 これらの共通の利点は三層構造にすることによ
り、単層構造、二層構造の反射防止膜より吸収率
を小さく出来るため、大パワー用として使用出来
ることにある。 これらは、水に弱い欠点を持つNaF,KCl,
PbF2をピンホールの出来にくいAs2S3ではさみ込
み保護し、その三層膜でさらにKClを保護するこ
とが基本とされている。 効果としては、光吸収の少ないカルコゲナイド
ガラスであるAs2S3やAs2SがKCl基板に対して密
着性が良く、かつ湿度に対する保護膜として作用
し、さらにその上に光吸収の少ないNaF,KCl,
PbF2を附加しその欠点である水に弱い点をさら
にAs2Se3やAs2S3で保護し、かつ反射率零という
反射防止膜の条件を満たすと同時に波長0.6328μ
m光にも透明である大パワー用反射防止膜を実現
した。 しかしながら以上のイ)、ロ)、ハ)の3例を詳
細に比較すると総合的にハ)の構造のものが一番
良いとされる。すなわち、大パワーに使用出来る
ため吸収率が小さい物質が良いという観点からす
るとKCl(吸収係数1cm-1以下)、PbF2(吸収係
数1〜2cm-1)、NaF(吸収係数6cm-1)の順とな
り、KClを使用したロ)の構造のものが一番良
い。しかし耐湿性を有するという点で、水に対す
る溶解度が小さい物質が良いという観点からする
とPbF2(100gの水に対する溶解量0.064g),NaF
(100gの水に対する溶解量4.22g),KCl(100gの
水に対する溶解量34.7g)の順でありPbF2を使つ
たハ)の構造のものが一番良く、KClを使つた
ロ)の構造が一番悪い。またHe−Ne光の透過性
の観点からするとAs2S3の方がAs2S3より透過性
が良いのでイ)の構造のものが一番劣る。 従来例にあるKCl用反射防止膜の種類とその特
性を第1表にまとめた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an antireflection coating for potassium chloride, which is a material for optical parts (windows, lenses, beam splitters, etc.) used in infrared optical equipment such as carbon dioxide lasers. Conventional Structure and Problems Conventionally, ZnSe, GaAs, etc. have been used as substrate materials for transparent optical components such as windows, lenses, and beam spiriters for high-power carbon dioxide lasers. ZnSe has the advantage that it is transparent at wavelengths of 10.6 μm and 0.6328 μm, has excellent water resistance, and can obtain large crystals, but has the disadvantages that it is expensive, has large optical distortion caused by high power irradiation, and For safety reasons, this method is difficult to handle, as toxic H 2 Se gas is used during crystal growth, and toxic selenium-based gas is generated during the crystal surface polishing process. Wavelength for GaAs
It is transparent at 10.6μm and its thermal conductivity is
Although it has the advantage of being about 3 times better than ZnSe and has excellent water resistance, it is not possible to obtain a He-Ne laser beam with a wavelength of 0.6328 μm for visible light superimposition, which is difficult to obtain with a diameter of about 8 cm or more. It has a number of drawbacks: it is not transparent, it is expensive, it has large optical distortion, and it also contains a harmful element called arsenic (As), so safety measures are required during growth and processing. There is. On the other hand, the biggest reason why KCl is not used as a substrate for practical transparent optical components is that it is transparent at wavelengths of 10.6 μm and 0.6328 μm, has low optical distortion, is nontoxic, and is inexpensive. This means that it cannot withstand long-term use in humid environments. in this case,
If the anti-reflection coating added to the surface of the KCl substrate not only has optical properties such as a reflectance close to zero and is transparent to a wavelength of 0.6328 μm, but also water resistance, KCl Since the drawback of KCl being weak against water can be overcome, it is possible to realize KCl windows and lenses that have many of the above-mentioned advantages. However, there is currently no long-life antireflection film that satisfies optical properties, water resistance, and abrasion resistance at the same time. The simplest anti-reflection film for KCl windows and lenses is known to be a single-layer NaF film. The refractive index of NaF at a wavelength of 10.6 μm is 1.23.
Since it is very close to the square root of the refractive index of KCl (√1.45=1.20 4 ), if an optical film thickness of nd=λ/4=2.65 μm is deposited, a reflectance of 0.05% can be expected, which is close to the ideal value. . Actually 1 inch in diameter and 5 mm thick.
An anti-reflection film made of NaF was formed on both sides of the KCl Kenmaro substrate, and a KCl window was prototyped.The reflectance was measured at a wavelength of 10.6μm, and the reflectance was approximately 0.4% and the absorption rate was approximately 0.3%, which is sufficient for practical use in terms of optical properties. However, in an environmental test at a temperature of 45°C and a relative humidity of 95%, peeling of the NaF film was clearly observed after 6 hours. Therefore, we have to judge that the water resistance is not satisfactory and is not practical. NaF is a single layer that satisfies the requirements for an anti-reflection film.
Since there are no other methods available, antireflection coatings with a two-layer or three-layer structure are being considered. The conditions that must be met as a material for an anti-reflection film include: being difficult to dissolve in water, being transparent at wavelengths of 10.6 μm and 0.6328 μm, having good adhesion to the substrate, and being difficult to form pinholes when formed into a thin film. A substance exhibiting an amorphous state must be selected. Promising materials include chalcogenide glasses such as arsenic trisulfide (As 2 S 3 ) and selenium trisulfide (As 2 Se 3 ), and thorium tetrafluoride (ThF 4 ). Regarding the structure of the two-layer antireflection film, the following can be considered. (a) KClGATS/As 2 S 3 (b) KClAs 2 S 3 /ThF (4 ) All structures of (a) are made of chalcogenide glass, so they are water resistant and have low heat generation (low absorption rate at a wavelength of 10.6 μm). However, GATS has the disadvantage that it does not transmit light with a wavelength of 0.6328 μm. B) Both exhibit an amorphous state and have the advantage that ThF 4 has strong mechanical strength, but ThF 4 is radioactive and difficult to use, and it is difficult to obtain high-purity materials with low absorption. It has the disadvantage of being In order to solve the above drawbacks, an antireflection film with a three-layer structure was investigated. Since ThF 4 , a low refractive index material, cannot be used, the following three-layer antireflection coating using NaF, KCI, and PbF 2 , which have low absorption, was investigated. A KClAs 2 Se 3 /NaF/As 2 Se 3B KClAs 2 S 3 /KCl/As 2 S 3C KClAs 2 S 3 / PbF 2 /As 2 S 3These common advantages are due to the three-layer structure. Since the absorption rate can be lower than that of single-layer or double-layer antireflection films, it can be used for high power applications. These are NaF, KCl, and
The basic idea is to protect PbF 2 by sandwiching it with As 2 S 3 , which does not easily form pinholes, and to further protect KCl with the three-layer film. The effect is that As 2 S 3 and As 2 S, which are chalcogenide glasses with low light absorption, have good adhesion to the KCl substrate and act as a protective film against humidity, and on top of that, NaF, which has low light absorption, KCl,
By adding PbF 2 , the disadvantage of water resistance is further protected by As 2 Se 3 and As 2 S 3 , and at the same time, it satisfies the anti-reflection coating condition of zero reflectance, and at the same time has a wavelength of 0.6328μ.
We have realized a high-power anti-reflection film that is transparent even to m-light. However, when the three examples a), b), and c) above are compared in detail, the structure c) is considered to be the best overall. In other words, from the viewpoint that substances with low absorption coefficients are good because they can be used for high power, KCl (absorption coefficient 1 cm -1 or less), PbF 2 (absorption coefficient 1 to 2 cm -1 ), and NaF (absorption coefficient 6 cm -1 ) are recommended. The structure shown in (b) using KCl is the best. However, from the viewpoint of moisture resistance, substances with low solubility in water are better, such as PbF 2 (amount dissolved in 100 g of water: 0.064 g), NaF
(Amount dissolved in 100g of water: 4.22g), KCl (Amount dissolved in 100g of water: 34.7g), and the structure C) using PbF 2 is the best, and the structure B) using KCl is the best. is the worst. In addition, from the viewpoint of transparency of He-Ne light, As 2 S 3 has better transparency than As 2 S 3 , so structure a) is the worst. Table 1 summarizes the types of conventional antireflection coatings for KCl and their characteristics.

【表】【table】

【表】 この表から判る様に、As2S3/PbF2/As2S3
三層構造のものが一番バランスが取れており、実
際に20KW用のKCl窓に使用され耐光力の点で実
績が有ると同時に、耐湿性の点でも表面に結露さ
せないかぎり充分に実用性の有ることが判明し
た。 以上の様に三層構造の反射防止膜は多くのすぐ
れた点を持つてはいるが、表面のAs2S3膜が長時
間空気中で高温にさらされると酸化され吸収が増
加するという欠点と機械的にやゝ、やわらかいた
めクリーニング時に表面にきずがつきやすいとい
う欠点があり、長寿命化という点でまだ問題があ
る。 発明の目的 本発明は従来例のAs2S3/PbF2/As2S3なる
KCl用三層反射防止膜の持つ多くの利点、すなわ
ち、10.6μm波長の炭酸ガスレーザ光に対して低
吸収、耐湿性に優れており、He−Neレーザ光に
対して透明である等の利点をそこなうことなく、
その欠点である酸化性、表面の機械的弱さを解決
し総合的に優れた長寿命の反射防止膜を提供する
ことにある。 発明の構成 本発明のKCl用反射防止膜はAs2S3であらわさ
れるカルコゲナイドガラス層を、KCl基板上に形
成し、その上にPbF2層を形成し、さらに最外層
として、セレン化亜鉛(ZnSe)を設けた三層構
造のKCl用反射防止膜である。 実施例の説明 以下本発明の実施例について図面とともに詳細
に説明する。第1図はKCl基板上の本発明による
二層反射防止膜の構造図である。図中4は両面が
超精密に光学研麿された屈折率が1.45なるKCl基
板である。1は屈折率n1が2.31なるAs2S3膜であ
り光学的厚みn1d1=2.650μmである。2は屈折
率n2が1.67なるPbF2で光学的厚みn2d2=1.3023μ
mである。3は屈折率n3が2.4なるZnSe膜であり
光学的厚みn3d3=0.9110μmである。 以下に代表的な蒸着条件を述べる。 As2S3用蒸着ルツボはモリプデン(MO)製の
とつぷつ防止用の穴開のふたを使用し基板温度70
℃、作業圧力1.5×10-6Torr,蒸着速度12Å/see
で蒸着した。PbF2は白金ボード(Pt)を使用し
基板温度118℃、作業圧力3×10-610Torr、蒸着
速度12Å/secで蒸着した。 ZnSeはCVD法で作つた多結晶を蒸着源とし、
電子ビーム蒸着法で蒸着し、基板温度118℃、作
業圧力2×10-6Torr,蒸着速度2Å/secで蒸着
した。蒸着中基板は自公運動し、膜厚の均一化を
計つた。蒸着速度は水晶振動子を使つて制御し、
蒸着膜圧は波長1.505μmの赤外光を使用した透
過型光学膜厚制御装置にて制御した。 この様にしてKCl平面基板の両面に反射防止膜
を形成してなるKCl窓の透過率スペクトルは第2
図の様になり、波長の10.6μmにおいて反射率が
零になることが示される。 各蒸着膜の吸収係数を考慮し反射防止膜の全吸
収を推定すると以下の様になる。 三層反射防止膜の場合、反射防止膜内の電界強
度を考慮すると全吸収(βd)Totalは各膜の吸
収(βidi)の総和の約2分の1と近似出来る。
ここでβiは各膜の吸収係数、diは各膜の厚みで
ある。本実施例の場合、第1層のAs2S3膜の吸収
β1d1は1cm-1×1.15×10-4cm≒1.2×10-4、すな
わち約0.012%である。第2層のPbF2膜の吸収β
2d2は1cm-1×0.78×10-4cm≒0.8×10-4、すなわ
ち0.008%である。第3層のZnSe膜の吸収β3d3
0.5cm-1×0.38×10-4cm=0.19×10-4、すなわち約
0.0019%である。従つて三層膜の全吸収は約0.01
%となる。この反射防止膜に20KWという大パワ
ーの炭酸ガスレーザ光が入射した場合には20KW
の入射パワーの0.01%が熱として発生する。すな
わち2Wの熱発生源として作用するがこの程度の
熱発生は実用上の冷却方法で十分対処出来、光学
部品の破壊の原因とはならない。 なおこの反射防止膜でのHe−Neレーザ光に対
する透過率は約40%以上ありビームアライメント
も容易である。 又、湿度と機械的強度に比較的弱いPbF2を耐
水性をはじめとした化学的に安定で、かつ機械的
強度の強いZnSeで保護しているため、クリーニ
ング時にもきずがつきにくく長寿命である。 以上の実施例に示した各層の膜厚は理想的な場
合で10.6μm波長で反射率が零になる。実際には
膜厚制御能力の問題により完全に反射率を零にす
ることは困難である。 一方、実際に使用する立場からは反射防止膜一
面当りの反射率が0.5%以下であれば実用上問題
はない。 第3図は第1層のAs2S3膜の光学的膜厚n1d1
けを設定値2.650μmの3.7%増減した場合の反射
率スペクトルでいずれの場合も10.6μm波長で反
射率0.1%以下に出来実用的であることを示す。 実際の膜厚制御時に±3%の精度を出すことは
可能である。 第4図は第2層のPbF2膜の光学的膜厚n2d2
けを設定値1.3023μmの3.7%増減した場合の反
射率スペクトルで、いずれの場合も反射率0.1%
以下に出来実用的であることを示す。 第5図は第3層のZnSe膜の光学的膜厚n3d3
けを設定値0.9110μmの3.7%増減した場合の反
射率スペクトルでいずれの場合も反射率0.05%以
下に出来実用的であることを示す。 第6図は第1層のAs2S3膜、第2層のPbF2膜、
第3層のZnSe膜のそれぞれの光学的膜厚を同時
にそれぞれの設定値の3.7%増減した場合の反射
率スペクトルでいずれの場合も反射率0.5%以下
に出来実用的であることを示す。 発明の効果 以上の実施例で示した様に、本発明はKCl基板
に接する第1層に密着性が良くピンホールの出来
にくい水に溶けないAs2S3なるカルコゲナイドガ
ラスを光学的膜厚n1d1として2.552μm〜2.748μ
mの範囲で形成し、次いで第2層として吸収の少
ない低屈折率物質であるPbF2を光学的膜厚n2d2
として1.2541μm〜1.3505μmの範囲で形成し、
さらに第3層として水に溶けず、化学的に安定
で、機械的強度のすぐれたZnSeを光学的膜厚
n3d3として0.8773μm〜0.9447μmの範囲で形成
することにより波長10.6μmの炭酸ガスレーザ光
に対して反射率が0.5%以下、吸収率が0.01%の
低反射率、低吸収の反射防止膜が実現出来、He
−Neレーザ光に対して透過性も良く、耐湿性に
すぐれ、表面がZnSe膜で硬いためクリーニング
時においてもきずがつきにくく、耐摩耗性、耐薬
品性などの耐還境性にもすぐれ、20KWという大
パワーにも耐えかつ長寿命な特性を示すため、
KClを基板とした、大パワー用窓、レンズ、ビー
ムスプリツタ等を実現可能にするものである。
[Table] As can be seen from this table, the three-layer structure of As 2 S 3 /PbF 2 /As 2 S 3 is the most well-balanced, and is actually used in 20KW KCl windows and has a high light resistance. In addition to having a proven track record in terms of moisture resistance, it has also been found to be sufficiently practical as long as there is no condensation on the surface. As mentioned above, the three-layer anti-reflection film has many advantages, but it has the disadvantage that the As 2 S 3 film on the surface oxidizes and increases absorption when exposed to high temperatures in the air for a long time. Since it is mechanically soft, it has the disadvantage that the surface is easily scratched during cleaning, and there are still problems in terms of extending its life. Purpose of the invention The present invention replaces the conventional As 2 S 3 /PbF 2 /As 2 S 3
The three-layer anti-reflection coating for KCl has many advantages, including low absorption and moisture resistance against 10.6μm wavelength carbon dioxide laser light, and transparency against He-Ne laser light. without any damage,
The object is to solve the disadvantages of oxidation and mechanical weakness of the surface and to provide an antireflection film that is comprehensively excellent and has a long life. Structure of the Invention The antireflection film for KCl of the present invention is formed by forming a chalcogenide glass layer represented by As 2 S 3 on a KCl substrate, forming two PbF layers on top of the chalcogenide glass layer, and further forming zinc selenide (Zinc Selenide) as the outermost layer. This is a three-layer anti-reflection coating for KCl with ZnSe). DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a structural diagram of a two-layer antireflection coating according to the present invention on a KCl substrate. 4 in the figure is a KCl substrate with a refractive index of 1.45, which has been optically polished on both sides with ultra-precision. 1 is an As 2 S 3 film with a refractive index n 1 of 2.31, and an optical thickness n 1 d 1 =2.650 μm. 2 is PbF 2 with refractive index n 2 of 1.67 and optical thickness n 2 d 2 = 1.3023μ
It is m. 3 is a ZnSe film having a refractive index n 3 of 2.4 and an optical thickness n 3 d 3 =0.9110 μm. Typical deposition conditions are described below. The vapor deposition crucible for As 2 S 3 uses a molybdenum (MO) lid with holes to prevent popping, and the substrate temperature is 70.
°C, working pressure 1.5×10 -6 Torr, deposition rate 12Å/see
It was deposited with PbF 2 was deposited on a platinum board (Pt) at a substrate temperature of 118° C., a working pressure of 3×10 −6 10 Torr, and a deposition rate of 12 Å/sec. ZnSe uses polycrystals made by CVD method as a deposition source,
It was deposited by electron beam evaporation at a substrate temperature of 118° C., a working pressure of 2×10 −6 Torr, and a deposition rate of 2 Å/sec. During deposition, the substrate moved in a self-propelled manner to ensure uniform film thickness. The deposition rate is controlled using a crystal oscillator.
The deposition film pressure was controlled by a transmission type optical film thickness control device using infrared light with a wavelength of 1.505 μm. The transmittance spectrum of the KCl window formed by forming anti-reflection films on both sides of the KCl flat substrate in this way is
The figure shows that the reflectance becomes zero at a wavelength of 10.6 μm. The total absorption of the antireflection film is estimated as follows, taking into account the absorption coefficient of each deposited film. In the case of a three-layer anti-reflection film, considering the electric field strength within the anti-reflection film, the total absorption (βd) can be approximated to about one-half of the sum of the absorptions (βidi) of each film.
Here, βi is the absorption coefficient of each film, and di is the thickness of each film. In the case of this example, the absorption β 1 d 1 of the first layer As 2 S 3 film is 1 cm −1 ×1.15×10 −4 cm≈1.2×10 −4 , that is, about 0.012%. Absorption β of second layer PbF 2 film
2 d 2 is 1 cm −1 ×0.78×10 −4 cm≈0.8×10 −4 , or 0.008%. The absorption β 3 d 3 of the third layer ZnSe film is
0.5cm -1 ×0.38× 10-4 cm=0.19× 10-4 , or approx.
It is 0.0019%. Therefore, the total absorption of the three-layer film is approximately 0.01
%. When a carbon dioxide laser beam with a high power of 20KW is incident on this anti-reflection film, the output power is 20KW.
0.01% of the incident power is generated as heat. In other words, it acts as a heat generation source of 2W, but this level of heat generation can be adequately dealt with with practical cooling methods and does not cause damage to optical components. Note that this anti-reflection film has a transmittance of about 40% or more for He--Ne laser light, and beam alignment is easy. In addition, PbF 2 , which is relatively weak against humidity and mechanical strength, is protected by ZnSe, which is chemically stable, including water resistance, and has strong mechanical strength, so it is resistant to scratches during cleaning and has a long life. be. In the ideal case, the film thickness of each layer shown in the above embodiments is such that the reflectance becomes zero at a wavelength of 10.6 μm. In reality, it is difficult to completely reduce the reflectance to zero due to problems in film thickness control ability. On the other hand, from the point of view of actual use, there is no practical problem if the reflectance per surface of the antireflection film is 0.5% or less. Figure 3 shows the reflectance spectra when only the optical thickness n 1 d 1 of the first layer As 2 S 3 film is increased or decreased by 3.7% from the set value of 2.650 μm. In either case, the reflectance is 0.1 at a wavelength of 10.6 μm. % or less, indicating that it is practical. It is possible to achieve an accuracy of ±3% during actual film thickness control. Figure 4 shows the reflectance spectrum when only the optical thickness n 2 d 2 of the second layer PbF 2 film is increased or decreased by 3.7% from the set value of 1.3023 μm, and in both cases the reflectance is 0.1%.
The following shows how practical it is. Figure 5 shows the reflectance spectra when only the optical thickness n 3 d 3 of the third layer ZnSe film is increased or decreased by 3.7% from the set value of 0.9110 μm. Show that something is true. Figure 6 shows the first layer of As 2 S 3 film, the second layer of PbF 2 film,
This is a reflectance spectrum when the optical thickness of each of the third layer ZnSe films is simultaneously increased or decreased by 3.7% of each setting value, showing that the reflectance can be reduced to 0.5% or less in all cases, which is practical. Effects of the Invention As shown in the above embodiments, the present invention uses chalcogenide glass made of As 2 S 3 , which has good adhesion and does not easily form pinholes and is insoluble in water, as the first layer in contact with the KCl substrate, with an optical film thickness of n. 2.552μm ~ 2.748μ as 1 d 1
PbF 2, which is a low refractive index material with little absorption, is formed as a second layer with an optical thickness of n 2 d 2.
Formed in the range of 1.2541 μm to 1.3505 μm,
Furthermore, the third layer is ZnSe, which is insoluble in water, chemically stable, and has excellent mechanical strength.
By forming n 3 d 3 in the range of 0.8773 μm to 0.9447 μm, an anti-reflection film with a low reflectance and low absorption with a reflectance of 0.5% or less and an absorption rate of 0.01% for carbon dioxide laser light with a wavelength of 10.6 μm is created. can be realized, He
- Good transparency for Ne laser light, excellent moisture resistance, hard ZnSe film on the surface that prevents scratches during cleaning, and excellent environmental resistance such as abrasion resistance and chemical resistance. In order to withstand high power of 20KW and exhibit long life characteristics,
This makes it possible to create high-power windows, lenses, beam splitters, etc. using KCl as a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による塩化カリウム用反射防止
膜の実施例を示す断面図、第2図は本発明による
塩化カリウム用反射防止膜を両面に形成してなる
KCl窓の透過率スペクトル特性図、第3図乃至第
6図は各々本発明による塩化カリウム用反射防止
膜の実施例における反射率特性図である。 1……As2S3膜、2……PbF2膜、3……ZnSe
膜、4……KCl基板。
FIG. 1 is a cross-sectional view showing an embodiment of the antireflection coating for potassium chloride according to the present invention, and FIG. 2 is a cross-sectional view showing an example of the antireflection coating for potassium chloride according to the present invention formed on both sides.
The transmittance spectrum characteristic diagrams of the KCl window and FIGS. 3 to 6 are reflectance characteristic diagrams of examples of the antireflection film for potassium chloride according to the present invention, respectively. 1... As 2 S 3 film, 2... PbF 2 film, 3... ZnSe
Film, 4...KCl substrate.

Claims (1)

【特許請求の範囲】 1 塩化カリウム基板の少なくとも一表面上に、
基板に接する第1層として三硫化砒素膜、第2層
として弗化鉛膜、第3層としてセレン化亜鉛膜を
順次形成したことを特徴とする塩化カリウム用反
射防止膜。 2 第1層の三硫化砒素膜、第2層の弗化鉛およ
び第3層のセレン化亜鉛膜の光学的膜厚の値をそ
れぞれ2.552μm〜2.748μm,1.2541μm〜
1.3505μmおよび0.8773μm〜0.9447μmに選定
した特許請求の範囲第1項記載の塩化カリウム用
反射防止膜。
[Claims] 1. On at least one surface of the potassium chloride substrate,
An antireflection film for potassium chloride, characterized in that an arsenic trisulfide film is formed as a first layer in contact with a substrate, a lead fluoride film is formed as a second layer, and a zinc selenide film is formed as a third layer. 2 The optical thickness values of the first layer arsenic trisulfide film, the second layer lead fluoride film, and the third layer zinc selenide film are 2.552 μm to 2.748 μm and 1.2541 μm to
The antireflection film for potassium chloride according to claim 1, which has a thickness of 1.3505 μm and 0.8773 μm to 0.9447 μm.
JP59135311A 1984-07-02 1984-07-02 Antireflection film for potassium chloride Granted JPS6115101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135311A JPS6115101A (en) 1984-07-02 1984-07-02 Antireflection film for potassium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135311A JPS6115101A (en) 1984-07-02 1984-07-02 Antireflection film for potassium chloride

Publications (2)

Publication Number Publication Date
JPS6115101A JPS6115101A (en) 1986-01-23
JPS6161642B2 true JPS6161642B2 (en) 1986-12-26

Family

ID=15148761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135311A Granted JPS6115101A (en) 1984-07-02 1984-07-02 Antireflection film for potassium chloride

Country Status (1)

Country Link
JP (1) JPS6115101A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339197A (en) * 1989-03-31 1994-08-16 Yen Yung Tsai Optical pellicle with controlled transmission peaking
US5741576A (en) * 1995-09-06 1998-04-21 Inko Industrial Corporation Optical pellicle with controlled transmission peaks and anti-reflective coatings

Also Published As

Publication number Publication date
JPS6115101A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
US3883214A (en) Protective anti-reflective coatings for alkali-metal halide optical components
Larruquert et al. Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al
US20230393306A1 (en) Thin film coatings on transparent substrates and methods of making and using thereof
US5688608A (en) High refractive-index IR transparent window with hard, durable and antireflective coating
EP0147946B1 (en) An anti-reflection coating for an infrared transmitting material and laser beam transmitting window or fiber incorporating the same
US3959548A (en) Graded composition coatings for surface protection of halide optical elements
JPS6161642B2 (en)
US4533593A (en) Antireflection coating for potassium chloride
JPS6028057B2 (en) optical recording device
JPS6259281B2 (en)
US3493289A (en) Coated optical devices
JPS6161641B2 (en)
JPS6235641B2 (en)
US4612234A (en) Anti-reflection coating film suitable for application on optics made of mixed crystals of thallium iodide and thallium bromide
JPS60263901A (en) Antireflection film for rotassium chloride
JPS6187104A (en) Reflection preventive film
JPS6128963B2 (en)
JPH08310840A (en) Reflection preventing film
JPS6212881B2 (en)
Braunstein et al. High-Reflectivity Mirrors for Use at 10.6 μm
Howari et al. Variations in optical properties of ZnS/Cu/ZnS nanostructures due to thickness change of ZnS cap layer
JPS60114801A (en) Reflection preventing film
JPS6128962B2 (en)
JPH0152721B2 (en)
US20190064398A1 (en) Durable silver-based mirror coating employing nickel oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term