JPS6235641B2 - - Google Patents

Info

Publication number
JPS6235641B2
JPS6235641B2 JP57104693A JP10469382A JPS6235641B2 JP S6235641 B2 JPS6235641 B2 JP S6235641B2 JP 57104693 A JP57104693 A JP 57104693A JP 10469382 A JP10469382 A JP 10469382A JP S6235641 B2 JPS6235641 B2 JP S6235641B2
Authority
JP
Japan
Prior art keywords
film
wavelength
optical thickness
reflectance
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57104693A
Other languages
Japanese (ja)
Other versions
JPS58221803A (en
Inventor
Takeo Myata
Takuhiro Ono
Takashi Iwabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57104693A priority Critical patent/JPS58221803A/en
Publication of JPS58221803A publication Critical patent/JPS58221803A/en
Publication of JPS6235641B2 publication Critical patent/JPS6235641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Description

【発明の詳細な説明】 本発明は、炭酸ガスレーザー光(10.6μm波
長)に対して低吸収であつて猶且つ0.6328μm波
長のHe−Neレーザー光に対しても良好なる透過
性を有し、さらに耐水性に優れた塩化カリウム用
反射防止膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has low absorption for carbon dioxide laser light (10.6 μm wavelength) and good transparency for He-Ne laser light with 0.6328 μm wavelength. The present invention also relates to an antireflection film for potassium chloride that has excellent water resistance.

従来、大パワーの炭酸ガスレーザー用の窓、レ
ンズ、ビームスピリツター等の透明光学部品の基
板材料としては、ZnSe,GaAs等が挙げられる。
ZnSeにあつては波長10.6μmと0.6328μmにおい
て透明であり耐水性に優れかつ大型の結晶が得ら
れるという利点の反面、欠点としては、高価であ
り、大パワー照射により生ずる光学歪が大きく、
又結晶育成時に有毒なH2Seガスを使つたり、結
晶表面研磨加工工程において有毒なセレン系ガス
を発生するなど安全対策上あつかいにくいという
ことが挙げられる。GaAsにあつては波長10.6μ
mにおいて透明であり、その熱伝導度がZnSeの
約3倍良いということ、さらには耐水性に優れて
いるという利点の反面直径約8cm以上の大きさの
ものが入手出来ない、可視光重畳用の波長0.6328
μmのHe−Neレーザー光を透過しないこと、高
価であること、光学歪が大きい事、さらにはヒ素
(As)という有害元素をその構成要素に含むため
育成、加工時の安全対策が必要であるという多く
の欠点を有している。
Conventionally, ZnSe, GaAs, and the like have been used as substrate materials for transparent optical components such as windows, lenses, and beam spiriters for high-power carbon dioxide lasers.
ZnSe has the advantage that it is transparent at wavelengths of 10.6 μm and 0.6328 μm, has excellent water resistance, and can produce large crystals.
Furthermore, it is difficult to handle from a safety standpoint, as toxic H 2 Se gas is used during crystal growth, and toxic selenium-based gas is generated during the crystal surface polishing process. For GaAs, the wavelength is 10.6μ
Although it has the advantage of being transparent at m, its thermal conductivity is about 3 times better than ZnSe, and it is also excellent in water resistance, it is not available in sizes larger than about 8 cm in diameter, and is used for visible light superimposition. Wavelength of 0.6328
It does not transmit μm He-Ne laser light, is expensive, has large optical distortion, and contains a harmful element called arsenic (As), so safety measures are required during growth and processing. It has many drawbacks.

一方、波長10.6μm,0.6328μmにおいて透明
で、光学歪が小さく、毒性がなく、安価であると
いう多くの利点を持つKC1が実用透明光学部品
(窓、レンズ等)の基板として使用されない最大
の理由は潮解性があり水に溶けるため、湿度の多
い環境での長時間使用に耐えられないということ
である。この様な水に対して弱いという欠点を表
面に附加する反射防止膜が反射率が零に近く、波
長0.6328μmに対して透明であるという光学的特
性はもちろんのこと、耐水性をもかねそなえるこ
とが出来るならば、上記の多くの利点を有した
KC1の窓、レンズが実現出来る事になる。現在光
学特性と耐水性を両方同時に有した反射防止膜が
存在しない状況にある。
On the other hand, the biggest reason why KC1, which has many advantages such as being transparent at wavelengths of 10.6 μm and 0.6328 μm, low optical distortion, non-toxic, and inexpensive, is not used as a substrate for practical transparent optical components (windows, lenses, etc.) Because it is deliquescent and soluble in water, it cannot withstand long-term use in humid environments. The anti-reflection coating, which adds to the surface's disadvantage of being vulnerable to water, not only has optical properties such as a reflectance close to zero and is transparent to a wavelength of 0.6328 μm, but also has water resistance. If possible, it would have many of the advantages mentioned above.
KC1 windows and lenses will become a reality. Currently, there is no antireflection film that has both optical properties and water resistance at the same time.

本発明は光学特性と耐水性両方を満足させた
KC1用反射防止膜を提供することを目的とする。
The present invention satisfies both optical properties and water resistance.
The purpose is to provide an anti-reflection coating for KC1.

現在、米国のレーザーパワーオプテツクス社が
市販しているKC1窓、レンズの反射防止膜はNaF
単層膜より構成されている。NaFの屈折率は1.23
とKC1の屈折率の平方根(√1.45=1.204)に非常
に近いために光学的膜厚nd=λ/4=2.65μmを
蒸着すれば反射率としては0.05%と理想に近い値
いが期待出来る。実際に上記メーカーより購入し
た直径1インチ、厚み5mmのNaF両面反射防止膜
付KC1窓の反射率を10.6μm波長で測定したとこ
ろ約0.4%,吸収率は約0.3%と光学特性上は十分
実用に耐えるものであることが判明したが、温度
45℃,相対湿度95%の環境試験において、6時間
後NaF膜の剥離が明確に観測された。それ故に耐
水性という点では満足なものではなく実用性が無
いと判断せざるを得ない。
Currently, the anti-reflection coating on the KC1 window and lens sold by Laser Power Optics, Inc. in the United States is NaF.
Consists of a single layer film. The refractive index of NaF is 1.23
is very close to the square root of the refractive index of KC1 (√1.45 = 1.20 4 ), so if the optical film thickness nd = λ/4 = 2.65 μm is deposited, the reflectance is expected to be 0.05%, which is close to the ideal value. I can do it. When we actually measured the reflectance of a KC1 window with a 1 inch diameter and 5 mm thick double-sided NaF anti-reflection coating purchased from the above manufacturer at a wavelength of 10.6 μm, the reflectance was approximately 0.4% and the absorption rate was approximately 0.3%, which is sufficient for practical use in terms of optical properties. It was found that the temperature
In an environmental test at 45°C and 95% relative humidity, peeling of the NaF film was clearly observed after 6 hours. Therefore, we have to judge that the water resistance is not satisfactory and is not practical.

単層で反射防止膜の条件を満足するものはNaF
以外には無いので、二層、三層構造の反射防止膜
が検討される。反射防止膜の材料として満足しな
ければならない条件としては、水に溶けにくく、
波長10.6μm,0.6328μmで透明で、基板との密
着性が良く、さらに薄膜状になつた時にピンホー
ルの出来にくいアモルフアス状態を示す物質が選
ばれなければならない。そこで有望な材料として
三硫化ヒ素(As2S3),三硫化セレン(As2Se3)を
代表とするカルコゲナイドガラスや四弗化トリウ
ム(ThF4)が挙げられる。
NaF is a single layer that satisfies the requirements for an anti-reflection film.
Since there are no other options available, anti-reflection coatings with a two-layer or three-layer structure are being considered. The conditions that must be met as a material for an anti-reflection film include: being difficult to dissolve in water;
A material must be selected that is transparent at wavelengths of 10.6 μm and 0.6328 μm, has good adhesion to the substrate, and exhibits an amorphous state that prevents pinholes from forming when formed into a thin film. Promising materials include chalcogenide glasses such as arsenic trisulfide (As 2 S 3 ) and selenium trisulfide (As 2 Se 3 ), and thorium tetrafluoride (ThF 4 ).

二層反射防止膜の構造については以下の様なも
のが考えられる。
Regarding the structure of the two-layer antireflection film, the following can be considered.

イ KC1GATS/As2S3 ロ KC1As2S3/ThF4 ハ KC1As2S3/PbF2 イの構造のものはいずれも、カルコゲナイドガ
ラスより構成されているので耐水性、発生熱(波
長10.6μmでの吸収率が少ない)の点で優れてい
るがGATSは波長0.6328μm光を透過しないとい
う欠点を有す。ロはいずれもアモルフアス状態を
示しかつThF4の機械的強度が強いという利点が
あるが、ThF4は放射性物質で法律的に我国では
使用しにくくかつ吸収の少ない高純度の材料を入
手する事が困難であるという欠点を有す。ハは吸
収は少ないがPbF2がアモルフアス状態の薄膜を
形成しないということと水に弱いという欠点を有
する。
A KC1GATS/As 2 S 3 B KC1As 2 S 3 /ThF 4 C KC1As 2 S 3 /PbF 2 All of the structure shown in A are made of chalcogenide glass, so they are water resistant and heat generated (at a wavelength of 10.6 μm). However, GATS has the disadvantage that it does not transmit light with a wavelength of 0.6328 μm. Both exhibit an amorphous state, and ThF 4 has the advantage of having strong mechanical strength, but ThF 4 is a radioactive substance that is legally difficult to use in Japan, and it is difficult to obtain high-purity materials with low absorption. It has the disadvantage of being difficult. Although PbF 2 has low absorption, it has the disadvantage that PbF 2 does not form an amorphous thin film and is sensitive to water.

以上の考察により我々は三層構造の反射防止膜
について検討した。低屈折率物質のThF4が使用
出来ないとすると吸収の小さなPbF2を使つて、
その水に弱い欠点をピンホールの出来にくい
As2S3ではさみ込み保護し、その三層膜でさらに
KC1を保護することを本発明の基本方針とした。
効果としては、光吸収の少ないAs2S3がKC1に対
して密着性が良く、かつ水に対する保護膜として
作用し、さらにその上に光吸収の少ないPbF2
附しその欠点である水に弱い点をさらにAs2S3
保護し、かつ反射率零という反射防止膜の条件を
満たすと同時に波長0.6328μm光にも透明である
大パワー用反射防止膜を実現する。以下実施例で
本発明を説明する。
Based on the above considerations, we investigated a three-layer antireflection film. If ThF 4 , a low refractive index material, cannot be used, PbF 2, which has low absorption, can be used.
The disadvantage of being weak against water is that it is difficult to form pinholes.
Sandwiched and protected with As 2 S 3 , and further protected with its three-layer film
The basic policy of the present invention is to protect KC1.
The effect is that As 2 S 3 , which has low light absorption, has good adhesion to KC1 and acts as a protective film against water.Furthermore, by adding PbF 2 , which has low light absorption, on top of it, it has good adhesion to KC1. The weak points are further protected with As 2 S 3 to realize a high-power anti-reflection film that satisfies the anti-reflection film condition of zero reflectance and is transparent to light with a wavelength of 0.6328 μm. The present invention will be explained below with reference to Examples.

第1図はKC1基板上の本発明による三層反射防
止膜の構造図である。図中4は両面が超精密に光
学研磨された屈折率nSが1.45なるKC1基板であ
る。1は屈折率n1が2.38なる第1のAs2S3膜であ
り光学的厚みn1d1=2.617μmである。2は屈折
率n2が1.55なるPbF2で光学的厚みn2d2=1.029μ
mである。3は屈折率n1が2.38なる第2のAs2S3
膜であり光学的厚みn3d3=1.120μmである。上
記のそれぞれの光学的膜厚は三層反射防止膜に関
するMouchartの関係式(Applied Optics/
vol.16,No10 p2722)を満足する様に決定した。
FIG. 1 is a structural diagram of a three-layer anti-reflection coating according to the present invention on a KC1 substrate. 4 in the figure is a KC1 substrate with a refractive index n S of 1.45, both surfaces of which have been optically polished with ultra-precision. 1 is a first As 2 S 3 film having a refractive index n 1 of 2.38, and an optical thickness n 1 d 1 =2.617 μm. 2 is PbF 2 with refractive index n 2 of 1.55 and optical thickness n 2 d 2 = 1.029μ
It is m. 3 is the second As 2 S 3 whose refractive index n 1 is 2.38
It is a film and has an optical thickness n 3 d 3 =1.120 μm. Each of the above optical film thicknesses is calculated using Mouchart's relational formula (Applied Optics/
vol.16, No10 p2722).

第2図,第3図,第4図にそれぞれ第一層1,
第二層2,第三層3の光学的膜厚niiの設定値
を中心に3%増減した場合の反射率の波長依存性
を示した。
Figures 2, 3, and 4 show the first layer 1,
The wavelength dependence of the reflectance when the optical thickness n i d i of the second layer 2 and the third layer 3 is increased or decreased by 3% around the set value is shown.

第2図はKC1基板に密着する第1のAs2S3膜の
光学的厚みを2.617μm,PbF2膜の光学的厚みを
1.029μmとし、PbF2膜上に形成される第2の
As2S3膜の光学的厚みを変化した場合で、第2の
As2S3膜の光学的厚みは1.086μm〜1.154μmの
範囲において、波長10.6μmでの反射率が0.1%
程度と良好であつた。
Figure 2 shows that the optical thickness of the first As 2 S 3 film that adheres to the KC1 substrate is 2.617 μm, and the optical thickness of the PbF 2 film is 2.617 μm.
1.029 μm, and the second layer formed on the PbF 2 film
When the optical thickness of the As 2 S 3 film is changed, the second
The optical thickness of the As 2 S 3 film is in the range of 1.086 μm to 1.154 μm, and the reflectance at a wavelength of 10.6 μm is 0.1%.
It was in good condition.

第3図はKC1基板上の第1のAs2S3膜の光学的
厚みを2.617μm,第2のAs2S3膜の光学的厚みを
1.120μmとし、PbF2膜の光学的厚みを変化させ
た場合で、PbF2膜の光学的厚みは0.998μm〜
1.060μmの範囲において、波長10.6μmでの反
射率が0.1%程度と良好な結果をえた。
Figure 3 shows that the optical thickness of the first As 2 S 3 film on the KC1 substrate is 2.617 μm, and the optical thickness of the second As 2 S 3 film is 2.617 μm.
When the optical thickness of the PbF 2 film is changed to 1.120 μm, the optical thickness of the PbF 2 film is 0.998 μm ~
In the range of 1.060 μm, good results were obtained with a reflectance of about 0.1% at a wavelength of 10.6 μm.

第4図はPbF2膜、第2のAs2S3膜の光学的厚み
をそれぞれ1.029μm,1.120μmとした時の、第
1のAs2S3膜の光学的厚みによる反射率の変化の
ようすを示したもので、第1のAs2S3膜の光学的
厚みは2.538μm〜2.695μmの範囲において、波
長10.6μmで0.1%程度の良好な反射率が得られ
た。
Figure 4 shows the change in reflectance due to the optical thickness of the first As 2 S 3 film when the optical thicknesses of the PbF 2 film and the second As 2 S 3 film are 1.029 μm and 1.120 μm, respectively. This shows that a good reflectance of about 0.1% at a wavelength of 10.6 μm was obtained when the optical thickness of the first As 2 S 3 film was in the range of 2.538 μm to 2.695 μm.

第5図にすべての層が同時に3%増加した場合
と3%減少した場合の反射率波長依存性を示し
た。波長10.6μmでの反射率は0.4%程度となる
ので、両面反射防止膜付の場合の全反射率は約
0.8%となり実用上許される限界を示す。
FIG. 5 shows the dependence of reflectance on wavelength when all layers simultaneously increased by 3% and decreased by 3%. The reflectance at a wavelength of 10.6 μm is approximately 0.4%, so the total reflectance with anti-reflection coating on both sides is approximately
It is 0.8%, which is the limit that is allowed in practice.

この図からも明らかな様に本実施例によるKC1
用反射防止膜の光学的厚みとしては、第1の
As2S3膜が2.538μm〜2.695μm、PbF2膜が0.998
μm〜1.060μm、第2のAs2S3膜が1.086μm〜
1.154μmの範囲にあることが好適である。
As is clear from this figure, KC1 according to this example
The optical thickness of the anti-reflection film for
As2S3 film is 2.538μm ~ 2.695μm, PbF2 film is 0.998μm
μm ~ 1.060 μm, second As 2 S 3 film ~ 1.086 μm
Preferably, the thickness is in the range of 1.154 μm.

試料作製用のKC1基板は米国ジヤノス社製の直
径1インチ,厚み5mmの研磨済みのものを使用し
た。As2S3用蒸着ルツボはモリブテン(Mo)製の
とつぷつ防止用の穴開のふたを使用し基板温度70
℃、作業圧力1.5×10-6をTorr,蒸着速度12A
゜/secで蒸着した。PbF2は白金ボート(Pt)を
使用し基板温度118℃、作業圧力3×10-6をTorr
蒸着速度12A゜/secで蒸着した。蒸着中基板は
自公転運動し、膜厚の均一化を計つた。蒸着速度
は水晶振動子を使つて制御し、蒸着膜厚は波長
2.17μmの赤外光を使用した透過型光学膜厚制御
装置にて制御した。
The KC1 substrate used for sample preparation was a polished 1 inch diameter, 5 mm thick manufactured by Janos Corporation in the United States. The vapor deposition crucible for As 2 S 3 uses a molybdenum (Mo) lid with holes to prevent popping, and the substrate temperature is 70.
℃, working pressure 1.5×10 -6 Torr, deposition rate 12A
Deposition was performed at °/sec. PbF 2 uses a platinum boat (Pt) at a substrate temperature of 118℃ and a working pressure of 3×10 -6 Torr.
The deposition was performed at a deposition rate of 12 A°/sec. During the deposition, the substrate rotated around its axis to ensure uniform film thickness. The deposition rate is controlled using a crystal oscillator, and the thickness of the deposited film is determined by the wavelength.
Control was performed using a transmission type optical film thickness control device using 2.17 μm infrared light.

得られた試料の透過率スペクトルを第6図に示
した。波長8μmから13μmの波長領域での実測
値は計算値と良く一致している。
The transmittance spectrum of the obtained sample is shown in FIG. The measured values in the wavelength range from 8 μm to 13 μm agree well with the calculated values.

試料6個の波長10.6μm炭酸ガスレーザー光で
の吸収率の測定値はそれぞれ0.21%,0.13%,
0.13%,0.12%,0.23%,0.18%であり平均値と
して、0.17%が得られた。使用したKC1基板の平
均吸収率が、0.14%のオーダーであるので両者の
差をとると両面の反射防止膜の吸収率は0.03%程
度となり非常に吸収率の少ない反射防止膜が得ら
れた。すなわち20KWの大パワーレーザー光照射
下でも発生熱のパワーは6Wであるので十分
20KW用の反射防止膜として使用出来る。
The measured absorption rates of six samples using carbon dioxide laser light with a wavelength of 10.6 μm were 0.21%, 0.13%, and 0.13%, respectively.
They were 0.13%, 0.12%, 0.23%, and 0.18%, and the average value was 0.17%. Since the average absorption rate of the KC1 substrate used was on the order of 0.14%, taking the difference between the two, the absorption rate of the anti-reflection coating on both sides was about 0.03%, resulting in an anti-reflection coating with extremely low absorption rate. In other words, even under irradiation with a high power laser beam of 20KW, the power of the generated heat is 6W, which is sufficient.
Can be used as an anti-reflection film for 20KW.

第7図は得られた試料のHe−Neレーザ光帯域
における透過率スペクトルを示す。0.6328μmの
He−Neレーザ光に対しても約43%と高い透過率
を示している。
FIG. 7 shows the transmittance spectrum of the obtained sample in the He--Ne laser beam band. 0.6328μm
It also shows a high transmittance of approximately 43% for He-Ne laser light.

次にレーザー光の照射損傷閾値の実験を行つ
た。レーザー光照射損傷閾値はレーザー光の照射
条件、すなわちレーザービーム径と試料の大きさ
との相対的大小関係、試料の冷却の方法、空気中
か真空中か、又照射時間等にも依存するために一
義的に決めることは出来ない。そこで次下の様な
実験条件を設定した。
Next, we conducted an experiment to determine the damage threshold of laser beam irradiation. The laser beam irradiation damage threshold depends on the laser beam irradiation conditions, that is, the relative size relationship between the laser beam diameter and the sample size, the method of cooling the sample, whether it is in air or vacuum, and the irradiation time. It cannot be determined unequivocally. Therefore, we set the following experimental conditions.

照射実験は空気中で行つた。 The irradiation experiment was conducted in air.

試料の冷却は自然空冷とした。 The sample was cooled by natural air.

試料の直径は1インチで、レーザービーム径
は約1mmである。
The diameter of the sample is 1 inch, and the laser beam diameter is approximately 1 mm.

レーザー光源としては500W CW炭酸ガスレ
ーザーを使用し、直径1インチ、焦点距離2.5
インチのZnSeメニスカスレンズにて直径約7
mmのシングルモードのレーザービームを集光
し、エネルギー密度70KW/cm2のレーザー光下
に試料を2分間さらした後の試料表面を観察し
評価する。
A 500W CW carbon dioxide laser is used as the laser light source, with a diameter of 1 inch and a focal length of 2.5
Approximately 7 inch diameter ZnSe meniscus lens
A single mode laser beam of mm is focused, and the sample is exposed to the laser beam with an energy density of 70 KW/cm 2 for 2 minutes, and then the sample surface is observed and evaluated.

以上の条件下で本発明の試料の実験結果はいず
れも照射前後でその表面の変化が観察されなかつ
た。
In the experimental results of the samples of the present invention under the above conditions, no change in the surface was observed before and after irradiation.

最後に耐湿試験結果について述べる。研磨され
たKC1は相対湿度が80%以上に増加するにつれて
急激に水分を吸着し目方が増加する。そこで反射
防止膜のKC1に対する耐湿能力を加速試験する目
的で温度45℃、相対湿度95%の環境(タバイ恒温
恒湿槽PR−2型)に試料を入れ時間の経過ごと
に試料を取り出し表面の顕微鏡写真を撮つて損傷
の様子を調べた。
Finally, we will discuss the results of the moisture resistance test. Polished KC1 rapidly absorbs moisture and its grain weight increases as the relative humidity increases to over 80%. Therefore, in order to perform an accelerated test of the moisture resistance of anti-reflective coatings against KC1, samples were placed in an environment with a temperature of 45°C and relative humidity of 95% (Tabai constant temperature and humidity chamber PR-2 model), and samples were taken out at intervals of time to test the surface. Microscopic photographs were taken to examine the damage.

その結果、本発明の試料は650時間経過しても
反射防止膜の損傷が見られなかつた。但し、反射
防止膜に水滴をたらした場合には1分後ですでに
ピンホールを中心に水がしみ込み、膜の剥離がか
すかに観察される。以上の結果より通常の環境下
では特に表面に水を露結させない様に注意すれ
ば、十分実用に耐える事が判つた。
As a result, no damage to the antireflection film was observed in the sample of the present invention even after 650 hours. However, when water droplets are dropped on the antireflection film, the water has already seeped into the pinholes after one minute, and peeling of the film can be faintly observed. From the above results, it was found that under normal circumstances, as long as special care is taken not to allow water to condense on the surface, it can withstand practical use.

次に本発明によるKC1用反射防止膜の特性を列
挙する。
Next, the characteristics of the antireflection film for KC1 according to the present invention will be listed.

(1) 反射防止膜の波長10.6μm炭酸ガスレーザー
光による吸収率は0.015%のオーダーで20KW
という大パワー照射でも十分に使用出来る。
(1) The absorption rate of the anti-reflection film for carbon dioxide laser light with a wavelength of 10.6 μm is on the order of 0.015% and is 20KW.
It can be used even with high power irradiation.

(2) 温度45℃、相対湿度95%の環境試験650時間
経過後でも反射防止膜は何んら損傷を受けず実
用的な反射防止膜である。
(2) Even after 650 hours of environmental testing at a temperature of 45°C and relative humidity of 95%, the anti-reflective film did not suffer any damage and remains a practical anti-reflective film.

(3) 三層それぞれの光学的膜厚をそれぞれ同時に
3%増減しても反射率は0.4%以下におさえら
れる。
(3) Even if the optical thickness of each of the three layers is simultaneously increased or decreased by 3%, the reflectance can be kept below 0.4%.

(4) エネルギー密度70KW/cm2のレーザー光を2
分間照射しても反射防止膜は何んら損傷を受け
ない。
(4) Two laser beams with an energy density of 70KW/ cm2
The anti-reflective coating is not damaged in any way even after being irradiated for minutes.

(5) 波長0.6328μmのHe−Neレーザー光に対し
て透明であるのでビームアライメントが容易で
ある。
(5) Beam alignment is easy because it is transparent to He-Ne laser light with a wavelength of 0.6328 μm.

以上要するに本発明は塩化カリウム(KC1)基
板の少なくとも一表面上に、第1の三硫化砒素
(As2S3)膜、弗化鉛(PbF2)膜、第2の三硫化砒
素(As2S3)膜をこの順に形成した塩化カリウム
用反射防止膜を提供するもので、20KWという大
パワー炭酸ガスレーザーにも使用でき、光学特性
と耐水性の両方に優れた利点を有する。
In summary, the present invention provides a first arsenic trisulfide (As 2 S 3 ) film, a lead fluoride (PbF 2 ) film, and a second arsenic trisulfide (As 2 S 3 ) film on at least one surface of a potassium chloride ( KC1 ) substrate. This product provides an anti-reflection coating for potassium chloride in which S 3 ) films are formed in this order, and can be used with carbon dioxide lasers with a high power of 20KW, and has excellent optical properties and water resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に記載のKC1用反射
防止膜を説明するための断面図、第2図は第1層
のAs2S3の光学的膜厚を設定値より3%増減した
場合の反射率の波長依存性を示す図、第3図は第
2層のPbF2の光学的膜厚を設定値より3%増減
した場合の反射率の波長依存性を示す図、第4図
はKC1基板に隣接した第3層のAs2S3の光学的膜
厚を設定値より3%増減した場合の反射率の波長
依存性を示す図、第5図は3層それぞれを同時に
設定値より3%増減した場合の反射率依存性を示
す図、第6図は本発明の反射防止膜をKC1基板に
両面蒸着して出来たKC1窓の透過率スペクトルに
ついてで実測値と計算値の比較を行つた図、第7
図は本発明の反射防止膜のHe−Neレーザ光帯域
における透過率スペクトルである。 1……第1のAs2S3膜、2……PbF2蒸着膜、3
……第2のAs2S3膜、4……KC1基板。
Figure 1 is a cross-sectional view for explaining the antireflection film for KC1 described in the examples of the present invention, and Figure 2 is a diagram showing the optical thickness of the first layer As 2 S 3 increased or decreased by 3% from the set value. Figure 3 is a diagram showing the wavelength dependence of reflectance when the optical film thickness of PbF 2 in the second layer is increased or decreased by 3% from the set value. The figure shows the wavelength dependence of reflectance when the optical thickness of As 2 S 3 in the third layer adjacent to the KC1 substrate is increased or decreased by 3% from the set value. Figure 5 shows the wavelength dependence of the reflectance when each of the three layers is set at the same time. Figure 6 shows the reflectance dependence when the value increases or decreases by 3%. Figure 6 shows the transmittance spectrum of a KC1 window made by depositing the antireflection film of the present invention on both sides of a KC1 substrate, and shows the difference between the measured value and the calculated value. Figure 7 for comparison
The figure shows the transmittance spectrum of the antireflection film of the present invention in the He--Ne laser beam band. 1...First As 2 S 3 film, 2... PbF 2 vapor deposited film, 3
...Second As 2 S 3 film, 4...KC1 substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化カリウム基板の少なくとも一表面上に形
成され、塩化カリウム基板側より光学的膜厚が
2.538μm〜2.695μmの第1の三硫化砒素膜、光
学的膜厚が0.998μm〜1.060μmの弗化鉛膜、お
よび光学的膜厚が1.086μm〜1.154μmの第2の
三硫化砒素膜をこの順に形成したことを特徴とす
る塩化カリウム用反射防止膜。
1 Formed on at least one surface of the potassium chloride substrate, with the optical thickness increasing from the potassium chloride substrate side.
A first arsenic trisulfide film with an optical thickness of 2.538 μm to 2.695 μm, a lead fluoride film with an optical thickness of 0.998 μm to 1.060 μm, and a second arsenic trisulfide film with an optical thickness of 1.086 μm to 1.154 μm. An antireflection film for potassium chloride characterized by being formed in this order.
JP57104693A 1982-06-19 1982-06-19 Antireflection film for potassium chloride Granted JPS58221803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104693A JPS58221803A (en) 1982-06-19 1982-06-19 Antireflection film for potassium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104693A JPS58221803A (en) 1982-06-19 1982-06-19 Antireflection film for potassium chloride

Publications (2)

Publication Number Publication Date
JPS58221803A JPS58221803A (en) 1983-12-23
JPS6235641B2 true JPS6235641B2 (en) 1987-08-03

Family

ID=14387550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104693A Granted JPS58221803A (en) 1982-06-19 1982-06-19 Antireflection film for potassium chloride

Country Status (1)

Country Link
JP (1) JPS58221803A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263901A (en) * 1984-06-13 1985-12-27 Agency Of Ind Science & Technol Antireflection film for rotassium chloride
JPS6125103A (en) * 1984-07-14 1986-02-04 Horiba Ltd Optical parts for co2 laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075885A (en) * 1977-02-23 1978-02-28 Iowa State University Research Foundation, Inc. Rock borehole shear tester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075885A (en) * 1977-02-23 1978-02-28 Iowa State University Research Foundation, Inc. Rock borehole shear tester

Also Published As

Publication number Publication date
JPS58221803A (en) 1983-12-23

Similar Documents

Publication Publication Date Title
US3883214A (en) Protective anti-reflective coatings for alkali-metal halide optical components
US3871739A (en) System for protection from laser radiation
US4533593A (en) Antireflection coating for potassium chloride
JPS6235641B2 (en)
JPS6028057B2 (en) optical recording device
JP3355786B2 (en) Manufacturing method of optical components for infrared
US3493289A (en) Coated optical devices
JP3361621B2 (en) Anti-reflection coating for infrared region
US4612234A (en) Anti-reflection coating film suitable for application on optics made of mixed crystals of thallium iodide and thallium bromide
JPS6161642B2 (en)
JPH0688978A (en) Optical fiber element
JPS60263901A (en) Antireflection film for rotassium chloride
JPS6259281B2 (en)
Sparks 3.1 Materials for High-Power Window and Mirror Coatings and Multilayer-Dielectric Reflectors
JPS6240681B2 (en)
JPS6161641B2 (en)
JPS6212881B2 (en)
JPS6128962B2 (en)
JPH08310840A (en) Reflection preventing film
US4176207A (en) Non-birefringent thallium iodide thin films for surface protection of halide optical elements
JPS60245775A (en) Antireflecting film
Atanassov et al. Antireflection coatings on KCl single-crystal optical elements for optical systems of continuous and pulsed technological lasers
JPH0588002A (en) Infrared optical parts
JPS6128963B2 (en)
McLachlan et al. A NEW CHALCOGENIDE-GLASS ANTIREFLECTION COATING FOR KC1