JPH0588002A - Infrared optical parts - Google Patents

Infrared optical parts

Info

Publication number
JPH0588002A
JPH0588002A JP3248820A JP24882091A JPH0588002A JP H0588002 A JPH0588002 A JP H0588002A JP 3248820 A JP3248820 A JP 3248820A JP 24882091 A JP24882091 A JP 24882091A JP H0588002 A JPH0588002 A JP H0588002A
Authority
JP
Japan
Prior art keywords
film
thin film
optical
layer
caf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3248820A
Other languages
Japanese (ja)
Inventor
Shinji Uchida
真司 内田
Tsuguhiro Korenaga
継博 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3248820A priority Critical patent/JPH0588002A/en
Publication of JPH0588002A publication Critical patent/JPH0588002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To provide the IR optical parts having high photosensitive resistance, reliability and transmission performance with materials having relatively low toxicity. CONSTITUTION:An Sb2S3 film 11 is used as a 1st layer on a base body 10 consisting of a metal halide and a CaF2 film 12 is used as a 2nd layer. Consequently, the extremely stable IR optical parts are obtd. Reflection is particularly effectively prevented if particularly the optical film thickness of the Sb2S3 film 11 is specified to lambda/2 with the central wavelength designated as lambda and the optical film thickness of the CaF2 film 12 to lambda/ 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学デバイスなどに用
いられる赤外光学部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to infrared optical parts used for optical devices and the like.

【0002】[0002]

【従来の技術】現在、レーザ応用機器、あるいは熱画像
用センサなどの赤外光用の光学デバイスに用いられる光
学部品材料は、セレン化亜鉛(ZnSe)、ガリウムヒ
素(GaAs)、ゲルマニウム(Ge)などの赤外透過
材料から、光学研磨法により成形されている。この方法
では、CVD法などにより製造された結晶に、砥粒を用
いて荒研磨から仕上げ研磨まで、何段階もの工程を経て
鏡面を形成するため、価格は非常に高価であった。
2. Description of the Related Art Currently, optical component materials used in laser-applied equipment or infrared optical devices such as thermal imaging sensors are zinc selenide (ZnSe), gallium arsenide (GaAs), and germanium (Ge). It is formed by an optical polishing method from an infrared transmitting material such as. In this method, a crystal surface manufactured by a CVD method or the like is used to form a mirror surface through a multi-step process from rough polishing to finish polishing using abrasive grains, so that the price is very expensive.

【0003】これに対し、より安価な製造方法として、
金属ハロゲン化物からなる赤外光学部材をその融点以下
で加圧成形して作成する方法が有望視されている。(例
えば特開昭59−212801号公報参照)しかし、こ
の材料の欠点として、例えばCO2レ−ザ−の10.6ミク
ロンの波長の光を透過させた場合に、基体界面での反射損
失が約11%も生じ、伝達効率が劣化してしまうという
課題を有していた。
On the other hand, as a cheaper manufacturing method,
A method of forming an infrared optical member made of a metal halide by pressure molding below its melting point is considered promising. (See, for example, Japanese Patent Laid-Open No. 59-212801.) However, as a drawback of this material, for example, when light of a wavelength of 10.6 .mu.m of a CO.sub.2 laser is transmitted, the reflection loss at the substrate interface is about. There is a problem that the transmission efficiency is deteriorated by 11%.

【0004】一般にこれら材料は、窓材、レンズ等の光
学部品として使用されることが多く、光学部品の表面だ
けでなく、表面と裏面の2つの界面で反射損失が生じ、
実際上約22%程度の反射損失が生じ、伝達効率として
は約78%程度に劣化してしまうという問題を有してい
た。またこのことは、単に伝達効率低下の問題だけでな
く、反射した光がフレア−、ゴ−スト等の不要光となっ
て、使用上大きな問題をきたすことが多かった。
Generally, these materials are often used as optical components such as window materials and lenses, and reflection loss occurs not only on the surface of the optical component but also on the two interfaces of the front surface and the back surface.
Actually, there was a problem that a reflection loss of about 22% occurs and the transmission efficiency deteriorates to about 78%. This is not only a problem of reduction in transmission efficiency, but also reflected light becomes unnecessary light such as flare and ghost, which often causes a serious problem in use.

【0005】この課題に対しては、特開昭60−125
801号公報に示されているように、基体上に2層構造
からなる反射防止膜を形成して伝達効率を向上させよう
という試みが行われてきた。
To solve this problem, JP-A-60-125
As disclosed in Japanese Patent No. 801, an attempt has been made to improve the transmission efficiency by forming an antireflection film having a two-layer structure on a substrate.

【0006】例えば、基体上にKCl、NaCl等のア
ルカリハライド膜を形成し、その上に臭化銀、塩化銀、
臭化タリウム、ヨウ化タリウム、もしくは硫化亜鉛、ゲ
ルマニウム、シリコン、テルル化カドミウム、ヒ素化ガ
リウムを形成して、これら2層膜によって反射防止機能
を実現し、反射損失を低減化することが行われてきた。
For example, an alkali halide film such as KCl or NaCl is formed on a substrate, and silver bromide, silver chloride,
Thallium bromide, thallium iodide, or zinc sulfide, germanium, silicon, cadmium telluride, or gallium arsenide is formed, and the antireflection function is realized by these two-layer films to reduce reflection loss. Came.

【0007】また、この材料は、更に、波長約0.4ミクロ
ン以下の光が照射されると材料が感光し、可視、赤外域
波長での光学特性が著しく劣化してしまうという欠点を
有していた。すなわち、太陽光もしくは紫外光下に数分
程度放置するだけで、みるみる特性が劣化し、透過率が
数%以下になってしまうという実用上極めて大きな問題
を有していた。
Further, this material has a drawback that when it is irradiated with light having a wavelength of about 0.4 micron or less, the material is exposed to light and the optical characteristics at visible and infrared wavelengths are significantly deteriorated. Was there. That is, there is a practically very large problem that the characteristics are deteriorated and the transmittance is reduced to several percent or less by leaving it for a few minutes under sunlight or ultraviolet light.

【0008】そこで、赤外線工学(1963年、近代科
学社出版、P124)にも記述されている様に、基体上
にSb23膜をコ−ティングすることで、波長約0.4ミ
クロン以下の光を遮断して、耐感光性を改善しようという
試みがなされてきた。
Therefore, as described in Infrared Engineering (1963, published by Modern Science Co., Ltd., P124), by coating an Sb 2 S 3 film on a substrate, a wavelength of about 0.4 μm or less can be obtained. Attempts have been made to improve the resistance to photosensitivity by blocking the light of the above.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た方法では以下のような課題を有していた。すなわち、
KCl、NaCl等のアルカリハライド膜は、水分に対
して極めて弱いために、第2層目の薄膜をアルカリハラ
イド膜の保護膜として、図11にも示すような非常に製
作上困難な構成で成膜しなければならなかった。このこ
とは、量産工程が複雑になるだけでなくコストアップに
つながり実用上大きな課題であった。
However, the above-mentioned method has the following problems. That is,
Since an alkali halide film such as KCl or NaCl is extremely weak against moisture, the second thin film is used as a protective film for the alkali halide film, and it is very difficult to manufacture as shown in FIG. Had to film. This not only complicates the mass production process but also increases the cost, which is a serious problem in practical use.

【0010】また、第1層のアルカリハライド膜の上に
形成される第2層目の薄膜に、僅かでもピンホ−ル等の
微小な欠陥が存在すると、この欠陥から水分がアルカリ
ハライド膜へ浸入し、膜を侵してしまうという問題も有
していた。特に、アルカリハライド膜自体は潮壊性があ
るために、一カ所でも欠陥があると、この欠陥を通じて
どんどん水分が浸入し最終的にはアルカリハライド膜が
溶けてしまうという実用上極めて大きな課題を有してい
た。
Further, if the second thin film formed on the alkali halide film of the first layer has minute defects such as pinholes, moisture penetrates into the alkali halide film from these defects. However, it also has a problem of attacking the film. In particular, since the alkali halide film itself is tidal, if there is a defect even in one place, moisture will infiltrate more and more through this defect, and eventually the alkali halide film will have a very large problem in practical use. Was.

【0011】また、第2層目に臭化銀、塩化銀の薄膜を
用いた場合には、この材料自体感光性があるために約
0.4ミクロン以下の波長の光があたった時、第2層目の薄
膜自体感光してしまい、特に赤外域での光学特性が著し
く劣化してしまうという課題を有していた。
When a thin film of silver bromide or silver chloride is used as the second layer, the material itself has photosensitivity, and therefore, when exposed to light having a wavelength of about 0.4 micron or less, There is a problem that the second layer thin film itself is exposed to light, and the optical characteristics are significantly deteriorated particularly in the infrared region.

【0012】また、臭化タリウム、ヨウ化タリウム、硫
化亜鉛、テルル化カドミウム、ヒ素化ガリウムは、比較
的強い毒性があるため、薄膜作成上もしくは使用上も安
全性という点で課題を有していた。
Further, thallium bromide, thallium iodide, zinc sulfide, cadmium telluride, and gallium arsenide have relatively strong toxicity, and therefore have a problem in safety in forming or using a thin film. It was

【0013】また、2層目としてシリコン、ゲルマニウ
ムを用いた場合は、基体との線膨張係数が大きく違うこ
とから、付着性、信頼性等に問題があり、特に温度が大
きく変わる使用環境下では実用上大きな課題を有してい
た。
Further, when silicon or germanium is used as the second layer, the linear expansion coefficient is largely different from that of the substrate, so that there is a problem in adhesion, reliability and the like, especially in a use environment where the temperature greatly changes. It had a big problem in practical use.

【0014】また、Sb23を用いた場合は、感光性は
改善されるもの、屈折率が約2.6〜3.0と比較的大
きいために、例えば図12に示すような光学特性とな
り、光学性能上大きな課題を有していた。
When Sb 2 S 3 is used, the photosensitivity is improved, but the refractive index is relatively large at about 2.6 to 3.0, so that the optical characteristics shown in FIG. 12, for example, are used. Therefore, there was a big problem in optical performance.

【0015】ここで、図12の縦軸は透過率で、横軸が
波長(単位;ミクロン)を示す。すなわち、基体のみの透過
率特性は120であるが、基体上にSb23をコ−ティ
ングするだけで、透過率特性121に示すように、著し
く透過率が低下してしまう。すなわち、ある特定の波長
のみで基体と同じ透過率を示し、その他波長では基体の
透過率よりも低下してしまう。これは、薄膜の干渉効果
によるもので、原理上なくせいない問題である。
Here, the vertical axis of FIG. 12 represents the transmittance and the horizontal axis represents the wavelength (unit: micron). That is, the transmittance characteristic of only the substrate is 120, but simply coating Sb 2 S 3 on the substrate causes the transmittance to be significantly reduced as shown by the transmittance characteristic 121. That is, it shows the same transmittance as that of the substrate only at a certain specific wavelength, and becomes lower than the transmittance of the substrate at other wavelengths. This is due to the interference effect of the thin film and is a problem that cannot be eliminated in principle.

【0016】本発明は上記問題に鑑み、耐感光性、信頼
性、透過性能が高い赤外光学部品を、比較的毒性の低い
材料で提供する事を目的としている。
In view of the above problems, it is an object of the present invention to provide an infrared optical component having high photosensitivity, reliability and transmission performance with a material having relatively low toxicity.

【0017】[0017]

【課題を解決するための手段】上記問題を解決するため
本発明の赤外光学部品は、基体上に、Sb23からなる
薄膜層と、CaF2からなる薄膜層を少なくとも2層を
備えたものである。
In order to solve the above problems, an infrared optical component of the present invention comprises at least two thin film layers made of Sb 2 S 3 and CaF 2 on a substrate. It is a thing.

【0018】[0018]

【作用】本発明は上記した構成によって、Sb23を用
いることによって耐感光性を改善し、更にCaF2との
多層構造にすることによって反射防止効果を発現させ
て、透過率特性を改善することとなる。
According to the present invention, Sb 2 S 3 is used to improve the photosensitivity, and a multilayer structure with CaF 2 is used to exhibit an antireflection effect and improve the transmittance characteristics. Will be done.

【0019】[0019]

【実施例】以下本発明の実施例の赤外光学部品につい
て、図面を参照しながら説明する。
EXAMPLES Infrared optical components of examples of the present invention will be described below with reference to the drawings.

【0020】(実施例1)図1は本発明の実施例におけ
る赤外光学部品の構成を示すものである。図1におい
て、10は基体であり、11はSb23膜、12はCa
2膜である。基体10としては、例えば、塩化銀・臭
化銀の固溶体、または、臭化タリウム・ヨウ化タリウム
の固溶体等の金属ハロゲン化物を用いる。本実施例では
塩化銀の固溶体を用いた。
(Embodiment 1) FIG. 1 shows the structure of an infrared optical component in an embodiment of the present invention. In FIG. 1, 10 is a substrate, 11 is a Sb 2 S 3 film, and 12 is Ca.
It is an F 2 film. As the substrate 10, for example, a metal halide such as a solid solution of silver chloride / silver bromide or a solid solution of thallium bromide / thallium iodide is used. In this example, a solid solution of silver chloride was used.

【0021】また、ここでは膜11、12は、基体10
の平面上に形成される場合を示したが、曲面もしくはレ
ンズ形状であってもかまわない。また、図1は、基体1
0の片面にのみ膜が形成された構造について示している
が、両面にコ−ティングしてもかまわない。
Further, here, the films 11 and 12 are formed of the substrate 10.
Although it is shown that it is formed on the plane, it may be a curved surface or a lens shape. In addition, FIG.
Although the structure in which the film is formed only on one surface of 0 is shown, it may be coated on both surfaces.

【0022】ここで、CaF2は一般に、低屈折率の物
質であり、約0.15ミクロン〜8ミクロンの波長範囲
で透明であり、窓材等によく用いられている無毒で良好
な物質で、10ミクロン付近の波長で大きな吸収がある
ことが知られている。しかし、実験検討の結果、膜厚が
数ミクロン程度の薄膜にして使用すれば光の吸収の問題
がほとんどなくなることが判明した。
Here, CaF 2 is generally a substance having a low refractive index, is transparent in the wavelength range of about 0.15 μm to 8 μm, and is a nontoxic and good substance that is often used for window materials and the like. It is known that there is a large absorption at wavelengths near 10 microns. However, as a result of experimental examination, it was found that the problem of light absorption is almost eliminated when the thin film having a thickness of about several microns is used.

【0023】従って、このような低屈折率で無毒な薄膜
をSb23上に形成することは、反射防止理論上もしく
は実用上、非常に有用である。
Therefore, forming such a low refractive index, non-toxic thin film on Sb 2 S 3 is very useful in terms of antireflection theory or in practice.

【0024】そこで、Sb23膜11とCaF2膜12
を、例えば真空蒸着法を用いて成膜し、その分光透過率
を測定した結果を図2に曲線20で示す。ここで、縦軸
は透過率(単位;%)であり、横軸は波数と波長で示し
てある。また、特性曲線21は塩化銀基板のみの分光透
過率特性を示している。Sb23膜の光学的膜厚はnd
=5.6ミクロンであり、CaF2膜の光学的膜厚はnd
=2.8ミクロンである。
Therefore, the Sb 2 S 3 film 11 and the CaF 2 film 12
Is formed by, for example, a vacuum vapor deposition method, and the spectral transmittance is measured. The result is shown by a curve 20 in FIG. Here, the vertical axis represents the transmittance (unit:%), and the horizontal axis represents the wave number and the wavelength. The characteristic curve 21 shows the spectral transmittance characteristic of only the silver chloride substrate. The optical thickness of the Sb 2 S 3 film is nd
= 5.6 μm, the optical thickness of the CaF 2 film is nd
= 2.8 microns.

【0025】これより、10ミクロン付近の波長範囲
で、透過率が基板の透過率を大きく上回る良好な特性が
実現できていることがわかる。
From this, it can be seen that excellent characteristics in which the transmittance greatly exceeds the transmittance of the substrate can be realized in the wavelength range near 10 microns.

【0026】これは、基体上にSb23膜だけでなく、
CaF2膜をもうけた2層膜構造としているために、こ
れら薄膜の干渉効果で反射防止効果が発現し、従来のS
23単層膜よりも著しく透過率特性が改善された光学
部品が実現できている。
This is not only the Sb 2 S 3 film on the substrate,
Since it has a two-layer film structure with a CaF 2 film, the interference effect of these thin films produces an antireflection effect, and the conventional S
Optical components having significantly improved transmittance characteristics as compared with the b 2 S 3 single-layer film have been realized.

【0027】図3に本赤外光学部品の可視領域での光学
特性を示す。これより、波長約0.4ミクロン以下の透
過率は約0%であり、塩化銀材料が感光する波長領域の
光が完全に遮断できていることがわかる。
FIG. 3 shows the optical characteristics of the present infrared optical component in the visible region. From this, it is understood that the transmittance at a wavelength of about 0.4 micron or less is about 0%, and the light in the wavelength region where the silver chloride material is sensitive can be completely blocked.

【0028】本実施例の光学部品を、太陽光もしくは人
工紫外光環境下に1000時間程度放置した結果、透過
率特性は全く変化しなかった。これは、本光学部品にお
いては、塩化銀材料が感光しやすい波長の光が完全に遮
断できたためであり、著しく耐光性が改善された光学部
品が実現できていることがわかる。
As a result of leaving the optical component of this example in the environment of sunlight or artificial ultraviolet light for about 1000 hours, the transmittance characteristics did not change at all. This is because the present optical component was able to completely block the light of the wavelength that the silver chloride material easily sensitized, and it can be seen that an optical component having significantly improved light resistance was realized.

【0029】また、ここでは、10ミクロンの付近の波
長域で透過率が基体透過率よりも改善される例を中心に
説明したが、Sb23及びCaF2膜は0.7〜13ミク
ロンの波長域において透明であるため、各層の光学的膜
厚を変更するだけでこれら波長範囲で有用な赤外光学部
品を実現できることはいうまでもない。
Further, here, the description has been made focusing on an example in which the transmittance is improved in comparison with the substrate transmittance in the wavelength region around 10 microns, but the Sb 2 S 3 and CaF 2 films are 0.7 to 13 microns. Needless to say, since it is transparent in the wavelength range of 1, the useful infrared optical component can be realized in these wavelength ranges only by changing the optical film thickness of each layer.

【0030】また、本実施例では、基体の片面に薄膜を
形成した例について説明したが、両面に形成しても構わ
ない。両面に形成すればさらに透過率特性が向上するこ
とは言うまでもない。
Further, in the present embodiment, an example in which the thin film is formed on one surface of the substrate has been described, but it may be formed on both surfaces. It goes without saying that the transmittance characteristics are further improved if they are formed on both sides.

【0031】また、Sb23及びCaF2は潮壊性等の
問題がないだけでなく、比較的毒性の少ない材料である
ため、この点でも極めて実用上有用である。
Further, Sb 2 S 3 and CaF 2 are not only free from problems such as tidal property, but are relatively less toxic materials, so that they are also very practically useful in this respect.

【0032】(実施例2)本実施例では2層構造のもの
について説明したが、次に3層構造の第2の実施例につ
いて図4を用いて説明する。
(Embodiment 2) In this embodiment, the two-layer structure has been described. Next, the second embodiment having the three-layer structure will be described with reference to FIG.

【0033】基体40上に第1層目としてSb23膜4
1を、第2層目としてCaF2膜41を、第3層目とし
てSb23膜43を形成する。形成方法としては第1の
実施例と同様真空蒸着法を用いる。また、基体40とし
ては例えば上記実施例1と同様に塩化銀を用いる。
The Sb 2 S 3 film 4 as the first layer is formed on the substrate 40.
1, the CaF 2 film 41 is formed as the second layer, and the Sb 2 S 3 film 43 is formed as the third layer. As the forming method, the vacuum evaporation method is used as in the first embodiment. Further, as the base 40, for example, silver chloride is used as in the first embodiment.

【0034】ここで、例えば各層の光学的膜厚を中心波
長λ=10ミクロンとした場合、第1層目のSb23
をλ/16、第2層目のCaF2膜をλ/8、第3層目
のSb23膜をλ/16に設定した場合の分光透過率特
性を図5に示す。
Here, for example, when the optical thickness of each layer is set to a central wavelength λ = 10 μm, the first layer Sb 2 S 3 film is λ / 16, and the second layer CaF 2 film is λ /. 8 shows the spectral transmittance characteristic when the third layer Sb 2 S 3 film is set to λ / 16.

【0035】特性曲線50が基体40の分光透過率であ
り、曲線51が基体40上に3層構造の薄膜を作製した
場合の分光透過率である。このように、基体50上に3
層構造の薄膜を成膜することによって、10ミクロン付
近の透過率が著しく改善されていることがわかる。
The characteristic curve 50 is the spectral transmittance of the substrate 40, and the curve 51 is the spectral transmittance when a thin film having a three-layer structure is formed on the substrate 40. In this way, 3
It can be seen that by forming a thin film having a layer structure, the transmittance in the vicinity of 10 microns is remarkably improved.

【0036】本実施例も2層構造の第1の実施例と同様
に基体の片面のみに成膜した例について説明したが、両
面に成膜しても全く問題ない。両面にすることで透過率
を更に向上できる。
In this embodiment, as in the first embodiment having a two-layer structure, an example in which the film is formed on only one side of the substrate has been described, but there is no problem even if the film is formed on both sides. By making both sides, the transmittance can be further improved.

【0037】本実施例の紫外可視領域での分光透過率特
性を図6に示す。これより、0.4ミクロン以下の塩化
銀基板が感光しやすい波長の光が遮断されていることが
わかる。本実施例の光学部品も実施例1と同様に、太陽
光もしくは人工紫外光環境下に1000時間程度放置し
た結果、透過率特性は全く変化しなく、著しく耐光性が
改善された光学部品が実現できていることが確認され
た。
FIG. 6 shows the spectral transmittance characteristics in the ultraviolet-visible region of this example. From this, it can be seen that the light having a wavelength that is easily exposed to light by the silver chloride substrate of 0.4 μm or less is blocked. As with Example 1, the optical component of this example was left in the environment of sunlight or artificial ultraviolet light for about 1000 hours. As a result, the transmittance characteristics did not change at all, and an optical component with significantly improved light resistance was realized. It was confirmed that it was done.

【0038】0.4ミクロン以下の光を遮断できるSb2
3膜の膜厚を調べた結果、膜厚が約0.2ミクロン以上
あれば紫外可視領域の光は遮断でき、耐感光性能に問題
がないことが判明した。
Sb 2 capable of blocking light of 0.4 micron or less
As a result of examining the film thickness of the S 3 film, it was found that if the film thickness is about 0.2 μm or more, light in the UV-visible region can be blocked, and there is no problem in the anti-photosensitive property.

【0039】従って、Sb23膜の膜厚を0.2ミクロ
ン以上に設定することは、耐感光性能上きわめて有用で
あるといえる。
Therefore, it can be said that setting the thickness of the Sb 2 S 3 film to 0.2 μm or more is extremely useful in terms of anti-photosensitivity.

【0040】図7に、HeNeレ−ザ−光の透過率とS
23膜の膜厚の関係を示す。膜厚の増大と共に透過率
は著しく低下し、膜厚約1.0ミクロンで透過率が約1
%程度に低下することがわかる。
FIG. 7 shows the transmittance of HeNe laser light and S.
The relationship of the film thickness of the b 2 S 3 film is shown. The transmittance decreases remarkably as the film thickness increases, and the transmittance is about 1 μm at the film thickness of about 1.0 μm.
It can be seen that the value drops to about%.

【0041】赤外光学部品の検査には、HeNeレ−ザ
−の透過率が片面で約1%必要とされているために、S
23膜の膜厚を約1ミクロン以下に設定することは、
検査工程上きわめて有用であるといえる。
For the inspection of infrared optical parts, the transmittance of HeNe laser is required to be about 1% on one side.
Setting the thickness of the b 2 S 3 film to about 1 micron or less
It can be said that it is extremely useful in the inspection process.

【0042】従って、HeNeレ−ザ−光の透過性およ
び耐感光性の点から、膜厚を0.2ミクロンから1.0ミ
クロンに設定することは非常に有用であるといえる。
Therefore, it can be said that it is very useful to set the film thickness from 0.2 micron to 1.0 micron from the viewpoint of HeNe laser light transmission and photosensitivity.

【0043】次に、反射防止検討をした結果、第1層目
のSb23膜と第3層目のSb23の光学的膜厚が等し
くて、かつSb23膜の光学的膜厚とCaF2膜の光学
的膜厚の和が約λ/5の関係を満たすとき極めて良好な
光学特性が実現できることを見いだした。
Next, a result of the anti-reflection study, Optics equal optical thickness of the first layer of Sb 2 S 3 film and a third layer of Sb 2 S 3 is, and Sb 2 S 3 film It has been found that extremely good optical characteristics can be realized when the sum of the optical film thickness and the optical film thickness of the CaF 2 film satisfies the relationship of about λ / 5.

【0044】本実施例には、その一例としてSb23
の光学的膜厚がλ/16でCaF2膜の光学的膜厚がλ
/8の場合を示したが、図8にSb23の光学的膜厚が
λ/40でCaF2膜の光学的膜厚がλ*7/40の場
合について示す。
In this embodiment, as an example, the optical film thickness of the Sb 2 S 3 film is λ / 16 and the optical film thickness of the CaF 2 film is λ / 16.
8 is shown. FIG. 8 shows the case where the optical film thickness of Sb 2 S 3 is λ / 40 and the optical film thickness of the CaF 2 film is λ * 7/40.

【0045】10ミクロン付近の波長範囲において、良
好な透過率特性が実現できている。第2の実施例と含め
て本関係式が極めて有用であることがわかる。
Good transmittance characteristics can be realized in the wavelength range around 10 microns. It can be seen that this relational expression is extremely useful, including that of the second embodiment.

【0046】(実施例3)次に、本発明の第3の実施例
について図9を用いて説明する。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG.

【0047】第1層目はCaF2膜、第2層目はSb2
3膜、第3層目はCaF2膜である。中心波長λが10ミ
クロンで、各層の光学的膜厚が、第1層目がλ/2、第
2層目がλ/2、第3層目がλ/4の場合の透過率特性
を図10に示す。ここで、特性曲線100が基体90単
体の透過率特性で、曲線101が基体90上に薄膜を成
膜した場合の特性を示し、基体100として、塩化銀を
用いている。
The first layer is a CaF 2 film and the second layer is Sb 2 S
The third film and the third layer are CaF 2 films. The transmittance characteristics when the center wavelength λ is 10 μm and the optical thickness of each layer is λ / 2 for the first layer, λ / 2 for the second layer, and λ / 4 for the third layer. Shown in 10. Here, the characteristic curve 100 shows the transmittance characteristic of the base body 90 alone, and the curve 101 shows the characteristic when a thin film is formed on the base body 90. As the base body 100, silver chloride is used.

【0048】これより、10ミクロン付近の波長帯で良
好な透過率特性が得られていることがわかる。
From this, it can be seen that good transmittance characteristics are obtained in the wavelength band around 10 microns.

【0049】本実施例の光学部品も、実施例1、2と同
様に、太陽光もしくは人工紫外光環境下に1000時間
程度放置した結果、透過率特性は全く変化しなく、著し
く耐光性が改善された光学部品が実現できていることが
わかった。
As with Examples 1 and 2, the optical components of this example were also left in the sunlight or artificial ultraviolet light environment for about 1000 hours. As a result, the transmittance characteristics did not change at all, and the light resistance was remarkably improved. It was found that the optical components described above were realized.

【0050】従って、本構成を用いることにより耐感光
性が良好で、しかも透過率が極めて高い高性能な赤外光
学部品が実現できる。
Therefore, by using this structure, it is possible to realize a high-performance infrared optical component having excellent photosensitivity and extremely high transmittance.

【0051】[0051]

【発明の効果】以上のように本発明は、基体上にSb2
3からなる薄膜層とCaF2からなる薄膜層を設けるこ
とにより、耐感光性、透過性能が高い赤外光学部品を、
比較的毒性の低い材料で提供することができる。実用
上、極めて有用であると言える。
As described above, according to the present invention, Sb 2 is formed on the substrate.
By providing a thin film layer made of S 3 and a thin film layer made of CaF 2, an infrared optical component having high light resistance and high transmission performance can be obtained.
It can be provided with a material having relatively low toxicity. It can be said that it is extremely useful in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外光学部品の第1の実施例の構成を
示す外観図
FIG. 1 is an external view showing a configuration of a first embodiment of an infrared optical component of the present invention.

【図2】同実施例部品の赤外域の光学特性図FIG. 2 is an optical characteristic diagram in the infrared region of the component of the same example.

【図3】同実施例部品の紫外可視域での光学特性図FIG. 3 is an optical characteristic diagram in the UV-visible region of the component of the same example.

【図4】本発明の赤外光学部品の第2の実施例の構成を
示す外観図
FIG. 4 is an external view showing the configuration of a second embodiment of the infrared optical component of the present invention.

【図5】同実施例部品の赤外域の光学特性図FIG. 5 is an optical characteristic diagram in the infrared region of the component of the same example.

【図6】同実施例部品の紫外可視域での光学特性図FIG. 6 is an optical characteristic diagram in the UV-visible region of the component of the same example.

【図7】Sb23膜の膜厚と透過率の関係図FIG. 7 is a diagram showing the relationship between the film thickness and the transmittance of the Sb 2 S 3 film.

【図8】同実施例部品の赤外域の光学特性図FIG. 8 is an optical characteristic diagram in the infrared region of the component of the same example.

【図9】本発明の赤外光学部品の第3の実施例の構成を
示す外観図
FIG. 9 is an external view showing the configuration of a third embodiment of the infrared optical component of the present invention.

【図10】同実施例部品の赤外域の光学特性図FIG. 10 is an optical characteristic diagram in the infrared region of the component of the same example.

【図11】従来の光学部品の外観図FIG. 11 is an external view of a conventional optical component.

【図12】同従来光学部品の光学特性図FIG. 12 is an optical characteristic diagram of the conventional optical component.

【符号の説明】[Explanation of symbols]

10、40、90、110、120 基体 11、41、43、92 Sb23 12、42、91、93 CaF2 20、51、101 本発明の光学特性 21、50、100 基体の光学特性 111 KCl 112 CdTe 121 Sb23単層膜10, 40, 90, 110, 120 Substrate 11, 41, 43, 92 Sb 2 S 3 12, 42, 91, 93 CaF 2 20, 51, 101 Optical properties of the present invention 21, 50, 100 Substrate optical properties 111 KCl 112 CdTe 121 Sb 2 S 3 single layer film

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基体上に、Sb23からなる薄膜層と、C
aF2からなる薄膜層を少なくとも2層を備えた赤外光
学部品。
1. A thin film layer made of Sb 2 S 3 and C on a substrate.
An infrared optical component having at least two thin film layers made of aF 2 .
【請求項2】基体上に第1層目としてSb23からなる
薄膜層を、第2層目としてCaF2からなる薄膜層を備
えた赤外光学部品。
2. An infrared optical component having a thin film layer made of Sb 2 S 3 as a first layer and a thin film layer made of CaF 2 as a second layer on a substrate.
【請求項3】第1層目のSb23からなる薄膜層の光学
的膜厚が、中心波長をλとして、約λ/2であり、第2
層目のCaF2からなる薄膜層の光学的膜厚が約λ/4
である請求項2記載の赤外光学部品 。
3. The optical film thickness of the thin film layer of Sb 2 S 3 of the first layer is about λ / 2, where λ is the central wavelength, and
The optical thickness of the CaF 2 thin film layer is about λ / 4
The infrared optical component according to claim 2, wherein
【請求項4】基体上に第1層目としてSb23からなる
薄膜層を、第2層目としてCaF2からなる薄膜層を、
第3層目としてSb23からなる薄膜層を備えた赤外光
学部品。
4. A thin film layer made of Sb 2 S 3 as a first layer and a thin film layer made of CaF 2 as a second layer on a substrate,
An infrared optical component including a thin film layer made of Sb 2 S 3 as the third layer.
【請求項5】第1層目のSb23からなる薄膜層の膜厚
と第3層目のSb23からなる薄膜層の膜厚の和が0.
2ミクロンから1ミクロン以下である請求項4記載の赤
外光学部品 。
5. The sum of the thickness of the first layer thickness of the thin film layer made of Sb 2 S 3 of the third layer thin film composed of Sb 2 S 3 of 0.
The infrared optical component according to claim 4, which has a size of 2 to 1 micron.
【請求項6】第1層目のSb23からなる薄膜層の光学
的膜厚と第3層目のSb23からなる薄膜層の光学的膜
厚が等しく、かつSb23からなる薄膜層の光学的膜厚
とCaF2からなる薄膜層の光学的膜厚の和がλ/5で
ある請求項4記載の赤外光学部品 。
6. The optical film thickness of the thin film layer made of Sb 2 S 3 of the first layer and the optical film thickness of the thin film layer made of Sb 2 S 3 of the third layer are equal and Sb 2 S 3 The infrared optical component according to claim 4, wherein the sum of the optical film thickness of the thin film layer made of and the optical film thickness of the thin film layer made of CaF 2 is λ / 5.
【請求項7】第1層目のSb23からなる薄膜層の光学
的膜厚が、中心波長をλとして、約λ/16であり、第
2層目のCaF2からなる薄膜層の光学的膜厚が約λ/
8であり、第3層目のSb23からなる薄膜層の光学的
膜厚が約λ/16である請求項4記載の赤外光学部品
7. The optical film thickness of the first thin film layer made of Sb 2 S 3 is about λ / 16, where λ is the central wavelength, and the second thin film layer made of CaF 2 is Optical film thickness is about λ /
8. The infrared optical component according to claim 4, wherein the third thin film layer made of Sb 2 S 3 has an optical film thickness of about λ / 16.
【請求項8】基体上に第1層目としてCaF2からなる
薄膜層を、第2層目としてSb23からなる薄膜層を、
第3層目としてCaF2からなる薄膜層を備えた赤外光
学部品。
8. A thin film layer made of CaF 2 as a first layer and a thin film layer made of Sb 2 S 3 as a second layer on a substrate,
An infrared optical component provided with a thin film layer made of CaF 2 as the third layer.
【請求項9】第1層目のCaF2からなる薄膜層の光学
的膜厚が、中心波長をλとして、約λ/2であり、第2
層目のSb23からなる薄膜層の光学的膜厚が約λ/2
であり、第3層目のCaF2からなる薄膜層の光学的膜
厚が約λ/4である請求項8記載の赤外光学部品 。
9. The optical film thickness of the first thin film layer made of CaF 2 is about λ / 2, where λ is the central wavelength, and
The optical film thickness of the thin film layer of Sb 2 S 3 of the second layer is about λ / 2.
9. The infrared optical component according to claim 8, wherein the third thin film layer made of CaF 2 has an optical film thickness of about λ / 4.
【請求項10】基体が金属ハロゲン化物であることを特
徴とする請求項1、2、4、8の何れかに記載の赤外光
学部品。
10. The infrared optical component according to claim 1, wherein the substrate is a metal halide.
JP3248820A 1991-09-27 1991-09-27 Infrared optical parts Pending JPH0588002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3248820A JPH0588002A (en) 1991-09-27 1991-09-27 Infrared optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248820A JPH0588002A (en) 1991-09-27 1991-09-27 Infrared optical parts

Publications (1)

Publication Number Publication Date
JPH0588002A true JPH0588002A (en) 1993-04-09

Family

ID=17183901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248820A Pending JPH0588002A (en) 1991-09-27 1991-09-27 Infrared optical parts

Country Status (1)

Country Link
JP (1) JPH0588002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259124A (en) * 2005-03-16 2006-09-28 Kawai Optical Co Ltd Cold mirror
JPWO2005116696A1 (en) * 2004-05-26 2008-04-03 株式会社タムロン Anti-reflection coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005116696A1 (en) * 2004-05-26 2008-04-03 株式会社タムロン Anti-reflection coating
JP2006259124A (en) * 2005-03-16 2006-09-28 Kawai Optical Co Ltd Cold mirror

Similar Documents

Publication Publication Date Title
US3516720A (en) Thin film coating for sunglasses
US3922068A (en) Multi-layer anti-reflection coating with high and low index material
US3410625A (en) Multi-layer interference film with outermost layer for suppression of pass-band reflectance
KR20220111321A (en) Optical element with protective coating, method for manufacturing such optical element and optical arrangement
JP2002286909A (en) Antireflection coating for uv ray
US4988164A (en) Anti-reflection film for synthetic resin optical elements
US4721657A (en) Anti-reflection coating for an infrared transmitting material
USRE27473E (en) Thin film coating for sunglasses
JP3704739B2 (en) Environment-resistant infrared transmission structure using ZnS as substrate
JPH0588002A (en) Infrared optical parts
US5179469A (en) Broad band light absorbing film
JP3361621B2 (en) Anti-reflection coating for infrared region
JP2835535B2 (en) Anti-reflection coating for optical components
JPS6028603A (en) Prism type beam splitter
US3493289A (en) Coated optical devices
US4612234A (en) Anti-reflection coating film suitable for application on optics made of mixed crystals of thallium iodide and thallium bromide
JPS6032001A (en) Reflection preventing film
CN116705887B (en) Absorption film for infrared detector and preparation method thereof
JPS6028601A (en) Prism type beam splitter
US4838628A (en) Process and apparatus for production of an optical element
JPH08310840A (en) Reflection preventing film
Zhang et al. Study on high-performance whole spectrum and multi-band antireflective films on ZnS optical windows
JP2001108802A (en) Antireflection film
WO2002008797A2 (en) Dual-band millimeter wave and infrared anti-reflecting coating
WO2023154773A1 (en) Asymmetric light absorption-reflection ophthalmic element