JPS58180204A - Separation using osmotic evaporation membrane - Google Patents

Separation using osmotic evaporation membrane

Info

Publication number
JPS58180204A
JPS58180204A JP6401282A JP6401282A JPS58180204A JP S58180204 A JPS58180204 A JP S58180204A JP 6401282 A JP6401282 A JP 6401282A JP 6401282 A JP6401282 A JP 6401282A JP S58180204 A JPS58180204 A JP S58180204A
Authority
JP
Japan
Prior art keywords
membrane
evaporation
permeation
vapor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6401282A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Nomura
野村 剛志
Hisafumi Kimura
尚史 木村
Setsuya Kuri
九里 説哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURI KAGAKU SOCHI KK
Original Assignee
KURI KAGAKU SOCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURI KAGAKU SOCHI KK filed Critical KURI KAGAKU SOCHI KK
Priority to JP6401282A priority Critical patent/JPS58180204A/en
Publication of JPS58180204A publication Critical patent/JPS58180204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To obtain high sepn. capacity with a low degree of evacuation in a separating method using an osmotic evaporation membrane by performing sucking operation while passing a gaseous carrier to the evaporation side of the osmotic evaporation membrane. CONSTITUTION:The raw liquid mixture to be separated is supplied through an inlet 9 into a high pressure chamber 7 in a device and, if necessary, steam is supplied through a steam inlet 14 into a jacket 13 for heating to maintain the raw liquid mixture at a prescribed temp. A valve 12 is throttled and a valve 11 is opened then a vacuum pump 16 is operated to evacuate the inside of a vacuum chamber 8 and to force the specified component in the raw liquid to permeate through tubes 2, whereby the vapor having much specific component is obtained. The vapor is sucked with a pump 17, is condensed with a condenser 18 and is recovered in a tank 19. The uncondensed gas is heated with a heater 20, and is blown as a gaseous carrier through the valve 12 into the chamber 8. According to this method, the 3-times higher sepn. capacity of the membrane is obtained even under about 100 Torr reduced pressure.

Description

【発明の詳細な説明】 本発明は、滲透蒸発膜を用いる分離法に関するもので、
より詳細には滲透蒸発膜による液の分離能力及び収率を
高める改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separation method using a permeation evaporation membrane,
More specifically, the present invention relates to improvements in increasing the liquid separation ability and yield by permeation evaporation membranes.

従来、溶液中の成分を分離するには、各成分の沸点の差
や揮発度の差を利用する蒸留が広く使用されているが、
アルコールと水との混合系のような成る種の混合液では
蒸気と液との組成が同じになる所1共沸混合物を形成す
ることもあり、この場合には通常の蒸留によっては各成
分の分離が困難で、共沸蒸留や抽出蒸留等の面倒な操作
を行わなければならないという問題がある。
Conventionally, distillation has been widely used to separate components in a solution, taking advantage of the differences in boiling point and volatility of each component.
In a mixture of different types, such as a mixed system of alcohol and water, an azeotrope may be formed when the vapor and liquid have the same composition, and in this case, ordinary distillation can separate the components. There is a problem that separation is difficult and requires complicated operations such as azeotropic distillation and extractive distillation.

最近に至って、溶液中の成分を分離するために、滲透蒸
発法(pgrgvaporatioル)が用いられてい
る。
Recently, pervaporation techniques have been used to separate components in solutions.

この滲透蒸発法は膜物質の一方の側に分離すべき溶液を
供給し、膜物質の両面に圧力差を与えることにより、原
溶液よりも特定の成分に富んだ蒸気を膜物質を透過させ
、膜物質の他方の面から蒸発させるものであり、ここで
膜物質としては、従来竜ロファン、ナイロン、ナフイヨ
ン等の膜が使用されている。
This pervaporation method supplies the solution to be separated to one side of the membrane material, and by applying a pressure difference on both sides of the membrane material, vapor richer in a specific component than the original solution permeates through the membrane material. This is to evaporate from the other side of the membrane material, and the membrane material conventionally used here is a membrane of sulfur, nylon, Nafyon, or the like.

この従来の滲透蒸発法においては、膜の蒸発側を例えば
1ト一ル程度のかなりの高真空にしなければ所定の分離
能力が得られず、高真空装置を必要とすること、設備費
及び運転費がかなり高くつくこと、及び分離能力が未だ
比較的小さいレベルにあること等から、工業的実施には
未だ不適尚であった。
In this conventional permeation evaporation method, the desired separation capacity cannot be obtained unless the evaporation side of the membrane is brought to a fairly high vacuum of, for example, 1 torr, which requires high vacuum equipment, equipment costs, and operational costs. It is still unsuitable for industrial implementation due to its rather high cost and the fact that its separation capacity is still at a relatively small level.

本発明者等は、上述した滲透蒸発膜の蒸発側にキャリヤ
ガスを通じながら吸引操作を行うときには、従来の方法
に比して著しく低い減圧度にしながら、しかも高い分離
能力が得られることを見出した。
The present inventors have discovered that when a suction operation is performed while passing a carrier gas through the evaporation side of the above-mentioned permeation evaporation membrane, a high separation capacity can be obtained at a significantly lower degree of vacuum than in conventional methods. .

即ち、本斃明によれば、滲透蒸発膜の一方の面に分離す
べき混合原液を為圧で通し、他方の面を直接減圧或いは
一ヤリャガスを流しながら、減圧に吸引し、前記膜を透
過して蒸発する前記原液よりも特定の成分に富んだ蒸気
と前記原液よりも他の成分に富んだ残液とに分離するこ
とを特徴とする滲透蒸発膜を用いる分離法が提供される
That is, according to the present invention, the mixed stock solution to be separated is passed through one side of the permeation-evaporation membrane under a reduced pressure, and the other side is sucked under reduced pressure while directly under reduced pressure or with a gas flowing through the membrane. A separation method using a permeation evaporation membrane is provided, which is characterized in that the vapor is separated into a vapor richer in a specific component than the undiluted solution and a residual liquid richer in other components than the undiluted solution.

本発明を添付図面を参照しつつ以下に詳細に説明する。The invention will be described in detail below with reference to the accompanying drawings.

本発明の実施に好適に使用される装置の配置を示す第1
図において、円筒形の本体シェル1の内部には、多数の
浸透蒸発膜チューブ2が一対のチューブ支持管板!、5
によって気密に保持されている。シェル1の両開目端部
にはフランジ4,4が設けられており、この7ランジ4
を介してパイプ6を備えた鏡板5がボルト等により夫々
締結されており、全体として耐圧構造容器となっている
The first diagram showing the arrangement of devices suitably used for carrying out the present invention.
In the figure, inside a cylindrical main body shell 1, a large number of pervaporation membrane tubes 2 are installed and a pair of tube support tube plates! ,5
is kept airtight by. Flanges 4, 4 are provided at both open ends of the shell 1, and these 7 langes 4
The end plates 5 each having a pipe 6 are fastened to each other by bolts or the like, and the whole becomes a pressure-resistant structure container.

この具体例に示す装置においては、浸透蒸発膜チューブ
2の外方の空間7が分離すべき混合原液を通ずる高圧側
室となっており、一方チューブ内空間8が蒸気を取出す
減圧側室となっている。これに関連して、シェル1の側
壁には液入口9及び液出口10が設けられ、下方鏡板5
のバイブロにはガス出ロバルプ11及び上方鏡板5のバ
イブロにはガス人口バルブ12が夫々設けられている。
In the device shown in this specific example, the outer space 7 of the pervaporation membrane tube 2 serves as a high-pressure side chamber through which the mixed stock solution to be separated passes, while the inner tube space 8 serves as a reduced-pressure side chamber from which vapor is extracted. . In this connection, the side wall of the shell 1 is provided with a liquid inlet 9 and a liquid outlet 10, and a lower mirror plate 5
The vibro is provided with a gas outlet valve 11, and the vibro on the upper mirror plate 5 is provided with a gas population valve 12, respectively.

また、分離すべき混合原液を加熱するためにシェル1の
外側には加熱用ジャケット13が設けられ、これにスチ
ーム人口14及びドレン出口15が設けられている。
Further, a heating jacket 13 is provided on the outside of the shell 1 in order to heat the mixed stock solution to be separated, and a steam port 14 and a drain outlet 15 are provided in this.

ガス出ロバルプ11には、ガス弓1出し用のパイプ16
が接続され、これに真空ポンプ17、コンデンす−乃至
は冷却鰺18及び凝縮液タンク19が順次接続される。
The gas outlet robalp 11 has a pipe 16 for taking out the gas bow 1.
A vacuum pump 17, a condenser or cooling tank 18, and a condensate tank 19 are connected in this order.

凝縮液タンク19の排気側には、ヒーター20が接続さ
れ、ヒーター20を通った排気はパイプ21を介してガ
ス人口バルブ12に至るようになっている。
A heater 20 is connected to the exhaust side of the condensate tank 19, and the exhaust gas that has passed through the heater 20 reaches the gas population valve 12 via a pipe 21.

尚、チューブ2を構成する滲透蒸発膜として社、種々の
特性のものがある。今、原液中の特定成分の重量分率(
J)を横軸とし、一方滲透蒸発する蒸気中の上記成分の
重量分率(y)を縦軸として両者の関係をプロットする
と、このプロットはy = xの直線に対して上側の凸
の曲線となる場合と、この直線に対して下側の凹の曲線
となる場合とがある。
It should be noted that the permeation evaporation membrane constituting the tube 2 has various characteristics. Now, the weight fraction of the specific component in the stock solution (
If the relationship between the two is plotted with J) as the horizontal axis and the weight fraction (y) of the above components in the permeating vapor as the vertical axis, this plot will be a convex curve above the straight line of y = x. In some cases, it becomes a concave curve below this straight line.

本発明者!1$は、水と水混和性有機溶媒との混合系に
おいて、オルガノポリシロキサン・エラストマー膜は、
上側の凸の滲透蒸発曲線を示す膜であり、一方ボリフエ
ニレンオキシド膜や、酢酸繊維素膜は下側の凹の滲透蒸
発曲線を示す膜であり。
Inventor! 1$ is an organopolysiloxane elastomer membrane in a mixed system of water and a water-miscible organic solvent.
It is a membrane that exhibits a permeation-evaporation curve that is convex on the upper side, while a polyphenylene oxide membrane and a cellulose acetate membrane are membranes that exhibit a permeation-evaporation curve that is concave on the lower side.

前者の膜を使用すると、原液に比して溶媒外に富んだ蒸
気が回収され、一方後者の膜を使用すると原液に比して
溶媒外に富んだ液分が回収されることが見出されている
It has been found that when the former membrane is used, a vapor enriched in extra-solvent compared to the undiluted solution is recovered, whereas when the latter membrane is used, a liquid fraction enriched in extra-solvent compared to the undiluted solution is recovered. ing.

剣先ば、tJg2図は、メタノール(・)、エタノール
(○)及びイソ−プロパツール(ム)の各種アルコール
の水溶液について、原溶液のアルコール重量分率CX)
 t−横軸とし、蒸気中のアルコール重量分率(y)を
縦軸として、得られた滲透蒸発分離の結果を示すもので
あり、図中記号SRはオルガノポリシロキサン膜を、記
号PPOはポリフェニレンオキシド膜を、記号CAはセ
ルロースアセテート膜を夫々示す。
The tJg2 diagram shows the alcohol weight fraction CX of the original solution for aqueous solutions of various alcohols, methanol (・), ethanol (○), and isopropanol (mu).
The results of permeation and evaporation separation are shown with the t-horizontal axis and the alcohol weight fraction (y) in the vapor as the vertical axis. In the figure, the symbol SR indicates the organopolysiloxane membrane, and the symbol PPO indicates the polyphenylene membrane. The symbol CA indicates an oxide membrane, and the symbol CA indicates a cellulose acetate membrane.

再び第1図に戻って、本発明方法を実施するに際しては
、液入口9から分離すべき混合原液を装置内の高圧室7
内に供給し、必要によりスチーム入口14から加熱用ジ
ャケット16内にスチームを供給して、混合原液を所定
の温度に維持する。
Returning to FIG. 1 again, when carrying out the method of the present invention, the mixed stock solution to be separated from the liquid inlet 9 is transferred to the high pressure chamber 7 in the device.
If necessary, steam is supplied from the steam inlet 14 into the heating jacket 16 to maintain the mixed stock solution at a predetermined temperature.

次いで、ガス入口バルブ12t−絞り(12は減圧弁を
使用することが好ましい)、ガス出口バルブ11を開い
て、真空ポンプ16を運転し、滲透蒸発膜チューブ2の
減圧1i18を一定の減圧下に維持する。これにより、
原料溶液中の一定成分は溶液側から減圧室側へとチュー
ブ2を滲透し、表面からJ!尭し、賦圧!8にFi混合
原液よりも特定の成分に富んだ蒸気が充満する。
Next, the gas inlet valve 12t-throttle (preferably 12 is a pressure reducing valve) is opened, the gas outlet valve 11 is opened, the vacuum pump 16 is operated, and the reduced pressure 1i18 of the permeation evaporation membrane tube 2 is kept under a constant reduced pressure. maintain. This results in
Certain components in the raw material solution seep through the tube 2 from the solution side to the vacuum chamber side, and J! from the surface. Takashi and pressure! 8 is filled with steam richer in specific components than the Fi mixed stock solution.

この蒸気は、ガス出口11、パイプ16を通して真空ポ
ンプ17内に吸引される。真空ポンプ17の排出側は大
気圧近辺となっており、この排出ガスはコンデンサー1
8を通ることにより潜熱が奪われるように冷却され、排
出ガス中の蒸気は凝縮液タンク19中に液体の形で回収
される。未凝縮ガスはヒーター20により加熱され、パ
イプ21及び絞られたガス入口バルブ12を通って、キ
ャリヤーガスとして滲透蒸発膜チューブ2内の減圧m8
に吹込まれる。
This vapor is drawn into the vacuum pump 17 through the gas outlet 11 and the pipe 16. The exhaust side of the vacuum pump 17 is at near atmospheric pressure, and this exhaust gas is sent to the condenser 1.
8, the vapor in the exhaust gas is collected in liquid form in a condensate tank 19. The uncondensed gas is heated by the heater 20 and passed through the pipe 21 and the throttled gas inlet valve 12 to the reduced pressure m8 in the pervaporation membrane tube 2 as a carrier gas.
is blown into.

本発明によれば、蒸気が弗化する滲透蒸発膜の減圧室側
にキャリヤガスを通ずることによって、後述する例に示
す通り極めて顕著な利点が達成される。即ち、従来の滲
透蒸発法では、成る程度の膜分離能力を得ようとすると
1トール(1ml’)程度の極めて高真空を必要とし、
装置のコストや運転コストが高くなるのを避は得ない。
According to the present invention, by passing a carrier gas to the vacuum chamber side of the pervaporation membrane where the vapor fluorifies, very significant advantages are achieved as shown in the examples below. That is, in the conventional permeation evaporation method, an extremely high vacuum of about 1 Torr (1 ml') is required in order to obtain a certain level of membrane separation ability.
It is inevitable that the cost of the equipment and the operating cost will increase.

これに対して、本発明によれば、滲透蒸発膜の減圧室に
キャリヤガスを通ずるという簡単な操作で、減圧室の減
圧の程度を100トールのような低度のものとした場合
にも、例えば3倍にも達する膜分離能力が得られるので
あって、本発明によれば膜分離能力の上でも、また装置
コスト及び運転コストの点でも、顕著な利点が達成され
ることが明白である。
On the other hand, according to the present invention, even when the degree of vacuum in the vacuum chamber is reduced to a low level such as 100 torr by a simple operation of passing a carrier gas through the vacuum chamber of the permeation evaporation membrane, For example, a membrane separation capacity of up to three times can be obtained, and it is clear that the present invention achieves significant advantages in terms of membrane separation capacity, equipment cost, and operating cost. .

更に、本発明の好適態様に従い、吸引したガスを冷却し
てガス中の特定成分の蒸気を凝縮させて回収し、未凝縮
ガスを、そのまま或いは加熱した後、滲透蒸発膜の蒸発
側にキャリヤガスとしそ循環すると、全ての分離操作を
密閉系(クローズトナーキット)内で行うことが可能と
なり、分離回収率の点でも令書防止の点で41顕著な利
点が達成され、全ての操作を円滑に行うことが可能とな
る。
Furthermore, according to a preferred embodiment of the present invention, the sucked gas is cooled to condense and recover the vapor of a specific component in the gas, and the uncondensed gas is injected into the evaporation side of the permeation evaporation membrane as a carrier gas. Circulating soybeans makes it possible to perform all separation operations in a closed system (closed toner kit), achieving remarkable advantages in terms of separation recovery rate and prevention of warrants, and all operations run smoothly. It becomes possible to do so.

第1図に示す装置の運転に際して減圧室8の蒸気が特定
の成分に富んでいることの逆の結果として、高圧[7内
に残留する液は特定の成分がより稀薄な濃度となってお
り、この残留液は液出口10から連続的に或いは間欠的
に装置外部に取出される。これに対応して、液入口9か
ら分離すべき混合原液が高圧室7内に連続的或いは間欠
的に供給されることになる。尚、本明細書において、高
圧[7と呼ぶのは、減圧ii!8に対して相対的に高圧
であるという意味であり、高圧室7内に供給される混合
原液圧は給液ポンプ圧であることが理解されるべきであ
ゐ、ll縮液檜19に回収される液も連続的或い社間欠
的に系外に取出される。
During operation of the apparatus shown in Figure 1, the vapor in the decompression chamber 8 is rich in specific components, and as a converse result, the liquid remaining in the high pressure [7] has a dilute concentration of specific components. This residual liquid is taken out from the liquid outlet 10 continuously or intermittently to the outside of the apparatus. Correspondingly, the mixed stock solution to be separated is continuously or intermittently supplied into the high pressure chamber 7 from the liquid inlet 9. In this specification, high pressure [7 is referred to as reduced pressure ii! It should be understood that the mixed raw liquid pressure supplied into the high pressure chamber 7 is the liquid supply pump pressure. The liquid is also taken out of the system continuously or intermittently.

本発明の一つの好適態様においては、混合原液の重量分
率(−)対蒸気の重量分率(y)をプロットした滲透蒸
発膜11においで、凸の曲線或いは凹のm−を示す滲透
蒸発膜の内、同種の滲透蒸発傾向を示す滲透蒸発膜を備
えた複数個のユニットを直列に接続して使用し、第一段
のユニットから回収される蒸気の凝縮物或いは残留濃縮
液を、第二段以後のユニットの高圧室に液として供給し
、滲透蒸発操作を行なう。
In one preferred embodiment of the present invention, in the permeation evaporation membrane 11 plotting the weight fraction (-) of the mixed stock solution versus the weight fraction (y) of the vapor, the permeation evaporation film 11 exhibits a convex curve or a concave m-. A plurality of units having permeation evaporation membranes exhibiting the same kind of permeation tendency are connected in series, and the vapor condensate or residual concentrate recovered from the first stage unit is transferred to the first stage unit. It is supplied as a liquid to the high pressure chambers of the second and subsequent units, and permeation and evaporation operations are performed.

この態様に用いる装置の配置を示す第6図において、説
明の1禎を避けるため、嬉1図の装置の部材と共通の部
材は共通の引照数字で示されており、第一段のユニット
の部材には−の添字が、第二段のユニットの部材には滲
の添字が付されている。
In Fig. 6 showing the arrangement of the apparatus used in this embodiment, in order to avoid tedious explanation, parts common to those of the apparatus in Fig. 1 are indicated by common reference numerals, and The members are marked with a - suffix, and the members of the second stage unit are marked with a suffix.

これら各ユニットにおいて、第一段のユニットに使用さ
れる滲透蒸発膜チューブ2aが、第2図において上に凸
の滲透蒸発曲線を示す膜、例えばオルガノポリシロキサ
ン膜から成っているときには、第二段のユニットに使用
される滲透蒸発膜チューブ2hもこれと同じ或いは同種
の膜から成っている。
In each of these units, when the permeation evaporation membrane tube 2a used in the first stage unit is made of a membrane showing an upwardly convex permeation evaporation curve in FIG. 2, for example, an organopolysiloxane membrane, the second stage unit The permeation evaporation membrane tube 2h used in the unit is also made of the same or similar type of membrane.

第5図の装置において、各wニットの構成及び操作は、
第1図に示したものと同様であるが、第一段ユニットの
凝縮液槽19aに回収される凝縮液が給液ポンプ22に
より配管26を通して、第二ユニットの液入口9kに供
給される濃度が第1図のものと異なっている。
In the apparatus shown in FIG. 5, the configuration and operation of each w knit are as follows:
It is similar to that shown in FIG. 1, but the concentration is such that the condensate collected in the condensate tank 19a of the first stage unit is supplied to the liquid inlet 9k of the second unit through the piping 26 by the liquid supply pump 22. is different from that in Figure 1.

即ち、第3図において、凝縮液槽19gに回収される蒸
気凝縮物は第一段ユニットの高圧室7gK供給される混
合原液に比して特定成分が濃縮されたものであるが、こ
の濃縮物を第二段ユニットの高圧874に供給し、第二
段ユニットにおいても滲透蒸発操作を行わせることによ
り、第二段ユニットの凝縮液槽19hK%定成分がより
高濃度に濃縮された鎖縮液を回収することが可能となる
That is, in FIG. 3, the vapor condensate collected in the condensate tank 19g has specific components concentrated compared to the mixed stock solution supplied to the high pressure chamber 7gK of the first stage unit. is supplied to the high pressure 874 of the second stage unit, and the permeation evaporation operation is also performed in the second stage unit, thereby producing a chain condensate in which the constant components in the condensate tank 19hK% of the second stage unit are concentrated to a higher concentration. It becomes possible to collect.

本発明のこの態様によれば、単に濃縮を高度に行えるば
かりではなく、膜分離能力の点でも顕著な利点が達成さ
れる。例えば、第2図に示す通り、水−アルコール混合
系に対して、sRHを使用した場合、蒸気濃縮液はアル
コール分が濃縮されたものとなる。−方、混合原液中の
アルコール重量分率(−)と蒸気の単位膜面積及び単位
時間当りの収量Q (1/m” AT)との関係を示す
第4図を参照すると、混合原液中のアルコール重量分率
(x)の増加につれて蒸気収量は単調に増加することが
わかる。かくして、第6図に示す態様によれば、滲透蒸
発操作を直列的に多段に行うことにより、膜分離能力の
上でも顕著な利点が達成されることが了解される。
According to this aspect of the invention, significant advantages are achieved not only in terms of high concentration, but also in terms of membrane separation capacity. For example, as shown in FIG. 2, when sRH is used in a water-alcohol mixed system, the vapor concentrate becomes one in which the alcohol content is concentrated. - On the other hand, referring to Figure 4, which shows the relationship between the alcohol weight fraction (-) in the mixed stock solution, the unit membrane area of steam, and the yield per unit time Q (1/m" AT), it is found that It can be seen that the vapor yield increases monotonically as the alcohol weight fraction (x) increases.Thus, according to the embodiment shown in FIG. It will be appreciated that significant advantages can also be achieved.

更に、浸透蒸発法による利点として、共沸混合物を形成
するような液体成分の組合せからも、一定の成分を共沸
点濃度よりも嵩い濃度で含有する濃縮物t%られること
か挙げられる。例えば、イソプロパツール水系は、水の
負度が28.5−1即ちイソプロパノールの濃度が71
.71iで共沸するが、本発明によれば、第2図に示す
通り、この共沸混合物よりもイソプロパツール濃度が低
い原溶液(例えば濃度20嚢)から共沸混合物よりもイ
ソプロパツール濃度の高い蒸気(例えば濃度48−)が
一段の滲透蒸発操作で回収され、これよりも濃度の低い
イソプロパノ−ルー水系では、二段の滲透蒸発操作で共
沸混合物濃度よりもアルコールが高濃度の蒸気が回収さ
れることになる。
Furthermore, an advantage of the pervaporation method is that even when liquid components are combined to form an azeotrope, a concentrate containing a certain component at a concentration higher than the azeotropic point concentration can be obtained. For example, in an isopropanol water system, the negative degree of water is 28.5-1, that is, the concentration of isopropanol is 71.
.. 71i, but according to the present invention, as shown in FIG. In an isopropanol-water system with a lower concentration, a vapor with a higher alcohol concentration than the azeotrope concentration is recovered in a two-stage pervaporation operation. will be collected.

第2図に示すように、回収を目的とする成分が残液中K
ll縮されるP2O膜やCI膜の場合には、第二ユニッ
トの液入口9kに、第一ユニットの液出口1041から
排出される残留濃縮液を供給して―透JIJ1操作を行
えばよい。
As shown in Figure 2, the components to be recovered are K in the residual liquid.
In the case of a P2O membrane or a CI membrane that is to be condensed, the residual concentrated liquid discharged from the liquid outlet 1041 of the first unit may be supplied to the liquid inlet 9k of the second unit to perform the permeation JIJ1 operation.

本発明の更に別の態様によれば、混合原液の重量分率対
蒸気の重量分率を、プロットした滲透蒸発−線において
凸の一纏或いは凹の曲線を示す滲透蒸発膜の内、一方の
滲透蒸発曲線を示す滲透蒸発膜を備えた第一のユニット
を使用して第一段の滲透M斃操作を行い、原発分離後の
残留液を、逆の滲透H斃傾向を示す滲透111尭膜を備
えた第二のユニットの高圧室に供給して滲透蒸発操作を
行い、第二の為ニットの残留液を第一のユニットの高圧
麿儒に循環する。
According to still another aspect of the present invention, one of the permeation evaporation films exhibiting a convex curve or a concave curve in the permeation evaporation line plotting the weight fraction of the mixed stock solution versus the weight fraction of the vapor. The first unit equipped with a permeation evaporation membrane exhibiting a permeation evaporation curve is used to carry out the first stage permeation M operation, and the residual liquid after nuclear separation is transferred to a permeation 111 membrane having an opposite permeation H rate tendency. The residual liquid of the second unit is circulated to the high pressure chamber of the first unit for permeation and evaporation.

この一様を示す第5図において、第一ユニット及び第二
ユニットの構造及び操作は第3図のものと同機であり、
第S−ニットの部材には、第−及び第二のユニットの各
部材と共通の引照数字とCの添字とが付されている。
In Fig. 5 showing this uniformity, the structure and operation of the first unit and the second unit are the same as those in Fig. 3,
The member of the S-th knit is given the same reference numeral and the subscript C as each member of the S-th and second units.

第三ユニットの滲透蒸発膜チューブ2Cは、第1及び第
二のユニットの滲透蒸発膜’1m及び2bとは逆の滲透
蒸発傾向を有するように、例えば第1及び第2のユニッ
トの滲透蒸発膜がSR膜であるのに対して、第3のユニ
ットの滲透蒸発膜2cはPPO膜或いはCA膜であるよ
うに両膜の組合せが選ばれる。
For example, the permeation evaporation film tube 2C of the third unit has a permeation evaporation tendency opposite to that of the permeation evaporation film '1m and 2b of the first and second units. is an SR membrane, while the permeation evaporation membrane 2c of the third unit is a PPO membrane or a CA membrane, so a combination of both membranes is selected.

この第5図において、第一ユニットの液出口10αは配
管24を経て、また第三ユニットの液出口10Aは配管
25を経て第三ユニットの液入口9cに夫々接続される
。更に、第三ユニットの液出口10Cは配管26を経て
、第一ユニットの液入口94に接続される。勿論、これ
ら配管24.25及び26には、図示していないが、給
液ポンプや弁乃至は流量調節弁圧力コントローラー或い
は更に液貯槽等の給液上必要な機構を付属させることが
できる。
In FIG. 5, the liquid outlet 10α of the first unit is connected to the liquid inlet 9c of the third unit through a pipe 24, and the liquid outlet 10A of the third unit is connected to the liquid inlet 9c of the third unit through a pipe 25. Further, the liquid outlet 10C of the third unit is connected to the liquid inlet 94 of the first unit via the pipe 26. Of course, these pipings 24, 25 and 26 can be attached with mechanisms necessary for liquid supply, such as a liquid supply pump, a valve, a flow rate regulating valve, a pressure controller, or a liquid storage tank, although not shown.

第一ユニット及び第三ユニットでは、回収すべき特定成
分が蒸気凝縮物中に濃縮される一方で、高圧室7α及び
7hに蒸発操作後に残留する残留液中では上記成分が稀
薄な状態となっている。この特定成分が稀薄な状態とな
った残留液は、第一ユニットの液出口10αから配管2
4を経て、また第三ユニットの液出口10bから配管2
5を経て、1三ユニツトの液入口9Cから第三ユニット
の高圧W17Cに送られる。
In the first and third units, the specific components to be recovered are concentrated in the vapor condensate, while the components are diluted in the residual liquid remaining in the high pressure chambers 7α and 7h after the evaporation operation. There is. The residual liquid in which the specific component is diluted is transferred from the liquid outlet 10α of the first unit to the pipe 2.
4, and from the liquid outlet 10b of the third unit to the pipe 2.
5, and is sent from the liquid inlet 9C of the 13th unit to the high pressure W17C of the 3rd unit.

第三ユニットの滲透蒸発膜2Cは、第−及び第二のユニ
ットの滲透蒸発膜2α、2bとは逆に、原液中の特定成
分が残留液中に濃縮され、且つ原液中の他の成分が蒸気
中に一層されるような滲透蒸発特性を示す。その結果と
して、第三ユニットの高圧室7Cからの残留液は特定成
分がより高濃度に濃縮されたものとなり、この濃縮液を
液出口10C1配管26を経て第一ユニットの液入口9
αに循環することにより、特定成分の分離回収が一層効
率良(行えるようになる。尚、第三ユニットの凝縮液槽
19Cには他の成分が高度に#縮された液が回収される
ことになる。      \ 本発明の―透蒸発分離法は、水と櫨々の有機液体とを含
む溶液から、有機液体と水とを分離する用途に使用し得
る他、複数種の有機液体の溶液からこれらの各成分を分
離する用途に有利に使用できる。
Contrary to the permeation evaporation membranes 2α and 2b of the first and second units, the permeation evaporation membrane 2C of the third unit concentrates specific components in the stock solution into the residual liquid, and other components in the stock solution are concentrated. It exhibits permeation-evaporation properties as if it were absorbed into steam. As a result, the residual liquid from the high pressure chamber 7C of the third unit has a specific component concentrated to a higher concentration, and this concentrated liquid is passed through the liquid outlet 10C1 piping 26 to the liquid inlet 9 of the first unit.
By circulating to α, specific components can be separated and recovered more efficiently. Note that liquid in which other components are highly condensed is collected in the condensate tank 19C of the third unit. \ The perivaporization separation method of the present invention can be used to separate an organic liquid and water from a solution containing water and a solid organic liquid, and can also be used to separate an organic liquid from a solution containing multiple types of organic liquids. It can be advantageously used to separate these components.

また、滲透蒸発装置内に混合原液を連続的に供給する場
合には、キャリヤガスを別個の人口から供給する代りに
、供給する混合原液を空気、脅素勢のガスで飽和させ、
この飽和したガスをキャリヤガスとして用いることもで
きる。
In addition, when supplying the mixed stock solution continuously into the pervaporation device, instead of supplying the carrier gas from a separate source, the supplied mixed stock solution is saturated with air or a threatening gas.
This saturated gas can also be used as a carrier gas.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例を 第1図の装置において シェル径       100m 滲透蒸発膜本数    約630本/−雪としたものを
使用し、原液としてエタノール1〇−1水90−を用い
て滲透蒸発操作に賦し、膜分離能力を測定した。
In this example, snow was used in the apparatus shown in Fig. 1 with a shell diameter of 100 m and the number of permeation evaporation membranes approximately 630 pieces/-. Separation ability was measured.

運転条件及び結果を下記に示す。The operating conditions and results are shown below.

尚、膜分離能力は、滲透蒸発膜の単位膜面積及び単位時
間蟲りの収量(I/が・Aつで示した。
The membrane separation ability is expressed by the unit membrane area of the permeation evaporation membrane and the yield of worms per unit time (I/A).

(1)真空度   100)−ル 中ヤリャガス流量    5QNL/wx加熱ガス温度
      50℃ 冷却ガス温度      25℃ 分離液―度       エタノール48−水    
51− 膜分離能力       909/が・hr(2)真空
度   1トール キャリヤガス      なし S尭温度     25℃ 膜分離能力       28I/が・ムr以上の結果
より、単に真空度1トールに吸引するよりも加温のキャ
リヤガスを通しながら、真空度100トールとした場合
でも約3倍の分離能力があることが壜鱗される。
(1) Vacuum degree 100) - Gas flow rate in the tank 5QNL/wx Heating gas temperature 50℃ Cooling gas temperature 25℃ Separated liquid - degree Ethanol 48 - Water
51- Membrane separation capacity 909/ga・hr (2) Vacuum degree 1 torr Carrier gas None Temperature 25°C Membrane separation ability 28I/ga・hr From the results above, it is better to apply heat rather than simply suctioning to a vacuum degree of 1 torr. It has been shown that the separation capacity is approximately three times higher even when a vacuum level of 100 Torr is applied while passing a warm carrier gas.

実施例2 実施例1において、第5図に示す装置を使用する以外は
!I!施例1と同様にして滲透蒸発操作を行い分離液濃
度を測定し、膜分離能力を評価した。
Example 2 Example 1 except that the device shown in FIG. 5 is used! I! The permeation evaporation operation was carried out in the same manner as in Example 1, the concentration of the separated liquid was measured, and the membrane separation ability was evaluated.

運転条件及び結果を下記に示す。The operating conditions and results are shown below.

(1)真空度  100トール キャリヤガス流量  5 Q ML/肩加熱加熱ガス温
度 50℃ ガス冷却温度    25℃ 分離液濃度 上記結果より、滲透蒸発操作を直列的に多段に行うこと
により、膜分離能力の上で顕著な利点が達成される。
(1) Degree of vacuum: 100 Torr Carrier gas flow rate: 5 Q ML/Shoulder heating Heating gas temperature: 50°C Gas cooling temperature: 25°C Separated liquid concentration From the above results, by performing permeation-evaporation operations in series in multiple stages, membrane separation capacity can be improved. Significant advantages are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施に好適に使用される装置の配置
を示す図、 第2図は、本発明方法によゐ滲透蒸発分離の結果を示す
fiaE。 第6図は、本発明の実施に好適に使用される装置の他の
態様を示す図、 第4図は、本発明方法による滲透蒸発分離に賦した時の
アルコール重量分率(−)と蒸気の巣位膜面積及び単位
時間蟲りの収量Qとの関係を示す線図、 第5図は、本発明の実施に好適に使用される装置の更に
他の態様を示す図であって、 側照数字はそれぞれ、1は本体シェル、2は滲透M斃膜
チューブ、6は滲透蒸発膜チューブ支持管板、4は7ク
ンジ、5は鏡板、6はガス入口バイブ、7は液高圧側家
、8は滲透蒸発膜チューブ内部、9は液入口、10は液
出口、11はガス出ロハルプ、12はガス入口バルブ、
13はシェル、14はスチーム入口、15はドレン出口
、16はガス出口バイブ、17は真空ポンプ、18はコ
ンデンサー、19#′i凝縮液タンク、20はヒーター
、1g、1.6は本体シェル、2a、2には滲透蒸発膜
チューブ、sa、sbu滲透蒸発膜チューブ支持管板、
7m、7には液高圧室側、f3g、8hは滲透蒸発膜チ
ューブ内部、9m、9には液入口、1041.1(lは
液出口、111.11bはガス出ロバルプ、12a、1
27はガス入口バルブ、16g、16hはガス出口バイ
ブ、17α、17hは真空ポンプ、18α、18AUコ
ンデンサー、19@、19轟唸凝縮液タンク、208.
20hはヒーター、211!、21は循環ガスパイプ、
22はポンプ、26はパイプ、1a、1に、1cは本体
シェル、2a、2に、2cは滲透蒸発膜チューブ、7g
、7に、7cは液高圧室側、8α。 f3h、f3cは滲透蒸発膜チューブ内部、9g、9A
、qcld液入口、10a、11,10C液出口、11
G、 11 b 、 11 eBガス出ロバルプ、1?
、12A、1?はガス入口バルブ、16a。 16h、16Cはガス出口バイブ、17tl、17k。 17Cは真空ポンプ、18a、18b、18cはコンデ
ンサー、19g、19h、1?Fi凝縮液タンク、20
a、20As20Cはヒーター、21a、21.2IC
は循環ガスパイプ、22はポンプ、2M、24.25.
26はパイプを示す。 冴11 す2図 −メタノ−Iし1 qb
FIG. 1 is a diagram showing the arrangement of an apparatus suitably used in carrying out the present invention, and FIG. 2 is a diagram showing the results of permeation-evaporation separation by the method of the present invention. FIG. 6 is a diagram showing another embodiment of the apparatus suitably used in carrying out the present invention. FIG. 4 is a diagram showing the alcohol weight fraction (-) and vapor when added to permeation evaporation separation by the method of the present invention. Figure 5 is a diagram showing the relationship between the nest position membrane area and the yield Q of insects per unit time. The reference numbers are: 1 is the main body shell, 2 is the permeable M membrane tube, 6 is the permeable evaporative membrane tube support tube plate, 4 is the 7 cylinder, 5 is the end plate, 6 is the gas inlet vibrator, 7 is the liquid high pressure side house, 8 is the inside of the permeation evaporation membrane tube, 9 is the liquid inlet, 10 is the liquid outlet, 11 is the gas outlet Roharp, 12 is the gas inlet valve,
13 is the shell, 14 is the steam inlet, 15 is the drain outlet, 16 is the gas outlet vibe, 17 is the vacuum pump, 18 is the condenser, 19#'i condensate tank, 20 is the heater, 1g, 1.6 is the main body shell, 2a, 2 are permeable evaporative membrane tubes, sa, sbu permeable evaporative membrane tube support tube plates,
7m, 7 is the liquid high pressure chamber side, f3g, 8h is the inside of the permeation evaporation membrane tube, 9m, 9 is the liquid inlet, 1041.1 (l is the liquid outlet, 111.11b is the gas outlet valve, 12a, 1
27 is a gas inlet valve, 16g, 16h is a gas outlet vibe, 17α, 17h is a vacuum pump, 18α, 18AU condenser, 19@, 19 roaring condensate tank, 208.
20h is a heater, 211! , 21 is a circulating gas pipe,
22 is a pump, 26 is a pipe, 1a, 1, 1c is a main body shell, 2a, 2, 2c is a permeation evaporation membrane tube, 7g
, 7, 7c is the liquid high pressure chamber side, 8α. f3h, f3c are inside the permeation evaporation membrane tube, 9g, 9A
, qcld liquid inlet, 10a, 11, 10C liquid outlet, 11
G, 11 b, 11 eB gas output Robulp, 1?
, 12A, 1? is a gas inlet valve, 16a. 16h, 16C are gas outlet vibes, 17tl, 17k. 17C is a vacuum pump, 18a, 18b, 18c are condensers, 19g, 19h, 1? Fi condensate tank, 20
a, 20As20C is a heater, 21a, 21.2IC
is a circulating gas pipe, 22 is a pump, 2M, 24.25.
26 indicates a pipe. Sae 11 Su 2 figure - Methanol I Shi 1 qb

Claims (6)

【特許請求の範囲】[Claims] (1)  滲透蒸発膜の一方の面に分離すべき混合原液
を高圧で通し、他方の面を直筆に減圧するか、或いはキ
ャリヤガスを流しながら減圧に吸引し、前記膜を滲透し
て蒸発する前記原液よりも特定の成分に富んだ蒸気と前
記原液よりも他の成分に富んだ残液とに分離することを
特徴とする滲透蒸発膜を用いる分離法。
(1) The mixed stock solution to be separated is passed through one side of the permeation-evaporation membrane under high pressure, and the pressure is directly reduced on the other side, or the mixture is suctioned to a reduced pressure while flowing a carrier gas, and the mixture permeates through the membrane and evaporates. A separation method using a permeation evaporation membrane, characterized in that the vapor is separated into a vapor richer in a specific component than the stock solution and a residual solution richer in other components than the stock solution.
(2)  Wk引したガスを冷却してガス中の特定成分
の蒸気を凝縮させて回収し、未凝縮ガスを、そのまま或
いは加熱した後、滲透蒸発膜の蒸発側に+?ヤリャガス
として循環することを特徴とする特許請求の範囲第1項
記載の分離法。
(2) The Wk subtracted gas is cooled to condense and recover the vapor of a specific component in the gas, and the uncondensed gas is left as it is or after being heated, and is added to the evaporation side of the permeation evaporation film. The separation method according to claim 1, characterized in that the gas is circulated as Yarya gas.
(3)  混合原液の重量分率対蒸気の重量分率をプロ
ットした滲透蒸発−線において、凸の曲線或いは凹の曲
線を示す滲透蒸発膜の内、同種の滲透原発傾向を示す滲
透蒸発膜を備えた複数値のユニットを直列に接続して使
用し、第一段のユニットから回収される蒸気の凝縮物或
いは残留濃縮液を、第二段以後のユニットの為圧室に液
として供給し、滲透蒸発操作舎行なう特許請求の範囲第
1項記載の方法。
(3) Among the pervaporation films that show a convex curve or a concave curve on the pervaporation line plotting the weight fraction of the mixed stock solution versus the weight fraction of the vapor, the pervaporation film that shows the same type of permeation generation tendency is selected. using a plurality of units equipped with a plurality of values connected in series, supplying the vapor condensate or residual concentrate recovered from the first stage unit as a liquid to the pressure chamber of the second stage and subsequent units, The method according to claim 1, which is carried out in a pervaporation operation facility.
(4)混合原液の重量分率対蒸気の重量分率をプロット
した滲透蒸発操作において凸の曲線或いは凹の曲線を示
す滲透蒸発膜の内、一方の滲透原発傾向を示す滲透蒸発
膜を備えた第一のユニットを使用して菖一段の滲透蒸発
操作を行い、蒸発分離後の残留液を、逆の滲透原発傾向
を示す滲透蒸発膜を備えた第二のユニットの高圧室に供
給して滲透蒸発操作を行い、第二のユニットの残留液を
第一のユニットの高圧車側に循環する特許請求の範囲1
111項記載の方法。
(4) Among the permeable evaporative membranes that show a convex curve or a concave curve in the permeable evaporation operation in which the weight fraction of the mixed stock solution versus the weight fraction of the vapor is plotted, the permeable evaporative membrane exhibits one of the permeable evaporative membranes that exhibits a permeable nuclear tendency. The first unit is used to perform a one-stage permeation evaporation operation, and the residual liquid after evaporation separation is supplied to the high-pressure chamber of the second unit equipped with a permeation evaporation membrane that exhibits the opposite tendency to permeation. Claim 1: Performing an evaporation operation and circulating the residual liquid in the second unit to the high-pressure vehicle side of the first unit.
The method according to paragraph 111.
(5)用いる滲透蒸発膜がオルガノポリシロキサン・エ
ラストマー膜である特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, wherein the permeation evaporation membrane used is an organopolysiloxane elastomer membrane.
(6)用いる滲透蒸発膜がボリフエニレンオキシド膜或
いは酢酸セルロース膜である特許請求の範囲第1項記載
の方法。
(6) The method according to claim 1, wherein the permeation evaporation membrane used is a polyphenylene oxide membrane or a cellulose acetate membrane.
JP6401282A 1982-04-19 1982-04-19 Separation using osmotic evaporation membrane Pending JPS58180204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6401282A JPS58180204A (en) 1982-04-19 1982-04-19 Separation using osmotic evaporation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6401282A JPS58180204A (en) 1982-04-19 1982-04-19 Separation using osmotic evaporation membrane

Publications (1)

Publication Number Publication Date
JPS58180204A true JPS58180204A (en) 1983-10-21

Family

ID=13245833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6401282A Pending JPS58180204A (en) 1982-04-19 1982-04-19 Separation using osmotic evaporation membrane

Country Status (1)

Country Link
JP (1) JPS58180204A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191302U (en) * 1984-11-20 1986-06-13
JPS6359306A (en) * 1986-08-29 1988-03-15 Mitsui Eng & Shipbuild Co Ltd Organic liquid separation device
JPS63162002A (en) * 1986-12-25 1988-07-05 Mitsui Eng & Shipbuild Co Ltd Device for dehydrating organic liquid
US4846977A (en) * 1986-10-21 1989-07-11 The Dow Chemical Company Method and device for separating polar from non-polar liquids using membranes
JPH02273518A (en) * 1989-04-14 1990-11-08 Toray Ind Inc Manufacture of concentrated liquid of aqueous solution containing volatile organic liquid
US5049259A (en) * 1988-05-09 1991-09-17 The Dow Chemical Company Membrane process for drying liquid hydrocarbons
JP2010000507A (en) * 2007-03-15 2010-01-07 Mitsubishi Heavy Ind Ltd Dehydrating apparatus, dehydration system, and dehydration method
JP2015514005A (en) * 2012-03-28 2015-05-18 ラシリック, インコーポレイテッドRASIRC, Inc. Method for delivering process gases from multi-component solutions
JP2016131929A (en) * 2015-01-19 2016-07-25 栗田工業株式会社 Membrane distillation and fractionation unit
WO2017204254A1 (en) * 2016-05-27 2017-11-30 三菱ケミカル株式会社 Dehydration system for aqueous organic compounds, operation method therefor, and dehydration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247579A (en) * 1975-10-14 1977-04-15 Kuraray Co Ltd Continuous separation method of mixed liquid
JPS545391A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247579A (en) * 1975-10-14 1977-04-15 Kuraray Co Ltd Continuous separation method of mixed liquid
JPS545391A (en) * 1977-06-15 1979-01-16 Hitachi Ltd Manufacture of semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191302U (en) * 1984-11-20 1986-06-13
JPS6359306A (en) * 1986-08-29 1988-03-15 Mitsui Eng & Shipbuild Co Ltd Organic liquid separation device
US4846977A (en) * 1986-10-21 1989-07-11 The Dow Chemical Company Method and device for separating polar from non-polar liquids using membranes
JPS63162002A (en) * 1986-12-25 1988-07-05 Mitsui Eng & Shipbuild Co Ltd Device for dehydrating organic liquid
US5049259A (en) * 1988-05-09 1991-09-17 The Dow Chemical Company Membrane process for drying liquid hydrocarbons
JPH02273518A (en) * 1989-04-14 1990-11-08 Toray Ind Inc Manufacture of concentrated liquid of aqueous solution containing volatile organic liquid
JP2010000507A (en) * 2007-03-15 2010-01-07 Mitsubishi Heavy Ind Ltd Dehydrating apparatus, dehydration system, and dehydration method
JP2015514005A (en) * 2012-03-28 2015-05-18 ラシリック, インコーポレイテッドRASIRC, Inc. Method for delivering process gases from multi-component solutions
JP2016131929A (en) * 2015-01-19 2016-07-25 栗田工業株式会社 Membrane distillation and fractionation unit
WO2017204254A1 (en) * 2016-05-27 2017-11-30 三菱ケミカル株式会社 Dehydration system for aqueous organic compounds, operation method therefor, and dehydration method
JPWO2017204254A1 (en) * 2016-05-27 2019-03-28 三菱ケミカル株式会社 Dehydration system for water-containing organic compound, method of operating the same, and method of dehydration

Similar Documents

Publication Publication Date Title
TW450830B (en) Vapor permeation system
US5616247A (en) Method for separating a liquid mixture using a pervaporation membrane module unit
KR101764558B1 (en) System and method for organic solvent purification
US9266803B2 (en) Liquid separation by membrane assisted vapor stripping process
AU690723B2 (en) Organic and inorganic vapor permeation by countercurrent condensable sweep
JPS59132920A (en) Steam exchange apparatus and method
JPS58180204A (en) Separation using osmotic evaporation membrane
JP6636111B2 (en) Organic solvent purification system and method
JPH07227517A (en) Separation of liquid mixture
DK0524242T3 (en) Membrane separation process for dewatering a gas, vapor or liquid mixture by pervaporation or vapor permeation
JPH06254354A (en) Liquid separator and separation by permeation evaporation method
JP5734684B2 (en) Dehydration and concentration method for hydrous solvents
JPH06304453A (en) Pervaporation membrane separator using low temperature cooling medium
JPH0521611B2 (en)
KR102038324B1 (en) A dehydration system for mixture of water and organic solvent
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
JPH05200257A (en) Dehydrating method for organic oxide
JPS63162002A (en) Device for dehydrating organic liquid
WO2014077739A2 (en) Method for separating and concentrating organic substances from liquid mixtures and device for the implementation thereof
JPH01249123A (en) Dehumidifying method
JP2610063B2 (en) Steam drying method and apparatus
JPH05123530A (en) Recovery of hydrophilic organic vapor
JPH06246137A (en) Separator for mixed liquid
JPH05137969A (en) Method of recovering organic substances by pervaporation
JPS60222108A (en) Separating device by permeation and evaporation