JPH07227517A - Separation of liquid mixture - Google Patents

Separation of liquid mixture

Info

Publication number
JPH07227517A
JPH07227517A JP4174694A JP4174694A JPH07227517A JP H07227517 A JPH07227517 A JP H07227517A JP 4174694 A JP4174694 A JP 4174694A JP 4174694 A JP4174694 A JP 4174694A JP H07227517 A JPH07227517 A JP H07227517A
Authority
JP
Japan
Prior art keywords
vapor
membrane
distillation column
boiling point
point component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4174694A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takai
義明 高井
Hiroshi Yoshida
容 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering KK
Original Assignee
Nisso Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering KK filed Critical Nisso Engineering KK
Priority to JP4174694A priority Critical patent/JPH07227517A/en
Publication of JPH07227517A publication Critical patent/JPH07227517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To provide a separation method in which used equipment is compact and which excels in energy efficiency. CONSTITUTION:A liquid mixture as a raw liquid is fed to the top part of a distillation column 1. The overhead mixed vapor generated is introduced into a membrane separator 2 equipped with a gas separation membrane to separate it into a membrane impermeable vapor which is a low boiling point component vapor, and a membrane permeable vapor which is a mixed vapor contg. a high boiling point component in higher concentration. In this method, the membrane permeable vapor is introduced into the intermediate part of the distillation column 1 to circulate the low boiling point component mixed in the membrane permeable vapor as an overhead vapor in the membrane separator 2. The membrane impermeable vapor exchanges heat with the bottom liquid of the distillation column 1 to condense it. The condensate is taken out as the low boiling point component liquid, and on the other hand, the high boiling point component liquid is taken out as a bottom product from the bottom part of the distillation column 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸留技術と膜分離技術
とを組み合わせた液体混合物の分離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating a liquid mixture by combining distillation technology and membrane separation technology.

【0002】[0002]

【従来の技術】膜分離技術として、浸透気化法または蒸
気浸透法が注目され種々研究が行われているが、成分を
完全に分離する膜は開発されておらず、これらの膜分離
法は、分離不十分な膜透過混合物を如何に処理するかと
いう問題点を有している。また、これらの膜分離方法
は、供給原料あるいは膜透過成分を蒸発させるための蒸
発潜熱の供給が必要であり、エネルギー上の問題もあ
る。一方、汎用的な液体分離技術である蒸留は、共沸物
の分離が困難であり、また、還流操作を行うためエネル
ギー消費量が大きいという欠点を有する。
2. Description of the Related Art As a membrane separation technique, a pervaporation method or a vapor permeation method has attracted attention and various studies have been conducted, but a membrane for completely separating components has not been developed. There is the problem of how to treat a poorly separated membrane permeation mixture. Further, these membrane separation methods require supply of evaporation latent heat for evaporating a feed material or a membrane permeation component, which is also an energy problem. On the other hand, distillation, which is a general-purpose liquid separation technique, has the drawbacks that it is difficult to separate an azeotropic substance, and the amount of energy consumed is large because a reflux operation is performed.

【0003】近年、前述の膜分離技術及び蒸留技術の各
問題点を改良し、また、それぞれの長所を生かした分離
法の開発指向としては、両技術を組み合わせた液体分離
技術が開発されつつある(特開昭63−59308号、
特開昭63−258601号、特開平2−253802
号等)。
In recent years, a liquid separation technique combining both techniques has been developed as a method for improving the above-mentioned problems of the membrane separation technique and the distillation technique and for developing a separation method utilizing the respective advantages. (JP-A-63-59308,
JP-A-63-258601, JP-A-2-253802
Etc.).

【0004】[0004]

【発明が解決しようとする課題】ところが、上述の蒸留
と膜分離とを組み合わせた公知の分離方法では、以下の
ように省エネルギー効果が未だ十分に達成されておら
ず、これが設備の大型化と共にコスト増の要因になって
いる。すなわち、特開昭63−59308号の分離方法
は、浸透気化膜による膜分離と、膜透過蒸気に混入した
膜非透過性成分を回収すための蒸留とを組み合わせた構
成であるが、蒸留塔からの留出蒸気を膜分離装置に循環
する際、凝縮液化する必要がある。また、蒸留塔で還流
を行うためにも留出蒸気の凝縮液化が必要であり、省エ
ネルギー的に未だ不満足なものである。
However, in the known separation method in which the above-mentioned distillation and membrane separation are combined, the energy saving effect is not yet sufficiently achieved as described below, and this is accompanied by an increase in equipment size and cost. It is a factor of increase. That is, the separation method of Japanese Patent Laid-Open No. 63-59308 is a combination of membrane separation using a pervaporation membrane and distillation for recovering the membrane-impermeable component mixed in the membrane permeation vapor. It is necessary to condense and liquefy when the distillate vapor from is circulated to the membrane separation device. Further, in order to carry out reflux in the distillation column, it is necessary to condense and liquefy the distillate vapor, which is still unsatisfactory in terms of energy saving.

【0005】これに対し、特開昭63−258601号
及び特開平2−253802号の分離方法では、気体分
離膜による膜分離と蒸留とを組み合わせた構成である。
前者は、原料を全量蒸発させて膜分離装置に供給する必
要があり、エネルギー消費量が大きく不経済である。特
に、原料が低濃度のエタノール等のように、膜透過性成
分である高沸点物(水)を多量に含有する混合物である
場合、その欠点が顕著なものとなる。後者は、図2に示
したフローにより実施する方法であり、蒸留塔からの留
出蒸気をそのまま膜分離装置に供給している点で、使用
エネルギーをそれなりに低減化しているが、膜透過蒸気
を凝縮液化して蒸留塔の塔頂に循環するためエネルギー
の損失が生じている。
On the other hand, the separation methods of JP-A-63-258601 and JP-A-2-253802 have a combination of membrane separation using a gas separation membrane and distillation.
In the former, it is necessary to evaporate all the raw materials and supply them to the membrane separation device, which consumes a large amount of energy and is uneconomical. In particular, when the raw material is a mixture containing a large amount of high-boiling substance (water) that is a membrane-permeable component such as low-concentration ethanol, the drawback becomes remarkable. The latter is a method performed by the flow shown in FIG. 2, and the distillate vapor from the distillation column is supplied to the membrane separation device as it is. Is condensed and liquefied and circulated at the top of the distillation column, resulting in energy loss.

【0006】本発明の目的は、蒸留と膜分離とを組み合
わせた液体混合物の分離方法において、前述のような欠
点を改善し、使用設備がコンパクトで、エネルギー効率
のより優れた液体混合物の分離方法を提供することにあ
る。他の目的は以下の構成説明と共に明らかにする。
An object of the present invention is to improve the above-mentioned drawbacks in a method for separating a liquid mixture by combining distillation and membrane separation, use a compact facility, and have a higher energy efficiency. To provide. Other purposes will be clarified together with the following configuration description.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の液体混合物の分離方法は、原液である液体
混合物を蒸留塔の塔頂部に供給し、ここで発生した塔頂
混合蒸気を気体分離膜を備えた膜分離装置に導入し、低
沸点成分蒸気である膜非透過蒸気と、高沸点成分高含量
の混合蒸気である膜透過蒸気とに分離する方法におい
て、前記膜透過蒸気を前記蒸留塔の中間部に導入して、
該膜透過蒸気に混入している低沸点成分を塔頂蒸気とし
てそれを膜分離装置に循環し、前記膜非透過蒸気を蒸留
塔の塔底液と熱交換することにより凝縮させ低沸点成分
液として取り出す一方、蒸留塔の塔底から缶出液として
高沸点成分液を取り出すようにした。以上の構成におい
て、前記蒸留塔の塔頂混合蒸気は、蒸気圧縮機で加圧し
てから膜分離装置へ導入することがより好ましい。
In order to achieve the above object, the method for separating a liquid mixture according to the present invention is such that a liquid mixture as a stock solution is supplied to the top of a distillation column, and the top mixed vapor generated here is supplied. Is introduced into a membrane separation device equipped with a gas separation membrane, and is separated into a membrane non-permeation vapor that is a low boiling point component vapor and a membrane permeation vapor that is a mixed vapor with a high content of a high boiling point component. Is introduced into the middle part of the distillation column,
The low boiling point component liquid, which is mixed with the membrane permeated vapor, is circulated to the membrane separation device as a column top vapor, and the membrane non-permeated vapor is condensed by exchanging heat with the column bottom liquid of the distillation column. Meanwhile, the high boiling point component liquid was taken out as a bottom liquid from the bottom of the distillation column. In the above-mentioned structure, it is more preferable that the vapor mixture at the top of the distillation column is introduced into the membrane separation device after being pressurized by the vapor compressor.

【0008】[0008]

【作用】以上の本発明方法は、種々の液体混合物の分離
に適用可能であり、その種類に限定されるものではない
が、水と、水よりも沸点の低い有機溶剤との混合物から
の脱水に特に好適である。有機溶剤としては、例えば、
メタノール、エタノールプロパノール等のアルコール
類、ケトン類、エステル類、エーテル類等が挙げられ
る。
The above-mentioned method of the present invention can be applied to the separation of various liquid mixtures, and is not limited to the kind, but dehydration from a mixture of water and an organic solvent having a boiling point lower than that of water. Is particularly suitable for. As the organic solvent, for example,
Examples thereof include alcohols such as methanol and ethanol propanol, ketones, esters, ethers and the like.

【0009】本発明で用いられる気体分離膜としては、
成分分離しようとする液体混合物のうち、高沸点成分を
優先的に透過する膜であれば特に限定されない。例え
ば、ポリビニルアルコール膜、シリコンゴム膜、ポリイ
ミド膜、多孔質セラミックス膜が挙げられ、更にキトサ
ン誘導体、アルギン酸誘導体等の多糖類膜等、公知の気
体分離膜も使用可能である。また、気体分離膜の形態は
平膜に限らず、中空糸膜等であってもよい。また、これ
を組み込んだ膜分離装置において、その具体的な形態及
び段数等は液体混合物の成分、分離膜の性能、設計分離
成分の純度等に応じて任意に設定可能である。
As the gas separation membrane used in the present invention,
There is no particular limitation as long as it is a membrane that preferentially permeates high-boiling components of the liquid mixture from which the components are to be separated. Examples thereof include a polyvinyl alcohol film, a silicon rubber film, a polyimide film, and a porous ceramics film, and a known gas separation film such as a polysaccharide film such as a chitosan derivative and an alginic acid derivative can be used. The form of the gas separation membrane is not limited to a flat membrane, and may be a hollow fiber membrane or the like. Further, in the membrane separation device incorporating the same, the specific form, the number of stages, and the like can be arbitrarily set according to the components of the liquid mixture, the performance of the separation membrane, the purity of the designed separation component, and the like.

【0010】[0010]

【実施例】以下、本発明を実施するための装置の概略フ
ローを示す図1に基づき、本発明要部について更に詳述
する。図1の装置は、蒸留塔1及び膜分離装置2が主体
となり、原液である液体混合物が管路3を通じて蒸留塔
1の塔頂部に供給される。ここで、蒸留塔1は充填塔、
棚段塔等の通常のものが用いられる。膜分離装置2は、
分離しようとする液体混合物のうち高沸点成分を優先的
に透過する気体分離膜モジュールから構成されている。
この所定箇所には、前記塔頂混合蒸気を導入する管路4
と、低沸点成分蒸気である膜非透過蒸気を装置外へ導く
管路5と、膜優先透過性成分である高沸点成分を装置外
へ導く管路6の各一端が接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The essential parts of the present invention will be described in more detail below with reference to FIG. 1 showing a schematic flow of an apparatus for carrying out the present invention. The apparatus of FIG. 1 is mainly composed of a distillation column 1 and a membrane separation device 2, and a liquid mixture as a stock solution is supplied to the top of the distillation column 1 through a pipe line 3. Here, the distillation column 1 is a packed column,
A normal one such as a tray tower is used. The membrane separation device 2 is
It is composed of a gas separation membrane module that preferentially permeates high boiling point components of the liquid mixture to be separated.
At this predetermined location, a pipe line 4 for introducing the overhead vapor mixture
A pipe 5 for guiding the non-membrane permeation vapor, which is a low boiling point component vapor, to the outside of the device, and one end of a pipe line 6 for guiding the high boiling point component, which is the membrane preferential permeability component, to the outside of the device are connected.

【0011】そして、前記塔頂部で発生する塔頂混合蒸
気は、原液よりも低沸点成分含有率が高くなっており、
管路4を通じて蒸留塔1の塔頂部から管路4の途中に設
けられた蒸気圧縮機7により加圧されて膜分離装置2の
一次側2aに供給される。この膜分離装置2において、
供給された混合蒸気中の膜優先透過性成分である高沸点
成分は、少量の低沸点成分と共に気体分離膜を透過し、
低沸点成分蒸気である膜非透過蒸気と、高沸点成分高含
量混合蒸気である膜透過蒸気とに分離される。
Further, the vapor mixture at the top of the column has a higher content of low boiling point components than the stock solution,
From the top of the distillation column 1 through the pipe line 4, it is pressurized by a vapor compressor 7 provided in the middle of the pipe line 4 and supplied to the primary side 2a of the membrane separation device 2. In this membrane separation device 2,
The high boiling point component, which is the membrane-preferred permeable component in the supplied mixed vapor, permeates the gas separation membrane together with a small amount of the low boiling point component,
It is separated into a non-membrane permeation vapor which is a low boiling point component vapor and a membrane permeation vapor which is a high boiling point component high content mixed vapor.

【0012】膜非透過蒸気は管路5により蒸留塔1のリ
ボイラー8へ導かれる。このリボイラー8では、膜非透
過蒸気を蒸留塔1の塔底液と熱交換して塔底液を加熱す
る。膜非透過蒸気はこの熱交換により凝縮され低沸点成
分液として取り出される。また、気体分離膜の二次側2
bに透過した膜透過蒸気は、その高沸点成分に混入して
いる低沸点成分を回収するため、管路6により蒸留塔1
の中間部に供給される。すなわち、その低沸点成分は蒸
留塔1において、塔頂混合蒸気と共に蒸気圧縮機7を介
して膜分離装置2に循環される。
The non-membrane permeation vapor is introduced into the reboiler 8 of the distillation column 1 by the line 5. In this reboiler 8, the membrane-impermeable vapor is heat-exchanged with the bottom liquid of the distillation column 1 to heat the bottom liquid. The non-membrane permeation vapor is condensed by this heat exchange and taken out as a low boiling point component liquid. In addition, the secondary side 2 of the gas separation membrane
The membrane-permeated vapor that has permeated through b collects the low-boiling point component mixed with the high-boiling point component, so that the distillation column 1 is connected through the pipe 6.
Is supplied to the middle part of. That is, the low-boiling point component is circulated in the distillation column 1 together with the column top mixed vapor through the vapor compressor 7 to the membrane separation device 2.

【0013】以上の本発明構成にあっては、気体分離膜
の二次側2bにおける圧力を一次側2aにおける圧力よ
り低く設定する必要があり、そのために、図1の如く管
路4に蒸気圧縮機7を設置するのが好ましい。このよう
に、塔頂蒸気を蒸気圧縮機7で加圧した後に膜分離装置
2に導入することにより、この圧縮により蒸気が昇温
し、膜分離装置2を効率的に稼働させることができる。
要は、蒸気圧縮機7の作用により、気体分離膜の一次側
2aと二次側2bとにおける膜透過性成分の分圧差を確
保し、同時に、膜透過蒸気の蒸留塔1への循環を可能に
するのである。
In the above-mentioned structure of the present invention, it is necessary to set the pressure on the secondary side 2b of the gas separation membrane to be lower than the pressure on the primary side 2a. Therefore, as shown in FIG. It is preferable to install the machine 7. In this way, by introducing the overhead vapor into the membrane separation device 2 after pressurizing it with the vapor compressor 7, the vapor temperature rises due to this compression, and the membrane separation device 2 can be operated efficiently.
In short, the action of the vapor compressor 7 ensures a partial pressure difference between the membrane permeable components on the primary side 2a and the secondary side 2b of the gas separation membrane, and at the same time, allows the circulation of the membrane permeable vapor to the distillation column 1. To do.

【0014】なお、同様な作用を得る他の構成として、
前記蒸気圧縮機7は膜透過蒸気を蒸留塔1の中間部へ導
く管路6に設置することも可能であり、更に管路4及び
管路6の両方に設置してもよい。蒸気圧縮機7の設置が
管路6のみである場合、膜透過蒸気を蒸留塔1の加熱源
として利用するためには、更に、管路5にも別に蒸気圧
縮機を設置して、膜透過蒸気を圧縮昇温したのちリボイ
ラー8に導くようにする。
As another structure for obtaining the same operation,
The vapor compressor 7 can be installed in the pipe 6 that guides the membrane permeated vapor to the intermediate portion of the distillation column 1, and may be installed in both the pipe 4 and the pipe 6. When the vapor compressor 7 is installed only in the pipe line 6, in order to use the membrane permeated vapor as a heating source for the distillation column 1, a vapor compressor is additionally installed in the pipe line 5 to allow the membrane permeation. The steam is compressed and heated, and then introduced into the reboiler 8.

【0015】蒸留塔1の塔底からは、低沸点成分が除去
された高沸点成分が缶出液として排出され、その一部は
リボイラー8により加熱循環され、残りは管路9により
系外に排出される。なお、このような管路9から排出さ
れる高沸点成分は、これを管路3から供給される原液と
熱交換する構成にすれば、熱効率を更に向上することが
できる。
From the bottom of the distillation column 1, the high-boiling components from which the low-boiling components have been removed are discharged as bottoms, a part of which is heated and circulated by the reboiler 8 and the rest is taken out of the system by a pipe 9. Is discharged. If the high boiling point component discharged from the pipe 9 is heat-exchanged with the stock solution supplied from the pipe 3, the thermal efficiency can be further improved.

【0016】次ぎに、本発明の実施態様例を挙げるが、
本発明はこれに限定されるものではない。
Next, examples of embodiments of the present invention will be given.
The present invention is not limited to this.

【実施例1】図1のフローに基づき、エタノール水溶液
の脱水を次の条件下で行った。78.5℃に加熱した8
0.0wt%エタノール水溶液を、ポンプ10により8
34kg/hで蒸留塔1の塔頂部に供給し、留出した塔
頂蒸気を蒸気圧縮機7により1.9kg/cm2・Gに
加圧し、膜分離装置2に導入した。この蒸気圧縮機7の
加圧により、膜分離装置2に導入される蒸気温度は14
1℃まで上昇した。膜分離装置2において、膜透過蒸気
は二次側2bから蒸気のまま蒸留塔1の中間部へ循環し
た。そして、蒸留塔1の蒸留作用により透過膜蒸気のう
ち循環される低沸点成分である高エタノール含量蒸気
と、高沸点成分である水とに分離し、後者を蒸留塔1の
塔底部から缶出液として排出した。一方、膜非透過蒸気
は、蒸留塔1のリボイラー8において熱交換し107℃
まで冷却して凝縮させた後、更に不図示の凝縮器により
40℃まで冷却して精製エタノールを得た。蒸留塔1か
ら留出した塔頂蒸気はエタノールが85.9wt%(8
66kg/h)、循環した膜透過蒸気はエタノールが4
1.6wt%(184kg/h)、得られた精製エタノ
ールは97.8wt%(682kg/h)であった。ユ
ーティリティー使用量は表1の通りであった。
Example 1 Based on the flow of FIG. 1, dehydration of an ethanol aqueous solution was performed under the following conditions. 8 heated to 78.5 ° C
8 wt% of 0.0 wt% ethanol aqueous solution by pump 10
It was supplied to the top of the distillation column 1 at a rate of 34 kg / h, and the distilled top vapor was pressurized to 1.9 kg / cm 2 · G by the vapor compressor 7 and introduced into the membrane separation device 2. Due to the pressurization of the vapor compressor 7, the temperature of the vapor introduced into the membrane separation device 2 is 14
It rose to 1 ° C. In the membrane separator 2, the membrane-permeated vapor was circulated from the secondary side 2b to the middle part of the distillation column 1 as vapor. Then, the distillation action of the distillation column 1 separates the low-boiling component high-ethanol content vapor circulated in the permeable membrane vapor and the high-boiling component water, and the latter is removed from the bottom of the distillation column 1. It was discharged as a liquid. On the other hand, the non-membrane permeation vapor is heat-exchanged in the reboiler 8 of the distillation column 1 at 107 ° C.
After cooling to 40 ° C. and condensing, the product was further cooled to 40 ° C. by a condenser (not shown) to obtain purified ethanol. The top vapor distilled from the distillation column 1 contains 85.9 wt% of ethanol (8
66 kg / h), and the circulated membrane permeated vapor is 4% ethanol.
The amount of purified ethanol was 1.6 wt% (184 kg / h) and 97.8 wt% (682 kg / h). The amount of utility used was as shown in Table 1.

【0017】[0017]

【比較例】図2に示したフローに基づき、エタノール水
溶液の脱水を行った(図2では図1に相当する装置を同
符号に[′]を付けて示す)。蒸留塔1′及び膜分離装
置2′は実施例1のものと同じであり、78.5℃に加
熱した80.0wt%エタノール水溶液を、ポンプ1
0′により834kg/hで蒸留塔1′(1.9kg/
cm2・G)の塔頂部に供給し、留出した塔頂蒸気を膜
分離装置2′に導入した。膜透過蒸気は膜分離装置2′
の二次側から凝縮器13に導入して冷却し、ここで液化
した70℃の混合溶液をポンプ11により蒸留塔1′の
塔頂部に循環した。エタノールが除去された水は、蒸留
塔1′の塔底部から管路9′を通じ缶出液として排出し
た。蒸留塔1′においては水蒸気供給管14から蒸留塔
1′の塔底液に加圧水蒸気を吹き込み加熱した。膜非透
過蒸気は、凝縮器12により40℃まで冷却して精製エ
タノールを得た。蒸留塔1′から留出した塔頂蒸気はエ
タノールが80.9wt%(927kg/h)、循環し
た膜透過蒸気はエタノールが33.7wt%(245k
g/h)、得られた精製エタノールは97.8wt%
(682kg/h)であった。ユーティリティ使用量は
表1の通りであった。
Comparative Example The aqueous ethanol solution was dehydrated on the basis of the flow shown in FIG. 2 (in FIG. 2, an apparatus corresponding to FIG. 1 is shown with the same reference numerals and attached with “′”). The distillation column 1 ′ and the membrane separation device 2 ′ are the same as those in Example 1, and the pump 1 is used to supply the 80.0 wt% ethanol aqueous solution heated to 78.5 ° C.
0'at 834 kg / h at distillation column 1 '(1.9 kg / h
cm 2 · G) was supplied to the top of the column, and the top vapor distilled off was introduced into the membrane separator 2 ′. Membrane permeation vapor is the membrane separation device 2 '
Was introduced into the condenser 13 from the secondary side thereof and cooled, and the liquefied mixed solution at 70 ° C. was circulated by the pump 11 to the top of the distillation column 1 ′. The water from which the ethanol was removed was discharged as bottoms from the bottom of the distillation column 1'through the pipe line 9 '. In the distillation column 1 ', pressurized steam was blown into the bottom liquid of the distillation column 1'from the steam supply pipe 14 to heat it. The membrane-impermeable vapor was cooled to 40 ° C. by the condenser 12 to obtain purified ethanol. The overhead vapor distilled from the distillation column 1 ′ was 80.9 wt% (927 kg / h) of ethanol, and the circulated membrane permeated vapor was 33.7 wt% of ethanol (245 k
g / h), the obtained purified ethanol is 97.8 wt%
(682 kg / h). The utility usage was as shown in Table 1.

【0018】なお、この比較例では精製エタノールの濃
度及び量が実施例1と同じになるように膜分離装置2′
における気体分離膜面積を設定した。この膜面積は実施
例1のものに対し1.13倍必要であった。
In this comparative example, the membrane separation apparatus 2'is arranged so that the concentration and amount of purified ethanol are the same as in Example 1.
The gas separation membrane area at was set. This membrane area was 1.13 times that of Example 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例1では、表1に示したように、蒸気
圧縮機を運転するため、比較例に比べて動力コストが高
くなるが、加熱用水蒸気を起動時以外は必要とせず、冷
却水負荷が極めて低いので、装置設備の簡素化が図られ
ると共に、全ユーティリティーコストが比較例に対し極
めて有利なものとなる。
In Example 1, as shown in Table 1, since the steam compressor is operated, the power cost is higher than that of the comparative example, but the steam for heating is not required except at the time of starting, and the cooling water is not required. Since the load is extremely low, the equipment can be simplified, and the total utility cost is extremely advantageous over the comparative example.

【0021】[0021]

【発明の効果】以上、説明したように、本発明に係る液
体混合物の分離方法は、蒸留塔が回収部のみからなり、
還流操作を必要とせず、蒸留塔から留出した蒸気を凝縮
することなく、膜分離装置、次いで膜透過蒸気の蒸留塔
中間部への循環を行うため凝縮・再蒸発という工程がな
く、エネルギー効率の極めて高いものとなる。更に、膜
非透過蒸気を蒸留塔における熱源として利用し、膜非透
過蒸気の凝縮及び蒸留塔の底液の加熱を行うため、熱損
失が殆どなく、工業的に極めて優れたものとなる。
As described above, in the method for separating a liquid mixture according to the present invention, the distillation column is composed of only the recovery section,
It does not require a reflux operation and does not condense the vapor distilled from the distillation column, and circulates the membrane separation device and then the membrane-permeated vapor to the middle part of the distillation column. Will be extremely high. Further, since the non-membrane permeation vapor is used as a heat source in the distillation column to condense the non-permeation vapor and heat the bottom liquid of the distillation column, there is almost no heat loss, which is extremely superior industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置要部の概略を示す
フロー図である。
FIG. 1 is a flowchart showing an outline of a main part of an apparatus for carrying out the present invention.

【図2】比較例の方法を実施するための装置要部の概略
を示すフロー図である。
FIG. 2 is a flowchart showing an outline of a main part of an apparatus for carrying out the method of the comparative example.

【符号の説明】[Explanation of symbols]

1 蒸留塔 2 膜分離装置 7 蒸気圧縮機 8 リボイラー 10 ポンプ 1 Distillation tower 2 Membrane separation device 7 Vapor compressor 8 Reboiler 10 Pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原液である液体混合物を蒸留塔の塔頂部
に供給し、ここで発生した塔頂混合蒸気を気体分離膜を
備えた膜分離装置に導入し、低沸点成分蒸気である膜非
透過蒸気と、高沸点成分高含量の混合蒸気である膜透過
蒸気とに分離する方法において、 前記膜透過蒸気を前記蒸留塔の中間部に導入して、該膜
透過蒸気に混入している低沸点成分を塔頂蒸気としてそ
れを膜分離装置に循環し、前記膜非透過蒸気を蒸留塔の
塔底液と熱交換することにより凝縮させ低沸点成分液と
して取り出す一方、蒸留塔の塔底から缶出液として高沸
点成分液を取り出すことを特徴とする液体混合物の分離
方法。
1. A liquid mixture, which is a stock solution, is supplied to the top of a distillation column, and the overhead mixed vapor generated here is introduced into a membrane separation device equipped with a gas separation membrane to obtain a non-membrane component vapor that is a low boiling point component vapor. In the method of separating the permeated vapor and the membrane permeated vapor, which is a mixed vapor having a high content of high boiling point components, the membrane permeated vapor is introduced into the middle part of the distillation column, and the low permeation vapor mixed in the membrane permeated vapor is introduced. The boiling point component is circulated as a top vapor in the membrane separator, and the non-membrane permeation vapor is condensed by heat exchange with the bottom liquid of the distillation column to be taken out as a low boiling point component liquid, while it is extracted from the bottom of the distillation column. A method for separating a liquid mixture, characterized in that a high boiling point component liquid is taken out as a bottom product.
【請求項2】 前記蒸留塔の塔頂混合蒸気を、蒸気圧縮
機で加圧してから膜分離装置へ導入する請求項1記載の
液体混合物の分離装置。
2. The apparatus for separating a liquid mixture according to claim 1, wherein the mixed vapor at the top of the distillation column is pressurized by a vapor compressor and then introduced into the membrane separation apparatus.
JP4174694A 1994-02-17 1994-02-17 Separation of liquid mixture Pending JPH07227517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174694A JPH07227517A (en) 1994-02-17 1994-02-17 Separation of liquid mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174694A JPH07227517A (en) 1994-02-17 1994-02-17 Separation of liquid mixture

Publications (1)

Publication Number Publication Date
JPH07227517A true JPH07227517A (en) 1995-08-29

Family

ID=12616997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174694A Pending JPH07227517A (en) 1994-02-17 1994-02-17 Separation of liquid mixture

Country Status (1)

Country Link
JP (1) JPH07227517A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093828A (en) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd Distillation apparatus equipped with separation membrane module and distillation column
WO2004073841A1 (en) 2003-02-21 2004-09-02 Bussan Nanotech Research Institute, Inc. Method for concentrating water-soluble organic material
WO2004085022A1 (en) * 2003-03-20 2004-10-07 Bp Corporation North America Inc. Purification of fluid compounds utilizing a distillation-membrane separation process
JP2006306762A (en) * 2005-04-27 2006-11-09 Kuraray Co Ltd Method for recovering alcohol
JP2006306763A (en) * 2005-04-27 2006-11-09 Kuraray Co Ltd Method for recovering carboxylic acid
WO2009029668A1 (en) * 2007-08-27 2009-03-05 Membrane Technology And Research, Inc. Membrane augmented distillation to separate solvents from water
DE102007040067B3 (en) * 2007-08-24 2009-04-02 Acs Agrochemische Systeme Gmbh Method for separation of fluid material mixtures, involves interconnecting distillation or rectification column and two vapor compressors, where collected hot vapor is condensed in heat exchanger for heating sump of column
EP2197562A1 (en) * 2007-08-30 2010-06-23 Environmental Protection Agency Liquid separation by membrane assisted vapor process
JP2011502960A (en) * 2007-10-12 2011-01-27 エプコン・エナジー・アンド・プロセス・コントロール・アーエス Method for dehydrating mainly a mixture of ethanol and water
WO2011027787A1 (en) * 2009-09-02 2011-03-10 日立造船株式会社 Method for dewatering water-containing organic substance
WO2012017628A1 (en) * 2010-08-05 2012-02-09 新日鉄エンジニアリング株式会社 Membrane separation apparatus and membrane separation method
JP2012110832A (en) * 2010-11-24 2012-06-14 Chiyoda Kako Kensetsu Kk Device for separating azeotropic mixture and method for separating azeotropic mixture
JP2015205240A (en) * 2014-04-18 2015-11-19 株式会社ササクラ Evaporative concentration device and evaporative concentration method
JP2016203071A (en) * 2015-04-20 2016-12-08 三菱化学エンジニアリング株式会社 Separation method and device of mixture
CN110538480A (en) * 2019-09-25 2019-12-06 上海电气集团股份有限公司 condensing system and condensing method
WO2022191228A1 (en) * 2021-03-11 2022-09-15 三菱ケミカル株式会社 Dehydration system and dehydration method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093828A (en) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd Distillation apparatus equipped with separation membrane module and distillation column
US7594981B2 (en) 2003-02-21 2009-09-29 Mitsubishi Chemical Corporation Method for concentrating water-soluble organic material
WO2004073841A1 (en) 2003-02-21 2004-09-02 Bussan Nanotech Research Institute, Inc. Method for concentrating water-soluble organic material
EP1614458A1 (en) * 2003-02-21 2006-01-11 Bussan Nanotech Research Institute Inc. Method for concentrating water-soluble organic material
EP1614458A4 (en) * 2003-02-21 2006-07-26 Bussan Nanotech Res Inst Inc Method for concentrating water-soluble organic material
WO2004085022A1 (en) * 2003-03-20 2004-10-07 Bp Corporation North America Inc. Purification of fluid compounds utilizing a distillation-membrane separation process
AU2004224457B2 (en) * 2003-03-20 2009-07-23 Bp Corporation North America Inc. Purification of fluid compounds utilizing a distillation-membrane separation process
JP2006306762A (en) * 2005-04-27 2006-11-09 Kuraray Co Ltd Method for recovering alcohol
JP2006306763A (en) * 2005-04-27 2006-11-09 Kuraray Co Ltd Method for recovering carboxylic acid
DE102007040067B3 (en) * 2007-08-24 2009-04-02 Acs Agrochemische Systeme Gmbh Method for separation of fluid material mixtures, involves interconnecting distillation or rectification column and two vapor compressors, where collected hot vapor is condensed in heat exchanger for heating sump of column
US8263815B2 (en) 2007-08-27 2012-09-11 Membrane Technology And Research, Inc. Membrane augmented distillation to separate solvents from water
WO2009029668A1 (en) * 2007-08-27 2009-03-05 Membrane Technology And Research, Inc. Membrane augmented distillation to separate solvents from water
EP2197562A4 (en) * 2007-08-30 2010-12-15 Environmental Prot Agency Liquid separation by membrane assisted vapor process
EP2197562A1 (en) * 2007-08-30 2010-06-23 Environmental Protection Agency Liquid separation by membrane assisted vapor process
JP2011502960A (en) * 2007-10-12 2011-01-27 エプコン・エナジー・アンド・プロセス・コントロール・アーエス Method for dehydrating mainly a mixture of ethanol and water
US9205381B2 (en) 2009-09-02 2015-12-08 Hitachi Zosen Corporation Method for dewatering water-containing organic substance
JP2011050860A (en) * 2009-09-02 2011-03-17 Hitachi Zosen Corp Anhydrization method of hydrated organic substance
WO2011027787A1 (en) * 2009-09-02 2011-03-10 日立造船株式会社 Method for dewatering water-containing organic substance
WO2012017628A1 (en) * 2010-08-05 2012-02-09 新日鉄エンジニアリング株式会社 Membrane separation apparatus and membrane separation method
US9321011B2 (en) 2010-08-05 2016-04-26 Nippon Steel & Sumkin Engineering Co., Ltd. Ethanol/water vapor permeation membrane separation process with heat and energy recovery via temperature and flow control
JP2012110832A (en) * 2010-11-24 2012-06-14 Chiyoda Kako Kensetsu Kk Device for separating azeotropic mixture and method for separating azeotropic mixture
JP2015205240A (en) * 2014-04-18 2015-11-19 株式会社ササクラ Evaporative concentration device and evaporative concentration method
JP2016203071A (en) * 2015-04-20 2016-12-08 三菱化学エンジニアリング株式会社 Separation method and device of mixture
CN110538480A (en) * 2019-09-25 2019-12-06 上海电气集团股份有限公司 condensing system and condensing method
WO2022191228A1 (en) * 2021-03-11 2022-09-15 三菱ケミカル株式会社 Dehydration system and dehydration method

Similar Documents

Publication Publication Date Title
JPH07227517A (en) Separation of liquid mixture
US4405409A (en) Method and apparatus for dehydrating mixtures of organic liquids and water
US9266803B2 (en) Liquid separation by membrane assisted vapor stripping process
JP5369765B2 (en) Method for purifying fermentation alcohol
TWI402093B (en) Production of ethylene oxide
JP2006263561A (en) Distillation-membrane separation hybrid apparatus and separation method in which distillation and membrane separation are combined
WO2009123223A1 (en) Purification treatment method for fermented alcohol
TWI630948B (en) Method for concentrating water-soluble organic matter and device for concentrating water-soluble organic matter
JP2011502960A5 (en)
JP4831934B2 (en) Water-soluble organic substance concentrator
JPH0463110A (en) Separation purification method of alcohol-containing reaction liquid
JP5604677B2 (en) Separation apparatus for azeotropic mixture and method for separating azeotropic mixture
JP2004089882A (en) Separation apparatus for mixture, separation method using the same and method for producing aromatic carboxylic acid
JP5734684B2 (en) Dehydration and concentration method for hydrous solvents
US4911845A (en) Process and apparatus for separation of volatile components
JP2571743B2 (en) Manufacturing method of absolute ethanol
JPS59216605A (en) Separating method using pervaporization membrane
JPH01107805A (en) Method of recovering by refining used solvent
JPH02253802A (en) Method for saving heat quantity by combination of distillation and membrane separation in dehydrating separation of aqueous low-boiling-point solvent solution
JP2505418B2 (en) Solvent refining and recovery method
JPH0254811B2 (en)
JP2532042B2 (en) Organic acid recovery method
JPS634828A (en) Method for recovering solvent
JPS63278522A (en) Separation of volatile mixture
WO2021200785A1 (en) Method for producing purified acetic acid