JP2532042B2 - Organic acid recovery method - Google Patents

Organic acid recovery method

Info

Publication number
JP2532042B2
JP2532042B2 JP63265660A JP26566088A JP2532042B2 JP 2532042 B2 JP2532042 B2 JP 2532042B2 JP 63265660 A JP63265660 A JP 63265660A JP 26566088 A JP26566088 A JP 26566088A JP 2532042 B2 JP2532042 B2 JP 2532042B2
Authority
JP
Japan
Prior art keywords
organic acid
separation
water
extract
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63265660A
Other languages
Japanese (ja)
Other versions
JPH02111404A (en
Inventor
国夫 古賀
昌二 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63265660A priority Critical patent/JP2532042B2/en
Publication of JPH02111404A publication Critical patent/JPH02111404A/en
Application granted granted Critical
Publication of JP2532042B2 publication Critical patent/JP2532042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機酸水溶液から有用な有機酸を回収する
有機酸の回収方法に関する。より詳細には、セルロース
工業、醗酵工業、化学工業などで多量に発生する有機酸
水溶液から有機酸を効率よく回収する有機酸の回収方法
に関する。
TECHNICAL FIELD The present invention relates to a method for recovering a useful organic acid from an aqueous organic acid solution. More specifically, the present invention relates to a method for recovering an organic acid that efficiently recovers an organic acid from an aqueous solution of an organic acid that is generated in large quantities in the cellulose industry, fermentation industry, chemical industry, and the like.

[従来の技術と発明が解決しようとする課題] 有機酸水溶液から有機酸を回収するには、一般に、有
機溶媒を用いて有機酸を抽出し、抽出液を蒸留により脱
水脱溶剤する方法が採用されている。この方法で、有機
酸よりも低い沸点を有する有機溶媒を使用する場合に
は、有機酸水溶液を有機溶媒で抽出し、抽出液を蒸留塔
へ導き、塔頂より水、有機溶媒を留去し、塔底から有機
酸を回収している。より詳細には、第5図に示されるよ
うに、先ず、有機酸水溶液(51)を有機溶媒(52)にて
抽出塔(53)で抽出し、エクストラクトに含まれている
有機酸を蒸留塔に仕込んで回収する。一方、ラフィネー
ト(54)に含まれている有機溶媒は、溶剤回収蒸留塔
(図示せず)で回収する。また有機酸水溶液(51)が高
沸点成分を含む場合、抽出液(55)をポンプ(56)によ
り蒸発器(57)へ供給し、抽出液(55)蒸発させて高沸
点成分を除去し、蒸留塔(58)へ供給することも行なわ
れている。この蒸留塔(58)では、塔頂から留去する水
と有機溶媒(52)とを含む留分(59)を、一部を還流さ
せながら凝縮器(60)で凝縮してタンク(61)に収容
し、蒸留塔(58)の塔底から高純度の有機酸(62)を回
収している。また有機酸よりも高い沸点を有する有機溶
媒を用いる場合には、有機酸水溶液を有機溶媒で抽出
し、該抽出液を蒸留塔へ導いて塔頂から水を留去させ、
塔底から有機酸と溶媒とを抜き出し、塔底液をさらに蒸
留塔へ導き、有機酸を塔頂より留去させて、純粋な有機
酸を回収している。上気の有機酸の回収方法では、いず
れの場合も、抽出液中に溶解した、蒸発潜熱の大きな水
を蒸留塔で蒸発留去する必要があるため、多くのエネル
ギーを消費する。このため、抽出溶媒の選定に際して
は、有機酸に対する分配係数が大きく、しかも有機酸に
対する分配係数を水に対する分配係数で徐した値である
選択度の大きな有機溶媒を選択する必要があ。しかしな
がら、有機酸に対して分配係数が大きな溶媒は、一般
に、水に対しても分配係数が大きい。例えば、有機酸水
溶液が酢酸水溶液である場合、酢酸に対する分配係数の
大きな溶媒、例えば、酢酸エチル、プロピオン酸エチ
ル、メチルエチルケトン、メチルプロピルケトン、ジエ
チルケトンなどの溶媒は、水に対する分配係数も大き
く、これらの溶媒で酢酸水溶液を抽出すると、抽出液中
の酢酸濃度の増加に伴ない、水の濃度も必然的に大幅に
上昇する。すなわち、第6図に示す酢酸−水−溶媒の3
成分系の液液平衡線図から明らかなように、有機酸水溶
液として、酢酸28重量%、水72重量%からなる酢酸水溶
液を用い、この酢酸水溶液1重量部に対して有機溶媒と
して酢酸エチル(図中、EAで示す)を1.1重量部用いた
場合、ラフィネートと平衡な抽出液(図中、Ext1で示
す)の組成は、酢酸18重量%および水17重量%であり、
酢酸エチルの使用量を0.63重量部にすると、抽出液(図
中、Ext2で示す)の組成は、酢酸24.9重量%および水2
4.5重量%となり、抽出液中の酢酸濃度だけでなく、水
分濃度も大幅に上昇する。このように、少量の有機溶媒
で抽出すると酢酸濃度が上昇するが、同伴して抽出され
る水分の増加に起因して、有機酸の回収コストが高くな
る欠点があった。
[Problems to be Solved by Conventional Techniques and Inventions] Generally, in order to recover an organic acid from an aqueous solution of an organic acid, a method of extracting the organic acid with an organic solvent and dehydrating and desolventizing the extract by distillation is adopted. Has been done. In this method, when an organic solvent having a boiling point lower than that of the organic acid is used, the organic acid aqueous solution is extracted with the organic solvent, the extract is led to a distillation column, and water and the organic solvent are distilled off from the top of the column. , The organic acid is recovered from the bottom of the tower. More specifically, as shown in FIG. 5, first, the organic acid aqueous solution (51) is extracted with the organic solvent (52) in the extraction tower (53), and the organic acid contained in the extract is distilled. Collect in a tower. On the other hand, the organic solvent contained in the raffinate (54) is recovered by a solvent recovery distillation column (not shown). When the organic acid aqueous solution (51) contains a high boiling point component, the extraction liquid (55) is supplied to the evaporator (57) by the pump (56) to evaporate the extraction liquid (55) to remove the high boiling point component, It is also supplied to the distillation column (58). In this distillation column (58), a fraction (59) containing water and an organic solvent (52) distilled from the top of the column is condensed in a condenser (60) while partially refluxing it, and then a tank (61). The high purity organic acid (62) is recovered from the bottom of the distillation column (58). When using an organic solvent having a boiling point higher than that of the organic acid, the organic acid aqueous solution is extracted with an organic solvent, and the extract is introduced into a distillation column to distill off water from the top of the column,
The organic acid and the solvent are withdrawn from the bottom of the column, the liquid at the bottom of the column is further introduced into a distillation column, and the organic acid is distilled off from the top of the column to recover a pure organic acid. In any of the above methods for recovering the organic acid, it is necessary to evaporate and distill off the water having a large latent heat of vaporization dissolved in the extract in the distillation column, which consumes a lot of energy. Therefore, when selecting the extraction solvent, it is necessary to select an organic solvent having a large partition coefficient for the organic acid and a large selectivity which is a value obtained by multiplying the partition coefficient for the organic acid by the partition coefficient for water. However, a solvent having a large partition coefficient for organic acids generally has a large partition coefficient for water as well. For example, when the organic acid aqueous solution is an acetic acid aqueous solution, a solvent having a large partition coefficient for acetic acid, for example, a solvent such as ethyl acetate, ethyl propionate, methyl ethyl ketone, methyl propyl ketone, and diethyl ketone has a large partition coefficient for water. When an aqueous solution of acetic acid is extracted with the solvent described above, the concentration of water inevitably greatly increases as the concentration of acetic acid in the extract increases. That is, acetic acid-water-solvent 3 shown in FIG.
As is clear from the liquid-liquid equilibrium diagram of the component system, an acetic acid aqueous solution consisting of 28% by weight of acetic acid and 72% by weight of water was used as the organic acid aqueous solution, and ethyl acetate ( (Indicated by EA in the figure) is 1.1 parts by weight, the composition of the extract in equilibrium with the raffinate (indicated by Ext 1 in the figure) is 18% by weight acetic acid and 17% by weight water.
When the amount of ethyl acetate used is 0.63 parts by weight, the composition of the extract (shown as Ext 2 in the figure) is 24.9% by weight of acetic acid and 2% of water.
It becomes 4.5% by weight, and not only the acetic acid concentration in the extract but also the water concentration increases significantly. Thus, the concentration of acetic acid increases when extracted with a small amount of organic solvent, but there is a drawback that the cost of recovering the organic acid increases due to an increase in the amount of water that is extracted along with it.

従って、抽出溶媒として、上気のような有機溶媒と、
水に対する溶解性の低い他の溶媒、例えばベンゼンとを
組合せた混合溶媒を用い、水に対する溶解度を小さくし
た状態で有機酸を抽出している。例えば、第6図に示さ
れるように、抽出溶媒として酢酸エチル75重量%とベン
ゼン25重量%との混合溶媒(図中、EA/Bz=75/25で示
す)を酢酸水溶液1重量部に対して1.45重量部用いた場
合、抽残相と平衡な抽出液の組成(図中、Ext3で示す)
は酢酸16重量%および水6重量%であり、前記酢酸エチ
ル(EA)単独溶媒の場合よりも、抽出液中の水分濃度を
低減できる。しかしながら、この方法では、せっかく有
機溶媒が有機酸に対して大きな分配係数を有しているに
も拘らず、有機酸に対する分配係数を低下させた混合溶
媒として使用するので、有機酸の抽出効率が低下する問
題点があった。
Therefore, as an extraction solvent, an organic solvent such as air,
The organic acid is extracted in a state where the solubility in water is reduced using another solvent having a low solubility in water, for example, a mixed solvent in which benzene is combined. For example, as shown in FIG. 6, a mixed solvent of 75% by weight of ethyl acetate and 25% by weight of benzene (shown as EA / Bz = 75/25 in the figure) as an extraction solvent is added to 1 part by weight of an aqueous acetic acid solution. When used as 1.45 parts by weight, the composition of the extract that is in equilibrium with the extraction phase (shown as Ext 3 in the figure)
Is 16% by weight of acetic acid and 6% by weight of water, and the water concentration in the extract can be reduced as compared with the case where the ethyl acetate (EA) alone solvent is used. However, in this method, even though the organic solvent has a large partition coefficient for the organic acid, it is used as a mixed solvent having a reduced partition coefficient for the organic acid, so that the extraction efficiency of the organic acid is high. There was a problem of deterioration.

一方、水−アルコールなどの共沸混合物からアルコー
ルを回収する方法として、共沸混合物をパーベーパレー
ションにより分離し、分離した二液をそれぞれ蒸留塔に
供給して蒸留分離し、所望の成分を連続的に分離する方
法(特公昭59−40048号公報)や、水−エタノール共沸
混合物をパーベーパレーションにより分離し、二次側へ
排出される水分含量の高いエタノール蒸気を凝縮して蒸
留塔に返送し、一次側から無水エタノールを連続的に得
る方法(特公昭60−42210号公報)が提案されている。
これらの先行技術に開示されているパーベーパレーショ
ンプロセスは高分子膜のうち高圧側である一次側に共沸
混合物などの被処理液を供給し、低圧側である二次側に
蒸気として選択的に透過させる方法である。この膜分離
方法は、共沸混合物、沸点差の小さな混合物や分子の大
きさが近似している液体混合物などから、簡単な方法で
所望の成分を分離し回収できるという利点がある。
On the other hand, as a method for recovering alcohol from an azeotropic mixture such as water-alcohol, the azeotropic mixture is separated by pervaporation, and the separated two liquids are respectively fed to a distillation column to be separated by distillation, and the desired components are continuously extracted. Method (Japanese Patent Publication No. 59-40048) or a water-ethanol azeotrope mixture is separated by pervaporation, and the ethanol vapor having a high water content discharged to the secondary side is condensed to a distillation column. A method (Japanese Patent Publication No. 60-42210) of returning and continuously obtaining anhydrous ethanol from the primary side has been proposed.
The pervaporation process disclosed in these prior arts supplies a liquid to be treated such as an azeotrope to the high pressure side of the polymer membrane on the high pressure side, and selectively supplies it as a vapor to the low pressure side of the secondary side. It is a method of transmitting the light through. This membrane separation method has an advantage that desired components can be separated and collected by a simple method from an azeotropic mixture, a mixture having a small boiling point difference, a liquid mixture having similar molecular sizes, and the like.

しかしながら、上記のパーベーパレーションプロセス
を利用してアルコールを精製する場合、アルコール95
%、水5%からなる共沸組成のアルコール濃度を99.5〜
99.9%程度まで濃縮する必要があるため、減圧側の操作
圧を10torr以下にする必要があると共に、凝縮温度が零
点以下となり、透過液が氷結する等の問題があり、作業
性が十分でない。また高分子膜の選択に際しては、水の
分離効率を高めるため、水選択透過性の高い分離膜を用
いる必要がある。
However, when the alcohol is purified using the pervaporation process described above, the alcohol
%, 5% water 5% azeotropic composition alcohol concentration 99.5 ~
Since it is necessary to concentrate to about 99.9%, it is necessary to set the operating pressure on the depressurization side to 10 torr or less, and there is a problem that the condensing temperature becomes below the zero point and the permeated liquid freezes, and workability is not sufficient. Further, in selecting a polymer membrane, it is necessary to use a separation membrane having high water selective permeability in order to enhance the water separation efficiency.

本発明の目的は、有機酸水溶液の水分濃度が高くて
も、回収エネルギーが少なく、作業性に優れた有機酸の
回収方法を提供することにある。
It is an object of the present invention to provide a method for recovering an organic acid which has a low recovery energy and is excellent in workability even if the organic acid aqueous solution has a high water concentration.

また本発明の他の目的は、有機酸だけでなく水に対し
ても高い分配係数を示す有機溶媒が使用できると共に、
有機溶媒の使用量が少なくても効率的に有機酸を回収で
き、回収効率に優れた有機酸の回収方法を提供すること
にある。
Another object of the present invention is to use an organic solvent having a high partition coefficient for water as well as an organic acid,
An object of the present invention is to provide a method for recovering an organic acid, which can efficiently recover the organic acid even when the amount of the organic solvent used is small, and which has excellent recovery efficiency.

さらには本発明の他の目的は、水選択透過性の高い分
離膜を特に必要とせず、分離膜として幅広い水選択透過
性を有する分離膜が使用できる有機酸の回収方法を提供
することにある。
Still another object of the present invention is to provide a method for recovering an organic acid which does not particularly require a separation membrane having high water selective permeability and which can be used as a separation membrane having a wide water selective permeability. .

[発明の構成] 本発明者らは、上記課題を解決するため、鋭意研究し
た結果、本発明を完成するに至った。
[Structure of the Invention] The present inventors have completed the present invention as a result of intensive research to solve the above problems.

すなわち、本発明は、有機酸水溶液から有機酸を回収
する方法において、有機酸水溶液を抽出部で有機溶媒に
て抽出し、該抽出液を水選択透過性分離膜を備えた分離
部で分離し、該分離部を通過した留分を抽出部に供給
し、前記分離部を通過しない留分を脱水脱溶媒部に供給
して有機酸を連続的に回収する有機酸の回収方法によ
り、上記課題を解決するものである。
That is, the present invention is a method for recovering an organic acid from an organic acid aqueous solution, wherein the organic acid aqueous solution is extracted with an organic solvent in the extraction unit, and the extract is separated by a separation unit equipped with a water-selective permeable separation membrane. The organic acid recovery method of supplying a fraction that has passed through the separation section to the extraction section, and supplying a fraction that does not pass through the separation section to the dehydration desolvation section to continuously recover the organic acid, Is the solution.

本発明の有機酸の回収方法を、有機酸よりも低い沸点
を有する有機溶媒を用いた場合を例にとって、添付図面
に基づいて説明する。なお、理解を助けるため、同一の
要素には同一の参照符号を付して説明する。
The method for recovering an organic acid according to the present invention will be described with reference to the accompanying drawings, taking a case where an organic solvent having a boiling point lower than that of the organic acid is used as an example. In addition, in order to help understanding, the same elements will be described with the same reference numerals.

第1図はパーベーパレーションを利用したフロー示す
工程図であり、有機酸水溶液(1)は、有機酸に対して
分配係数の大きな有機溶媒(2)により抽出塔(3)で
抽出処理され、有機酸水溶液(1)中の有機酸と水がそ
れらの分配係数に応じて有機溶媒(2)へ移行する。そ
の際、上記有機溶媒(2)としては、分離部(7)の水
選択透過性を有する分離膜(8)で抽出液(5)中の水
分を除去できるため、水に対する分配係数の大小に係わ
りなく、有機酸に対して分配係数の大きい有機溶媒が使
用できる。従って、有機溶媒の使用量が少なくても有機
酸を効率的に抽出でき、有機溶媒量を節約できると共
に、有機酸の回収コストを低減できる。さらには、抽出
塔および脱水脱溶媒塔への仕込み量を低減できるので、
抽出塔および脱水脱溶媒塔を小型化できる。このこと
は、現行の設備に本発明を適用すると、有機酸の回収設
備能力を大幅に高めることになる。
FIG. 1 is a process diagram showing a flow using pervaporation, in which an organic acid aqueous solution (1) is subjected to extraction treatment in an extraction tower (3) by an organic solvent (2) having a large partition coefficient with respect to the organic acid, The organic acid and water in the organic acid aqueous solution (1) are transferred to the organic solvent (2) according to their partition coefficient. At this time, as the organic solvent (2), since the water in the extract (5) can be removed by the separation membrane (8) having the selective water permeability of the separation part (7), the partition coefficient for water can be reduced. Regardless of this, an organic solvent having a large partition coefficient for the organic acid can be used. Therefore, even if the amount of the organic solvent used is small, the organic acid can be efficiently extracted, the amount of the organic solvent can be saved, and the recovery cost of the organic acid can be reduced. Furthermore, since the amount charged to the extraction tower and dehydration desolvation tower can be reduced,
The extraction tower and dehydration desolvation tower can be downsized. This means that if the present invention is applied to existing equipment, the capacity of organic acid recovery equipment is greatly increased.

上記有機酸水溶液(1)を抽出する有機溶媒(2)と
しては、抽出効率を高めるため、有機酸水溶液中の有機
酸に対して分配係数の大きな溶媒が使用される。このよ
うな有機溶媒としては、例えば、メチルエチルケトン、
ジエチルケトン、メチルプロピルケトン、メチルイソプ
ロピルケトン、メチルイソブチルケトン及び4−メチル
−3−ペンテン−2−オンなどのケトン類;ブタノー
ル、イソブタノール、tert−アミルアルコール及び3−
ペンタノールなどのアルコール類;ジプロピルエーテ
ル、イソプロピルエーテル、エチルイソプロピルエーテ
ル、エチルイソブチルエーテル、メチルイソアミルエー
テル、アリルエーテル及びアリルエチルエーテルなどの
エーテル類;ギ酸ブチル、ギ酸イソブチル、酢酸プロピ
ル、酢酸イソプロピル、酢酸ブチル、酢酸−sec−ブチ
ル、酢酸−tert−ブチル、酢酸ビニル、プロピオン酸メ
チル、プロピオン酸エチル及びブタン酸メチルなどのエ
ステル類などが例示される。上記有機溶媒は少なくとも
一種使用される。なお、脱水脱溶媒部(15)において留
分(13)中の有機酸を効率的に分離回収するため、有機
溶媒のうち、有機酸との沸点差が20℃以上の溶媒が好ま
しい。例えば、有機酸が酢酸である場合、メチルイソブ
ロピルケトン、酢酸エチル、酢酸イソプロピルおよびプ
ロピオン酸メチルなどが好ましい。
As the organic solvent (2) for extracting the organic acid aqueous solution (1), a solvent having a large partition coefficient with respect to the organic acid in the organic acid aqueous solution is used in order to enhance extraction efficiency. Examples of such an organic solvent include methyl ethyl ketone,
Ketones such as diethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone and 4-methyl-3-penten-2-one; butanol, isobutanol, tert-amyl alcohol and 3-
Alcohols such as pentanol; ethers such as dipropyl ether, isopropyl ether, ethyl isopropyl ether, ethyl isobutyl ether, methyl isoamyl ether, allyl ether and allyl ethyl ether; butyl formate, isobutyl formate, propyl acetate, isopropyl acetate, acetic acid Esters such as butyl, acetic acid-sec-butyl, acetic acid-tert-butyl, vinyl acetate, methyl propionate, ethyl propionate and methyl butanoate are exemplified. At least one organic solvent is used. In addition, in order to efficiently separate and collect the organic acid in the fraction (13) in the dehydration desolvation section (15), among the organic solvents, a solvent having a boiling point difference of 20 ° C. or more from the organic acid is preferable. For example, when the organic acid is acetic acid, methyl isopropyl ketone, ethyl acetate, isopropyl acetate, methyl propionate and the like are preferable.

なお、抽出塔(3)としては、通常用いられる形式の
抽出塔、例えば、ミキサーセトラー型抽出塔、多孔板
塔、充填塔、バッフル塔などが使用できる。ラフィネー
ト(4)に含まれている有機溶媒は、蒸留塔(図示せ
ず)で回収される。
As the extraction column (3), an extraction column of a commonly used type, for example, a mixer-settler type extraction column, a perforated plate column, a packed column, a baffle column and the like can be used. The organic solvent contained in the raffinate (4) is recovered in a distillation column (not shown).

一方、抽出液(5)は、有機酸と共に水を多量に含ん
でいるため、ポンプ(6)により水選択透過性を有する
円筒状分離膜(8)を備えた分離部(7)へ供給し、分
離部(7)を通過した留分(11)と分離部(7)を通過
しない留分(13)とに分離する。なお、この例では、分
離膜(8)として円筒状分離膜が使用されている。
On the other hand, since the extract (5) contains a large amount of water together with the organic acid, the extract (5) is supplied to the separation part (7) provided with the cylindrical separation membrane (8) having selective water permeability by the pump (6). , A fraction (11) that has passed through the separation part (7) and a fraction (13) that has not passed through the separation part (7). In this example, a cylindrical separation membrane is used as the separation membrane (8).

なお、分離部(7)は、水選択透過性を有する分離膜
(8)で抽出液(5)中の水分を選択的に透過させ、水
分含有量の多い留分(11)と、分離膜(8)を透過せ
ず、有機酸および有機溶媒の含有量の多い留分(13)と
に分離するように構成されていればよいが、抽出液
(5)を効率的に分離するため、パーベーパレーション
により液/ガスの分離を行なうのが好ましい。このパー
ベーパレーションでは、分離膜(8)が水選択透過性を
有しているので、前記分離部(7)の一次側(9)に供
給された抽出液(5)のうち、主に水分は分離膜(8)
を蒸気として選択的に透過し、分離部(7)のうち透過
側である二次側(10)から流出する。一方、抽出液
(5)中の主に有機酸および有機溶媒(2)は分離膜
(8)を透過せず、分離部(7)の一次側(9)から流
出する。パーベーパレーションを利用すると、抽出液
(5)の水分濃度が高くても、水分を効率よく分離で
き、従来の蒸留法よりもエネルギー消費量を著しく少な
くできる。
The separation part (7) selectively permeates the water in the extract (5) through the water-selective separation membrane (8) to separate the water-rich fraction (11) and the separation membrane. It does not have to pass through (8) and is separated into a fraction (13) having a high content of an organic acid and an organic solvent, but in order to efficiently separate the extract (5), Liquid / gas separation is preferably carried out by pervaporation. In this pervaporation, since the separation membrane (8) has a water selective permeability, the water content in the extract (5) supplied to the primary side (9) of the separation section (7) is mainly water. Is a separation membrane (8)
Is selectively permeated as vapor and flows out from the secondary side (10) which is the permeation side of the separation section (7). On the other hand, mainly the organic acid and the organic solvent (2) in the extract (5) do not pass through the separation membrane (8) and flow out from the primary side (9) of the separation section (7). By using pervaporation, even if the water concentration of the extract (5) is high, the water can be efficiently separated, and the energy consumption can be significantly reduced as compared with the conventional distillation method.

分離膜(8)を透過した留分(11)が前記抽出部
(3)へリサイクルされるので、水選択透過性を有する
分離膜(8)は、必ずしも高い水選択透過性を有してい
る必要はなく、前記有機溶媒(2)に対して耐溶剤性を
有するものであればいずれも使用できる。水選択透過性
を有する分離膜としては、例えば、ポリエチレン、ポリ
プロピレン、ポリブタジエン、ポリブテン、ポリ−4−
メチルペンテン−1、ポリアクリロニトリル、ポリスチ
レン、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアクリル
酸、ポリメタクリル酸、ポリアクリル酸エステル、ポリ
メタクリル酸エステル、ポリエーテル、ポリカーボネー
ト、ポリエステル、ポリアミド、ポリイミド、ポリサル
ホン、ポリフェニルレンオキシド、ポリジメチルシロキ
サン、セルロース系高分子、これらの共重合体、グラフ
ト共重合体、混合物、さらにはこれらの高分子物質にア
ミノ化、スルホン化などの高分子反応を施した生成物等
からなる膜が挙げられる。なお、水選択透過性を有する
分離膜は、ミクロ相分離法、延伸法、荷電トラックエッ
チング法などによる多孔膜であってもよく、非多孔膜で
あってもよい。
Since the fraction (11) that has passed through the separation membrane (8) is recycled to the extraction section (3), the separation membrane (8) having water selective permeability does not necessarily have high water selective permeability. There is no need, and any solvent can be used as long as it has solvent resistance to the organic solvent (2). Examples of the separation membrane having selective water permeability include polyethylene, polypropylene, polybutadiene, polybutene, and poly-4-.
Methyl pentene-1, polyacrylonitrile, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinyl acetate, polyacrylic acid, polymethacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, polyether, polycarbonate, Polyesters, polyamides, polyimides, polysulfones, polyphenylene oxides, polydimethylsiloxanes, cellulosic polymers, their copolymers, graft copolymers, mixtures, and even amination and sulfonation of these polymer substances Examples thereof include a film made of a product subjected to a polymer reaction. The water-selective separation membrane may be a porous membrane formed by a micro phase separation method, a stretching method, a charge track etching method, or the like, or may be a non-porous membrane.

分離膜の膜構造は、2以上の上記分離膜からなる複合
体、選択透過機能を有する表面スキン層とこの表面スキ
ン層を支持する多孔質層とからなる非対称体、均一体の
いずれであってもよく、好ましくは複合体または非対称
体である。分離部の膜のモジュールは、例えば、平膜型
モジュール、中空糸型モジュール、スパイラル型モジュ
ール、円筒型モジュールなどであってもよい。また分離
膜の活性部の厚みは、耐久性および分離速度などを損わ
ない範囲で分離膜の素材に応じて適宜設定することがで
きるが、水分濃度の高い抽出液(5)から水分を効率的
に分離できるので、従来使用されている高分子膜より薄
くてもよい。分離膜の活性部の膜厚は、通常、0.01〜10
μm、好ましくは1μm以下である。活性部の膜厚が0.
01μm未満であると活性部の耐久性に問題が生じる場合
があり、10μmを越えると圧力損失が大きくなり、分離
速度が低下する。
The membrane structure of the separation membrane is either a composite consisting of two or more of the above separation membranes, an asymmetric body consisting of a surface skin layer having a selective permeation function and a porous layer supporting the surface skin layer, and a uniform body. However, it is preferably a complex or an asymmetric body. The membrane module of the separation part may be, for example, a flat membrane module, a hollow fiber module, a spiral module, a cylindrical module, or the like. The thickness of the active part of the separation membrane can be appropriately set according to the material of the separation membrane within a range that does not impair the durability and the separation speed, but it is possible to efficiently extract water from the extract (5) having a high water concentration. Since it can be separated as desired, it may be thinner than the conventionally used polymer membrane. The thickness of the active part of the separation membrane is usually 0.01 to 10
μm, preferably 1 μm or less. The thickness of the active part is 0.
If it is less than 01 μm, the durability of the active part may be problematic, and if it exceeds 10 μm, the pressure loss becomes large and the separation speed decreases.

なお、分離部(7)の温度は、所望する透過速度、透
過量や分離膜(8)の耐熱性などに応じて適宜設定する
ことができるが、通常、40〜120℃、好ましくは50〜100
℃である。温度が40℃未満であると透過速度が小さく、
120℃を越えると分離膜(8)の形状保持性が低下す
る。分離部(7)の操作圧力は、一次側の水濃度と温度
により決定される。二次側の圧力(10)は、一次側
(9)の水の分圧よりも低く設定される。
The temperature of the separation part (7) can be appropriately set according to the desired permeation rate, permeation amount, heat resistance of the separation membrane (8), etc., but is usually 40 to 120 ° C, preferably 50 to 120 ° C. 100
° C. If the temperature is below 40 ° C, the permeation rate will be low,
When the temperature exceeds 120 ° C, the shape retention of the separation membrane (8) deteriorates. The operating pressure of the separation part (7) is determined by the water concentration and temperature on the primary side. The pressure (10) on the secondary side is set lower than the partial pressure of water on the primary side (9).

なお、前記のように、アルコール精製の場合、分離部
の操作圧を10torr以下にする設定する必要があるだけで
なく、凝縮温度が零点以下となり、透過液が氷結する等
の問題がある。これに対して、本発明の方法では、最終
水濃度を数%、例えば1〜10%程度にとどめるため、水
分濃度の高い抽出液(5)を大きな速度で、しかも有機
酸を回収する上で十分な選択性で透過させることができ
る。また脱水脱溶媒塔(15)で留分(13)を蒸留するの
で、分離部(7)を通過しない留分(13)の水分濃度を
数%程度にすればよい。従って、分離部(7)の操作圧
を従来の操作圧よりも高く設定でき、凝縮温度をさほど
低くしなくてもよく、作業性に優れている。また膜厚の
薄い分離膜(8)を用いて、抽出液(5)から水分を効
率的に分離できるので、有機酸の回収効率に優れている
と共に、有機酸の回収エネルギーが少なくて済む。
As described above, in the case of alcohol purification, not only the operating pressure in the separation section needs to be set to 10 torr or less, but also the condensation temperature becomes lower than the zero point, and the permeated liquid freezes. On the other hand, in the method of the present invention, since the final water concentration is kept at several%, for example, about 1 to 10%, the extraction liquid (5) having a high water concentration can be used at a high speed and in recovering the organic acid. It can be permeated with sufficient selectivity. Further, since the distillate (13) is distilled in the dehydration desolvation tower (15), the water concentration of the distillate (13) that does not pass through the separation section (7) may be set to about several%. Therefore, the operating pressure of the separating part (7) can be set higher than the conventional operating pressure, the condensation temperature does not have to be lowered so much, and the workability is excellent. In addition, since the water can be efficiently separated from the extract (5) by using the thin separation membrane (8), the organic acid recovery efficiency is excellent and the organic acid recovery energy is small.

なお、抽出液(5)のパーベーパレーションに際し
て、抽出液(5)の組成により透過速度や分離選択性が
影響される。特に抽出液(5)中の水分濃度により透過
速度、透液量が大きく影響される。従って、設備コスト
等との兼ね合いで、抽出液(5)中の水分濃度に対応し
た最適条件で操作するのが好ましい。その際、パーベー
パレーションに供する抽出液(5)として、抽出液
(5)の水分濃度と目的とする回収液の水分濃度との範
囲内で、水分濃度の異なる抽出液(5)を用い、それぞ
れの抽出液(5)の水分濃度に応じた最適条件で操作し
てもよい。
In pervaporation of the extract (5), the composition of the extract (5) affects the permeation rate and separation selectivity. Especially, the permeation rate and the amount of liquid permeation are greatly influenced by the water concentration in the extract (5). Therefore, it is preferable to operate under optimum conditions corresponding to the water concentration in the extract (5) in consideration of the equipment cost and the like. At this time, as the extract liquid (5) to be subjected to pervaporation, the extract liquids (5) having different water concentrations within the range of the water concentration of the extract liquid (5) and the water concentration of the target recovery liquid are used, You may operate on the optimal conditions according to the water concentration of each extract (5).

また分離膜(8)を透過する液分の潜熱は、熱交換器
により与えられ、膜モジュールの入口、出口の温度差が
小さい程、蒸発エネルギーを多く与えることができる。
従って、熱交換器と膜モジュールとの間の抽出液(5)
の循環量を多くする程、有利である。その際、循環量
は、膜モジュールの圧力損失などにより制限されるの
で、最適値が存在する。
The latent heat of the liquid component that passes through the separation membrane (8) is given by the heat exchanger, and the smaller the temperature difference between the inlet and outlet of the membrane module, the more evaporation energy can be given.
Therefore, the extract (5) between the heat exchanger and the membrane module
It is advantageous to increase the circulation amount of. At this time, the circulation amount is limited by the pressure loss of the membrane module and the like, so that there is an optimum value.

上記分離部(7)を通過したガス状の留分(11)は凝
縮器(12)で凝縮される。凝縮された留分(11)は、多
量の水と有機酸と有機溶媒とを含有しているので、前記
抽出塔(3)へ供給される。分離膜(8)を透過した留
分(11)を抽出塔(3)へリサイクルするため、前記の
ように、水選択透過性の高い分離膜を特に必要とせず、
比較的広い範囲の分離膜が使用できる。なお、上記留分
(11)は、通常、前記抽出塔(3)のうち分離部(7)
を通過した留分(11)と略同じ組成を示す位置にリサイ
クルされる。
The gaseous fraction (11) that has passed through the separation section (7) is condensed in the condenser (12). The condensed fraction (11) contains a large amount of water, an organic acid and an organic solvent, and thus is supplied to the extraction column (3). Since the fraction (11) that has passed through the separation membrane (8) is recycled to the extraction column (3), a separation membrane having high water selective permeability is not particularly required as described above,
A relatively wide range of separation membranes can be used. The fraction (11) is usually the separation part (7) of the extraction column (3).
The fraction (11) that has passed through is recycled to a position showing the same composition.

一方、前記分離部(7)を通過しない留分(13)は、
ポンプ(14)により脱水脱溶媒塔(15)に供給される。
脱水脱溶媒塔(15)においては、留分(13)中に存在す
る有機溶媒および水は、一部が還流され、蒸留操作によ
り、脱水脱溶媒塔(15)の塔頂から留去されると共に、
留去された留分(16)は凝縮器(17)で凝縮され、タン
ク(18)に収容される。このタンク(18)では、下層の
水(19)と上層の有機溶媒(20)とに分離するので、下
層の水(19)を排出すると共に、上層の有機溶媒(20)
を前記有機溶媒(2)へリサイクルする。前記脱水脱溶
媒塔(15)の塔底からは有機酸水溶液(1)中の有機酸
(21)が回収される。
On the other hand, the fraction (13) that does not pass through the separation section (7) is
It is supplied to the dehydration desolvation tower (15) by a pump (14).
In the dehydration desolvation tower (15), a part of the organic solvent and water present in the fraction (13) are refluxed and distilled off from the top of the dehydration desolvation tower (15) by a distillation operation. With
The distilled fraction (16) is condensed in the condenser (17) and stored in the tank (18). In this tank (18), the lower layer water (19) and the upper layer organic solvent (20) are separated, so that the lower layer water (19) is discharged and the upper layer organic solvent (20) is discharged.
Is recycled to the organic solvent (2). The organic acid (21) in the organic acid aqueous solution (1) is recovered from the bottom of the dehydration desolvation column (15).

なお、分離膜(8)が抽出溶媒である有機溶媒などに
対して比較的大きな透過性を示す場合があるが、このよ
うな場合、分離膜(8)を透過した留分(11)を二液分
離してもよい。その際、デカンターを設け、下層液を、
前記抽出塔(3)のうち下層液と略同じ組成を示す位置
にリサイクルし、上層液を、抽出塔(3)へリサイクル
したり、脱水脱溶媒塔(15)に直接供給したり、分離膜
(8)を透過しない留分(13)と合流させてもよい。
The separation membrane (8) may have a relatively high permeability to an organic solvent that is an extraction solvent. In such a case, the fraction (11) that has permeated the separation membrane (8) is separated into two. You may perform liquid separation. At that time, a decanter is provided, and the lower layer liquid is
The extraction column (3) is recycled to a position having substantially the same composition as the lower layer liquid, and the upper layer liquid is recycled to the extraction column (3) or directly supplied to the dehydration desolvation column (15), or a separation membrane. It may be combined with the fraction (13) which does not permeate (8).

また分離部(7)を通過しない留分(13)中に高沸点
成分が含まれている場合、第2図に示されるように、分
離部(7)を通過しない留分(13)を蒸発器(30)に供
給し、この蒸発器(30)で蒸発させた留分(13)の蒸気
を前記脱水脱溶媒塔(15)に供給するのが好ましい。蒸
発器(30)を設けると、高沸点成分が脱水脱溶媒部(1
5)へ供給されるのを抑制できるので、有機酸水溶液
(1)中に高沸点成分が含有されていても、高純度の有
機酸(21)を効率的に回収することができる。なお、高
沸点成分は蒸発器(30)の底部より回収される。
When the high boiling point component is contained in the fraction (13) which does not pass through the separation part (7), the fraction (13) which does not pass through the separation part (7) is evaporated as shown in FIG. It is preferable to supply the vapor of the fraction (13), which is supplied to the vessel (30) and evaporated in the evaporator (30), to the dehydration desolvation column (15). When an evaporator (30) is installed, high boiling point components are dehydrated and desolvated (1
Since it can be suppressed from being supplied to the organic acid solution (5), the highly pure organic acid (21) can be efficiently recovered even if the high boiling point component is contained in the organic acid aqueous solution (1). The high boiling point component is recovered from the bottom of the evaporator (30).

また第2図に示されるように、分離部(7)で蒸発エ
ネルギーを供給するため、分離部(7)を通過しない留
分(13)は、分離部(7)の回りを循環し、加熱器(3
1)で加熱される。
As shown in FIG. 2, since the separation unit (7) supplies evaporation energy, the fraction (13) that does not pass through the separation unit (7) circulates around the separation unit (7) and is heated. Bowl (3
Heated in 1).

さらには、第3図に示されるように、蒸発器は抽出塔
(3)と分離部(7)との間に設けてもよい。この場
合、蒸気浸透法による有機酸の回収プロセスを構成す
る。なお、蒸気浸透法は、分離膜のうち高圧側である一
次側に被処理液を蒸気の状態で供給し、低圧側である二
次側に蒸気として選択的に透過させるガス/ガス分離法
である。第3図は蒸気浸透法を利用したフローを示す工
程図である。この蒸気浸透法では、前記と同様にして抽
出塔(3)で抽出された抽出液(5)を蒸発器(30)で
蒸発させ、蒸気の状態で分離部(7)に供給し、ガス/
ガスの分離を行なう。分離部(7)へ供給された抽出液
の蒸気は、分離膜(8)を透過する留分(11)、すなわ
ち水蒸気を多く含む留分と、分離膜(8)を透過しない
留分(13)、すなわち、有機酸および有機溶媒を多く含
む留分とに分離される。また前記パーベーパレーション
と同様に、分離膜(8)を透過した留分(11)は抽出塔
(3)へリサイクルされ、前記分離膜(8)を透過しな
い留分(13)は脱水脱溶媒塔(15)へ供給される。この
蒸気浸透法によると、有機酸水溶液(1)中に高沸点成
分が含有されていても、蒸発器(30)で高沸点成分を除
去できるだけでなく、抽出液(5)を蒸気の状態で分離
部(7)に供給するので、透過速度を高めることがで
き、効率的に有機酸を回収することができる。なお、蒸
気浸透法による分離部(7)の操作条件は、抽出液
(5)の組成とその蒸気圧などに応じて適宜設定するこ
とができるが、通常、分離部(7)の温度は、抽出液の
沸点以上、好ましくは沸点を越える温度、二次側の圧力
は10〜1000torrの条件で行なわれる。
Furthermore, as shown in FIG. 3, the evaporator may be provided between the extraction column (3) and the separation section (7). In this case, a recovery process of the organic acid by the vapor infiltration method is constituted. The vapor permeation method is a gas / gas separation method in which the liquid to be treated is supplied in the vapor state to the primary side, which is the high-pressure side of the separation membrane, and is selectively permeated to the secondary side, which is the low-pressure side, as vapor. is there. FIG. 3 is a process diagram showing a flow using the vapor infiltration method. In this vapor infiltration method, the extract liquid (5) extracted in the extraction tower (3) in the same manner as described above is evaporated in the evaporator (30) and supplied in the vapor state to the separation section (7) to remove gas / gas.
Separate the gas. The vapor of the extract liquid supplied to the separation part (7) is a fraction (11) that permeates the separation membrane (8), that is, a fraction containing a large amount of water vapor and a fraction (13) that does not permeate the separation membrane (8). ), Ie, a fraction rich in organic acids and organic solvents. Further, as in the case of the pervaporation, the fraction (11) that has passed through the separation membrane (8) is recycled to the extraction column (3), and the fraction (13) that does not pass through the separation membrane (8) is dehydrated desolventized. Supplied to the tower (15). According to this vapor permeation method, even if the high boiling point component is contained in the organic acid aqueous solution (1), not only the high boiling point component can be removed by the evaporator (30) but also the extraction liquid (5) is converted into a vapor state. Since it is supplied to the separation part (7), the permeation rate can be increased and the organic acid can be efficiently recovered. The operating conditions of the separation part (7) by the vapor permeation method can be appropriately set according to the composition of the extraction liquid (5) and its vapor pressure, etc., but normally the temperature of the separation part (7) is The temperature is not lower than the boiling point of the extract, preferably higher than the boiling point, and the pressure on the secondary side is 10 to 1000 torr.

分離部は複数並設されていてもよい。この場合、抽出
液の処理量を大きくするため、並設する複数の分離部
に、抽出液をそれぞれ供給し、各分離部を通過した留分
を合流させ、抽出塔へリサイクルすると共に、各分離部
を通過しない留分を合流させ、脱水脱溶媒塔へ供給して
もよい。
A plurality of separating parts may be arranged in parallel. In this case, in order to increase the throughput of the extraction liquid, the extraction liquid is supplied to a plurality of separation units arranged in parallel, and the fractions that have passed through the respective separation units are combined and recycled to the extraction tower and separated. The fractions that do not pass through the parts may be combined and supplied to the dehydration desolvation column.

また分離部を通過しない留分を、順次、後続する分離
部に供給し、最終的に分離部を通過しない留分を脱水脱
溶剤塔に供給し、各分離部を通過した留分を抽出塔にリ
サイクルしてもよい。より詳細には、第4図に示される
ように、この例では分離部として平膜状分離膜を使用し
た平膜型モジュールが使用されている。上記抽出液
(5)は、並設された複数の分離部(7a)(7b)(7c)
のうち分離膜(8a)を備えた第1の分離部(7a)の一次
側(9a)に供給される。第1の分離部(7a)の分離膜
(8a)を透過しない留分(11a)は、その一部が加熱器
(41)で加熱されて抽出液(5)にリサイクルされると
共に、後続する第2の分離部(7b)の一次側(9b)に供
給される。また上記第2の分離部(7b)の分離膜(8b)
を透過しない留分(11b)は、加熱器(42)で加熱され
た一部の留分(11b)が第2の分離部(7b)にリサイク
ルされると共に、第3の分離部(7c)の一次側(9c)に
供給される。第3の分離部(7c)の分離膜(8c)を透過
しない留分(11c)は、上記と同様にして、その一部が
加熱器(43)で加熱されて第3の分離部(7c)にリサイ
クルされると共に、脱水脱溶媒塔に供給される。一方、
各分離部(7a)(7b)(7c)の分離膜(8a)(8b)(8
c)を透過し、各分離部(7a)(7b)(7c)の二次側(1
0a)(10b)(10c)から流出する各留分(9a)(9b)
(9c)は、互いに合流され、前記抽出塔へリサイクルさ
れる。このような工程によると、抽出液(5)の分離効
率を高めることができると共に、熱交換器により、分離
膜(8a)(8b)(8c)を透過する液分の潜熱を循環ライ
ンで与えることができるので、膜モジュールの入口、出
口の温度差を小さくできるとともに、熱交換器の伝熱係
数を大きくすることができる等の利点がある。
Fractions that do not pass through the separation unit are sequentially supplied to subsequent separation units, and finally fractions that do not pass through the separation unit are supplied to the dehydration desolvation tower, and fractions that have passed through each separation unit are extracted into the extraction column. May be recycled to. More specifically, as shown in FIG. 4, in this example, a flat sheet membrane type module using a flat sheet membrane separation membrane is used as a separation portion. The extraction liquid (5) is composed of a plurality of separation units (7a) (7b) (7c) arranged in parallel.
It is supplied to the primary side (9a) of the first separation part (7a) provided with the separation membrane (8a). The fraction (11a) that does not permeate the separation membrane (8a) of the first separation part (7a) is partially heated by the heater (41) and recycled to the extract (5), and then follows. It is supplied to the primary side (9b) of the second separation section (7b). In addition, the separation membrane (8b) of the second separation section (7b)
The fraction (11b) that does not permeate through is part of the fraction (11b) heated by the heater (42) is recycled to the second separation section (7b) and the third separation section (7c). Is supplied to the primary side (9c). The fraction (11c) that does not pass through the separation membrane (8c) of the third separation section (7c) is partially heated by the heater (43) in the same manner as above, and the third separation section (7c) is heated. ) And supplied to the dehydration desolvation tower. on the other hand,
Separation membranes (8a) (8b) (8) of each separation part (7a) (7b) (7c)
c) and the secondary side (1) of each separation part (7a) (7b) (7c)
Fractions (9a) (9b) discharged from 0a) (10b) (10c)
(9c) are combined with each other and recycled to the extraction tower. According to such a process, the separation efficiency of the extract (5) can be improved, and the heat exchanger gives latent heat of the liquid component passing through the separation membranes (8a) (8b) (8c) in the circulation line. Therefore, there is an advantage that the temperature difference between the inlet and the outlet of the membrane module can be reduced and the heat transfer coefficient of the heat exchanger can be increased.

なお、上記の例ではいずれも有機酸よりも低い沸点を
有する有機溶媒を用いた場合について説明したが、有機
酸よりも沸点が高い有機溶媒を使用してもよい。この場
合、前記脱水脱溶媒塔(15)の塔頂から有機酸を回収
し、脱水脱溶媒塔(15)の塔底から有機溶媒を回収し、
回収した有機溶媒を抽出塔(3)へリサイクルすればよ
い。
In each of the above examples, an organic solvent having a boiling point lower than that of the organic acid is used, but an organic solvent having a boiling point higher than that of the organic acid may be used. In this case, the organic acid is recovered from the top of the dehydration desolvation tower (15), and the organic solvent is recovered from the bottom of the dehydration desolvation tower (15),
The collected organic solvent may be recycled to the extraction tower (3).

本発明の有機酸の回収方法は、種々の有機酸、例え
ば、ギ酸、酪酸、酢酸、プロピオン酸、アクリル酸、メ
タクリル酸などに適用することができる。
The method for recovering an organic acid of the present invention can be applied to various organic acids such as formic acid, butyric acid, acetic acid, propionic acid, acrylic acid and methacrylic acid.

[発明の効果] 以上のように、本発明の有機酸の回収方法によれば、
分離部を通過しない留分中の水分を分離部で効率的に除
去できると共に、脱水脱溶媒部で水分を除去できるの
で、抽出液の水分濃度が高くても、回収エネルギーを少
なくできると共に、作業性に優れている。また有機酸に
対して高い分配係数を示す有機溶媒であれば、水に対し
て高い分配係数を示す有機溶媒であっても使用できると
共に、少量の有機溶媒で効率的に有機酸を回収すること
ができ、回収効率に優れている。さらには、分離部を通
過した留分を抽出塔へ供給するため、水選択透過性の高
い分離膜を特に必要とせず、分離膜として幅広い水選択
透過性を有する分離膜が使用できる。
[Effects of the Invention] As described above, according to the method for recovering an organic acid of the present invention,
The water in the fraction that does not pass through the separation unit can be efficiently removed by the separation unit, and the water can be removed by the dehydration desolvation unit, so that the recovery energy can be reduced even if the water concentration of the extract is high, and the work can be performed. It has excellent properties. In addition, as long as it is an organic solvent that has a high partition coefficient for organic acids, even an organic solvent that has a high partition coefficient for water can be used, and an organic acid can be efficiently recovered with a small amount of organic solvent. It has excellent recovery efficiency. Furthermore, since the fraction that has passed through the separation section is supplied to the extraction column, a separation membrane having a high water selective permeability is not particularly required, and a separation membrane having a wide range of water selective permeability can be used as the separation membrane.

[実施例] 以下に、実施例に基づいて、本発明をより詳細に説明
する。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples.

比較例1 有機酸回収装置として第5図に示される装置を用い
た。また抽出塔として40mmφのガラス製リングとプレー
トとを備えた高さ20mの抽出塔を用い、28重量%の酢酸
水溶液を酢酸エチル/ベンゼン=75重量%/25重量%の
混合溶媒を用いて抽出した。このとき、ラフィネート中
の酢酸濃度を0.1重量%以下とするには、28重量%の酢
酸水溶液1重量部に対して混合溶媒1.45重量部が必要で
あった。また、抽出液を蒸発器で蒸発させ、40mmφ、40
段の真空ジャケット付きガラス製オールダーショウ塔へ
供給し、脱水脱溶媒を行なうことにより、塔底から99.9
重量%以上の濃度と収率で酢酸を回収した。この方法に
よる所要蒸気使用率等のデータを表1に示す。
Comparative Example 1 The apparatus shown in FIG. 5 was used as the organic acid recovery apparatus. As the extraction column, a 20 m high extraction column equipped with a 40 mmφ glass ring and plate was used to extract 28% by weight acetic acid aqueous solution with a mixed solvent of ethyl acetate / benzene = 75% by weight / 25% by weight. did. At this time, in order to reduce the concentration of acetic acid in the raffinate to 0.1% by weight or less, 1.45 parts by weight of the mixed solvent was required for 1 part by weight of the 28% by weight acetic acid aqueous solution. Also, evaporate the extract with an evaporator,
99.9% from the bottom of the tower by performing dehydration and desolvation by supplying to a glass Oldershaw tower with a vacuum jacket of stages.
Acetic acid was recovered with a concentration and yield of not less than wt%. Table 1 shows data such as the required steam usage rate by this method.

比較例2 比較例1の混合溶媒に代えて、酢酸エチルを用い、比
較例1と同様にして28重量%の酢酸水溶液を抽出した。
その際、ラフィネート中の酢酸濃度を0.1重量%以下と
するには、28重量%の酢酸水溶液1重量部に対して酢酸
エチル0.63重量部が必要であった。また抽出液を蒸発器
で蒸発させ、比較例1の蒸留塔へ供給し、脱水脱溶媒を
行なうことにより、塔底から99.9重量%以上の濃度と収
率で酢酸を回収した。この方法による所要蒸気使用率等
のデータを表1に示す。
Comparative Example 2 A 28 wt% aqueous acetic acid solution was extracted in the same manner as in Comparative Example 1 except that ethyl acetate was used instead of the mixed solvent of Comparative Example 1.
At that time, 0.63 parts by weight of ethyl acetate was necessary for 1 part by weight of a 28% by weight acetic acid aqueous solution in order to reduce the concentration of acetic acid in the raffinate to 0.1% by weight or less. The extract was evaporated in an evaporator, supplied to the distillation column of Comparative Example 1, and dehydrated and desolvated to recover acetic acid from the bottom of the column at a concentration of 99.9% by weight or more and a yield. Table 1 shows data such as the required steam usage rate by this method.

表1に示す結果より、比較例1の混合溶媒よりも比較
例2の有機溶媒を使用した方が、抽出塔での有機溶媒の
使用量を低減できるが、脱水脱溶媒塔でのエネルギー消
費量が多くなる。
From the results shown in Table 1, the use of the organic solvent of Comparative Example 2 can reduce the amount of the organic solvent used in the extraction column rather than the mixed solvent of Comparative Example 1, but the energy consumption in the dehydration desolvation column Will increase.

実施例1 有機酸回収装置として第2図に示す装置を用いた。ま
た比較例1の抽出塔を用い28重量%の酢酸水溶液を酢酸
エチルで抽出した。その際、上記抽出塔の塔頂から5mの
位置へ、分離膜を透過した留分の組成として予想される
液(水80重量%、酢酸8.5重量%および酢酸エチル11.5
重量%)を28重量%の酢酸水溶液の供給速度の30%の速
度で供給した。このとき、ラフィネートの酢酸濃度を0.
1重量%以下とするには、28重量%の酢酸水溶液1重量
部に対して、酢酸エチルが0.9重量部が必要であった。
Example 1 The apparatus shown in FIG. 2 was used as an organic acid recovery apparatus. A 28% by weight aqueous acetic acid solution was extracted with ethyl acetate using the extraction column of Comparative Example 1. At that time, at a position 5 m from the top of the extraction column, a liquid expected to have the composition of the fraction permeated through the separation membrane (80% by weight of water, 8.5% by weight of acetic acid and 11.5% of ethyl acetate) was used.
Wt%) was fed at a rate of 30% of the feed rate of 28% by weight aqueous acetic acid. At this time, adjust the acetic acid concentration of the raffinate to 0.
In order to reduce the amount to 1% by weight or less, 0.9 part by weight of ethyl acetate was required for 1 part by weight of 28% by weight aqueous acetic acid solution.

また分離膜を透過させるのに先立ち、ポリアクリル酸
複合膜からなる平膜を用いて、膜の透過速度と膜の選択
性について検討した。すなわち、酢酸、水および酢酸エ
チルからなる混合液を恒温槽で一定温度に保ち、ポンプ
により、分離部のうち分離膜の一次側へ循環供給すると
共に、分離膜の二次側を50torrの減圧下に維持してパー
ベーパレーションし、分離膜を透過したガスをコンデン
サで冷却し、分離膜を透過した留分を回収した。このパ
ーベーパレーションにおいて、分離膜を透過しない留分
中の水分濃度が高いため、水−アルコール系で行なわれ
るパーベーパレーション操作に比べて、遥かに高い透過
速度が得られ、かつ本発明のプロセスを可能にするため
に十分な選択性で水が透過した。この結果を表2に示
す。
Prior to permeation through the separation membrane, the permeation rate of the membrane and the selectivity of the membrane were investigated using a flat membrane composed of polyacrylic acid composite membrane. That is, a mixture of acetic acid, water and ethyl acetate is kept at a constant temperature in a constant temperature bath, and is circulated and supplied to the primary side of the separation membrane by a pump while the secondary side of the separation membrane is depressurized at 50 torr. The gas permeated through the separation membrane was cooled by a condenser, and the fraction permeated through the separation membrane was recovered. In this pervaporation, since the water content in the fraction that does not permeate through the separation membrane is high, a much higher permeation rate can be obtained as compared with the pervaporation operation carried out in a water-alcohol system, and the process of the present invention. The water permeated with sufficient selectivity to allow The results are shown in Table 2.

上記結果に基づき、前記抽出液をパーベーパレーショ
ンしたとき、分離膜を透過しない留分の組成を推定する
と共に、この組成からなる留分を前記比較例1の蒸留塔
に供給することにより、塔底から、99.9%以上の濃度と
収率で酢酸を回収した。この方法による所要蒸気使用率
等のデータを表2に示す。
Based on the above results, when the extract was pervaporated, the composition of the fraction that did not permeate through the separation membrane was estimated, and the fraction having this composition was supplied to the distillation column of Comparative Example 1 to obtain a column. Acetic acid was recovered from the bottom in a concentration and yield of over 99.9%. Table 2 shows data such as the required steam usage rate by this method.

実施例2 実施例1で用いた抽出塔を12mに減段し、塔頂から3m
下の位置へ、水80重量%、酢酸8.5重量%および酢酸エ
チル11.5重量%からなる液を、上記28重量%の酢酸水溶
液の供給速度の30%の速度で供給し、酢酸エチルで抽出
操作を行なった。このとき、ラフィネートの酢酸濃度を
0.1重量%以下とするには、28重量%の酢酸水溶液1重
量部に対して酢酸エチル1.1重量部が必要であった。こ
の抽出液の組成に基づき、実施例1と同様にして、パー
ベーパレーションしたときの分離膜を透過しない留分の
組成を推定すると共に、実施例1と同様にして、蒸留す
ることにより、99.9%以上の濃度と収率で酢酸を回収し
た。この方法による所要蒸気使用率等のデータを表2に
示す。
Example 2 The extraction column used in Example 1 was reduced to 12 m, and 3 m from the top of the column.
To the lower position, a liquid consisting of 80% by weight of water, 8.5% by weight of acetic acid and 11.5% by weight of ethyl acetate was supplied at a rate of 30% of the supply rate of the above 28% by weight acetic acid aqueous solution, and the extraction operation was performed with ethyl acetate. I did. At this time, change the acetic acid concentration of the raffinate
In order to achieve 0.1% by weight or less, 1.1 parts by weight of ethyl acetate was needed for 1 part by weight of 28% by weight acetic acid aqueous solution. Based on the composition of this extract, the composition of the fraction that does not permeate the separation membrane when pervaporating was estimated in the same manner as in Example 1, and the distillation was performed in the same manner as in Example 1 to give 99.9. Acetic acid was recovered with a concentration and yield of not less than%. Table 2 shows data such as the required steam usage rate by this method.

表2から明らかなように、実施例1および2の方法で
は、抽出塔へ供給する有機溶媒の量が比較例1よりも少
なくて済む。従って、抽出塔を小型化できると共に、蒸
留塔へ供給する留分の量を少なくでき、蒸留塔も小型化
できることが判明した。さらには、比較例1および2の
方法に比べて、実施例1および2の方法では蒸気使用率
が著しく低減し、回収エネルギーが少なくて済むことが
判明した。
As is clear from Table 2, in the methods of Examples 1 and 2, the amount of the organic solvent supplied to the extraction column can be smaller than that in Comparative Example 1. Therefore, it was found that the extraction column can be downsized, the amount of the distillate supplied to the distillation column can be reduced, and the distillation column can be downsized. Furthermore, it was found that the methods of Examples 1 and 2 markedly reduced the steam usage rate and required less energy to recover than the methods of Comparative Examples 1 and 2.

実施例3〜5 分離膜としてポリアクリル酸複合膜からなる平膜を用
いた。酢酸、水および酢酸エチルからなる混合液を恒温
槽で一定温度に保ち、ポンプにより、分離部のうち分離
膜の一次側へ循環供給すると共に、分離膜の二次側を50
torrの減圧下に維持してパーベーパレーションし、分離
膜を透過したガスをコンデンサで冷却し、分離膜を透過
した留分を回収した。
Examples 3 to 5 A flat membrane made of a polyacrylic acid composite membrane was used as the separation membrane. A mixture of acetic acid, water and ethyl acetate is kept at a constant temperature in a constant temperature bath and is circulated and supplied to the primary side of the separation membrane by a pump, and the secondary side of the separation membrane is supplied to 50%.
Pervaporation was performed under a reduced pressure of torr, the gas that permeated the separation membrane was cooled by a condenser, and the fraction that permeated the separation membrane was collected.

その結果、パーベーパレーションに供される混合液中
の水分濃度が高いため、水−アルコール系で行なわれる
パーベーパレーション操作に比べて、高いフラックスが
得られ、かつ本発明のプロセスを可能にするために十分
な選択性で水が透過した。この結果を表3に示す。
As a result, the water concentration in the mixed solution used for pervaporation is high, so that a higher flux can be obtained and the process of the present invention is enabled as compared with the pervaporation operation performed in a water-alcohol system. Water permeated with sufficient selectivity for. The results are shown in Table 3.

【図面の簡単な説明】[Brief description of drawings]

第1図はパーベーパレーションを利用した本発明をフロ
ーを示す工程図、 第2図は本発明の他のフローを示す工程図、 第3図は蒸気透過法を利用した本発明のフローを示す工
程図、 第4図は本発明の他のフローを示す工程図、 第5図は従来の有機酸の回収方法を示す工程図、 第6図は酢酸−水−溶媒の液液平衡線図である。 (1)……有機酸水溶液、(2)……有機溶媒、(3)
……抽出塔、(5)……抽出液、(7)(7a)(7b)
(7c)……分離部、(8)(8a)(8b)(8c)……分離
膜、(11)(11a)(11b)(11c)……分離部を通過し
た留分、(13)(13a)(13b)(13c)……分離部を通
過しない留分、(15)……脱水脱溶媒塔、(21)……有
機酸、(30)……蒸発器
FIG. 1 is a process diagram showing a flow of the present invention using pervaporation, FIG. 2 is a process diagram showing another flow of the present invention, and FIG. 3 shows a flow of the present invention using a vapor permeation method. Fig. 4 is a process diagram showing another flow of the present invention, Fig. 5 is a process diagram showing a conventional method for recovering an organic acid, and Fig. 6 is a liquid-liquid equilibrium diagram of acetic acid-water-solvent. is there. (1) ... Aqueous organic acid solution, (2) ... Organic solvent, (3)
…… Extraction tower, (5) …… Extraction liquid, (7) (7a) (7b)
(7c) …… Separation section, (8) (8a) (8b) (8c) …… Separation membrane, (11) (11a) (11b) (11c) …… Distillate passed through the separation section, (13) (13a) (13b) (13c) …… Fraction that does not pass through the separation section, (15) …… dehydration desolvation tower, (21) …… organic acid, (30) …… evaporator

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機酸水溶液から有機酸を回収する方法に
おいて、有機酸水溶液を抽出部で有機溶媒にて抽出し、
該抽出液を水選択透過性分離膜を備えた分離部で分離
し、該分離部を通過した留分を前記抽出部に供給し、前
記分離部を通過しない留分を脱水脱溶媒部に供給して有
機酸を連続的に回収することを特徴とする有機酸の回収
方法。
1. A method for recovering an organic acid from an organic acid aqueous solution, wherein the organic acid aqueous solution is extracted with an organic solvent in an extraction section,
The extract is separated by a separation unit equipped with a water-selective permeable separation membrane, the fraction that has passed through the separation unit is supplied to the extraction unit, and the fraction that does not pass through the separation unit is supplied to the dehydration desolvation unit. A method for recovering an organic acid, characterized in that the organic acid is continuously recovered.
【請求項2】抽出液を分離部でパーベーパレーションに
より分離する請求項1記載の有機酸の回収方法。
2. The method for recovering an organic acid according to claim 1, wherein the extract is separated by pervaporation in the separation section.
【請求項3】抽出液を蒸発部で蒸発させた後、分離部で
蒸気透過法により分離する請求項1記載の有機酸の回収
方法。
3. The method for recovering an organic acid according to claim 1, wherein the extract is evaporated in the evaporator and then separated in the separator by a vapor permeation method.
JP63265660A 1988-10-20 1988-10-20 Organic acid recovery method Expired - Fee Related JP2532042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265660A JP2532042B2 (en) 1988-10-20 1988-10-20 Organic acid recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265660A JP2532042B2 (en) 1988-10-20 1988-10-20 Organic acid recovery method

Publications (2)

Publication Number Publication Date
JPH02111404A JPH02111404A (en) 1990-04-24
JP2532042B2 true JP2532042B2 (en) 1996-09-11

Family

ID=17420224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265660A Expired - Fee Related JP2532042B2 (en) 1988-10-20 1988-10-20 Organic acid recovery method

Country Status (1)

Country Link
JP (1) JP2532042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538106A (en) * 2010-06-22 2013-10-10 ウルリッヒ ディーツ Apparatus and method for solubilizing, separating, removing and reacting carboxylic acids in oils, fats, aqueous solutions or organic solutions by micro- or nanoemulsification

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171947B2 (en) * 1991-09-03 2001-06-04 ダイセル化学工業株式会社 Polyacrylonitrile copolymer selectively permeable membrane and method for producing the same
CN115413276B (en) 2020-03-31 2024-04-02 株式会社大赛璐 Preparation method of purified acetic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538106A (en) * 2010-06-22 2013-10-10 ウルリッヒ ディーツ Apparatus and method for solubilizing, separating, removing and reacting carboxylic acids in oils, fats, aqueous solutions or organic solutions by micro- or nanoemulsification

Also Published As

Publication number Publication date
JPH02111404A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
JP5593629B2 (en) Method for purifying fermentation alcohol
JP5369765B2 (en) Method for purifying fermentation alcohol
JP6440156B2 (en) Organic solvent purification system and method
US20090057128A1 (en) Liquid separation by membrane assisted vapor stripping process
WO2009123223A1 (en) Purification treatment method for fermented alcohol
US20110088277A1 (en) System for liquid extraction, and methods
JPH0699005A (en) Method for organic/aqueous extraction
JP2012500114A (en) Separation method of liquid mixture
JP4831934B2 (en) Water-soluble organic substance concentrator
JP6636111B2 (en) Organic solvent purification system and method
US5169533A (en) Process for recovering organic components from liquid streams
CN102070478A (en) Method for recycling dimethylformamide in water through pervaporation and rectification coupling technology
US5030356A (en) Process for recovering organic components from liquid streams
JP3025533B2 (en) Method of performing equilibrium reaction using gas permeation method
JPH0634898B2 (en) Concentrator / dehydrator for organic / aqueous mixed solutions
JPS5821629A (en) Preparation of anhydrous ethanol
JPH07227517A (en) Separation of liquid mixture
US4894163A (en) Separation of liquid mixtures
JP2532042B2 (en) Organic acid recovery method
JPH05177111A (en) Dehydration of water-organic matter solution
JP2780323B2 (en) Method for producing concentrated aqueous solution of volatile organic liquid
JPH0234329B2 (en)
JPH06277403A (en) Separation of organic solvent-mixed liquid and its separation device
US4911845A (en) Process and apparatus for separation of volatile components
JPH06277402A (en) Separation of azeotrophic mixture and apparatus therefor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees