WO2009123223A1 - Purification treatment method for fermented alcohol - Google Patents

Purification treatment method for fermented alcohol Download PDF

Info

Publication number
WO2009123223A1
WO2009123223A1 PCT/JP2009/056727 JP2009056727W WO2009123223A1 WO 2009123223 A1 WO2009123223 A1 WO 2009123223A1 JP 2009056727 W JP2009056727 W JP 2009056727W WO 2009123223 A1 WO2009123223 A1 WO 2009123223A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
water
vapor
distillation column
mixed
Prior art date
Application number
PCT/JP2009/056727
Other languages
French (fr)
Japanese (ja)
Inventor
政夫 菊地
俊介 中西
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2009123223A1 publication Critical patent/WO2009123223A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a fermentation alcohol purification process, particularly a fermentation alcohol purification process that combines a mash tower, a distillation tower (and an evaporator), and a membrane separation device.
  • the present invention relates to a method for purifying alcohol.
  • the alcohol-water mixture solution is separated and concentrated from the fermentation alcohol solution (moromi) by the moromi tower, and then the alcohol-water mixture solution by the concentration tower (distillation tower).
  • the concentration tower distillation tower
  • Patent Document 1 describes a method in which an azeotropic mixture is distilled in a distillation tower, vapor of the azeotropic mixture is supplied to a membrane separation device, and separated by a separation membrane.
  • Patent Document 2 a membrane separation device is used instead of an azeotropic distillation column, and an alcohol-water mixture concentrated to near the azeotropic composition in the distillation column is evaporated by an evaporator and introduced into the membrane separation device for purification. A method of processing is disclosed. Further, it is described that the mixed vapor supplied to the membrane separation apparatus is superheated.
  • Patent Document 3 also discloses the same system as Patent Document 2.
  • a distillation column fraction is introduced into an evaporator and heated, a mixed vapor of alcohol and water having a pressure higher than the operation pressure of the distillation column is generated, and this high pressure vapor is converted into a membrane separator. It is described that the membrane separation apparatus can be operated with high efficiency.
  • JP 2003-93827 A Japanese Unexamined Patent Publication No. 63-258602 WO2004 / 073841
  • a membrane separator is used instead of the azeotropic distillation tower, the equipment can be simplified and the energy efficiency can be improved.
  • the fermentation alcohol is simpler and more energy efficient as a whole process. Sufficient studies have not been conducted on whether or not the product can be purified.
  • the object of the present invention is (Step 1) supplying a fermentation alcohol aqueous solution to a mash tower, heating the fermentation alcohol aqueous solution in the mash tower to distill a distillate containing a mixed vapor of alcohol and water, A distillate or a first condensate obtained by condensing the distillate is supplied to a distillation column. (Step 2) a) The distillate or the first condensate is heated by a distillation column to produce alcohol, water, Or b) a second condensate in which the distillate or the first condensate is heated by a distillation column to distill a mixed vapor of alcohol and water, and the mixed vapor is condensed.
  • Step 4 In the purification method for obtaining anhydrous alcohol that selectively removes water vapor from the mixed vapor of alcohol and water in the membrane separator, the process is simpler and extremely energy efficient as a whole process. It is to provide a well-purified process.
  • the present invention relates to the following matters. 1.
  • a fermentation alcohol aqueous solution is supplied to the mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water, and this distillate or this distillate. Supplying a first condensate condensed with a product to a distillation column;
  • Step 2) a) a step of heating the distillate or the first condensate by a distillation column to distill a mixed vapor of alcohol and water, or b) the distillate or the first by a distillation column.
  • the condensate is heated to distill the mixed vapor of alcohol and water, the second condensate condensed with the mixed vapor is supplied to the evaporator, and the second condensate in the evaporator is heated.
  • Generating a mixed steam of alcohol and water (Step 3) a step of supplying the mixed vapor distilled from the distillation column in the a) or the mixed vapor generated from the evaporator in the b) to the membrane separator after reducing the pressure; (Step 4)
  • a purification method for obtaining anhydrous alcohol from a fermented alcohol aqueous solution comprising a step of selectively removing water vapor from a mixed steam of alcohol and water by a membrane separator.
  • a fermentation alcohol aqueous solution is supplied to a mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water.
  • the first condensate obtained by condensing the distillate is supplied to the distillation column, and (2) a) the distillate or the first condensate is heated by the distillation column to distill the mixed vapor of alcohol and water.
  • the solid line indicates the flow of liquid or gas (vapor), and the broken line indicates the connection of the control system.
  • FIG. 1 showing an outline of an example of an embodiment according to the present invention.
  • anhydrous alcohol has a purity of 99.0% by mass or more, preferably 99.5% by mass or more, more preferably 99.7% by mass or more, and particularly preferably 99.8% by mass or more. Means alcohol.
  • the alcohol includes lower alkyl alcohols such as methyl alcohol, propyl alcohol, and butyl alcohol, and is preferably ethanol.
  • the fermented alcohol aqueous solution is not limited.
  • it is a fermented alcohol aqueous solution obtained by fermenting raw materials such as saccharides, starches, and celluloses. These materials are fermented in a fermenter to form a fermented alcohol aqueous solution.
  • the alcohol concentration of the aqueous fermentation alcohol solution is usually about 5 to 12% by mass.
  • this fermented alcohol aqueous solution includes alcohols such as yeast, fungus, methanol, fatty acids such as formic acid, acetic acid, succinic acid, lactic acid, butyric acid, aldehydes such as acetaldehyde, formaldehyde, Esters such as ethyl acetate and butyl acetate, acetals such as diethyl acetal, ketones such as acetone and methyl ethyl ketone, amines such as pyridine, picoline, 3-methylamine and 4-methylpyridine, and higher alcohols and fatty acid esters It contains various by-produced compounds such as so-called fusel oil which is a mixture. Moreover, normally, unfermented raw material components and the like remain as insoluble components to form a slurry.
  • alcohols such as yeast, fungus, methanol
  • fatty acids such as formic acid, acetic acid, succinic acid, lactic acid, butyric acid
  • This aqueous fermented alcohol solution is directly supplied from the fermenter or temporarily stored in a tank and then indirectly supplied to the mash tower 10. It is preferable that a large insoluble component is removed from the fermentation alcohol aqueous solution by rough filtration before being supplied to the mash tower.
  • the fermented alcohol aqueous solution after fermenting in the fermenter may have a pH of about 3 to 5 depending on by-product fatty acids. For this reason, it is preferable to neutralize the acid component contained in the fermentation alcohol aqueous solution by adding an alkali component or the like. By performing this neutralization treatment, it is possible to reliably prevent the acid from being mixed into the purified anhydrous alcohol.
  • Suitable examples of the alkali component to be added include water-soluble alkali compounds such as sodium hydroxide, potassium hydroxide, and potassium permanganate.
  • the aqueous fermentation alcohol solution is heated to distill a distillate containing a mixture of alcohol and water, and a condensate obtained by condensing the distillate is supplied to the distillation tower 20.
  • the distillate containing a mixture of alcohol and water is preferably a mixed vapor of alcohol and water (in a gaseous state), but a mixture containing droplets of a fermented alcohol aqueous solution in a mixed vapor of alcohol and water ( It may be a gas-liquid mixed state).
  • the main role of the moromi tower 10 is to suppress the discharge (loss) of alcohol outside the system as much as possible from the aqueous solution of fermentation alcohol, insoluble components such as unfermented raw material components, and high-boiling components such as fusel oil. Is preferably separated and removed together with low-boiling by-product components and water.
  • the moromi tower is not particularly limited, and a conventionally known type can be suitably used. Simple distillation or continuous distillation may be used. The number of distillation stages is preferably about several stages. For example, a tray-type tray such as a mountain-cap tray or a baffle tray with little scale adhesion can be suitably used. Furthermore, it may be a single distillation type such as flash distillation or a combination of a plurality of them.
  • the operating pressure of the moromi tower is preferably reduced pressure or atmospheric pressure.
  • the raw fermentation alcohol aqueous solution is introduced into the tower from a feed port relatively close to the top of the moromi tower 10.
  • steam steam
  • This water vapor rises in the tower while exchanging heat and materials with the liquid flowing down the tower.
  • the steam component at the bottom of the tower is almost water, and the alcohol concentration in the steam increases near the top of the tower.
  • water containing almost no alcohol is discharged from the bottom of the tower together with insoluble components as a bottom liquid.
  • the distillate containing a mixture of alcohol and water taken from the top of the moromi tower 10 or the concentration stage is sent to the condenser 11 and condensed. A part of this condensate is refluxed to the mash column, and the remaining condensate is supplied to the distillation column 20.
  • the alcohol concentration of the alcohol aqueous solution of the condensate supplied from the mash tower 10 to the distillation tower 20 can be controlled by changing the ratio of the condensate refluxed to the mash tower 10 and the number of stages of the distillation tower 20.
  • the distillate containing a mixed vapor of alcohol and water taken out from the top of the mash tower 10 or the concentration stage is not condensed and is in a gaseous state or a gas-liquid mixture. It can also be supplied to the distillation column 20 in a state.
  • a part of the distillate containing a mixed vapor of alcohol and water was supplied to the distillation column 20 and the remaining distillate was condensed by a condenser. The entire amount of the condensate can be refluxed to the mash tower.
  • the alcohol concentration of the distillate supplied from the mash column 10 to the distillation column 20 can be controlled by the ratio of the distillate supplied to the condenser.
  • the top of the mash column 10 is used to protect the separation membrane.
  • the steam mixed with alcohol and water extracted from the water is partially condensed (some low-boiling components remain as steam, and the other steam-water mixture is condensed), and low-boiling components such as aldehydes are mixed with alcohol. It is preferable to separate from the mixed vapor with water and remove it out of the system.
  • the alcohol concentration of the alcohol aqueous solution of the condensate supplied from the mash tower 10 to the distillation tower 20 is (of course fermented alcohol aqueous solution) in order to improve the energy efficiency in the entire process from the mash tower to the membrane separator.
  • the concentration is less than 50% by mass, preferably 12% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and further preferably 30% by mass or more and less than 50% by mass. Be controlled.
  • the above-mentioned role of the mash tower insoluble components such as unfermented raw material components and high-boiling components such as fusel oil are preferably added to the low-boiling side while suppressing the discharge of alcohol as much as possible.
  • the role of concentrating the alcohol is excessively added, so that it is necessary to further increase the concentration stage above the supply port of the fermentation alcohol aqueous solution of the mash tower 10 Therefore, the size and complexity of the device cannot be avoided.
  • the alcohol concentration of the distillate supplied to the distillation column 20 or the condensate of this distillate is less than 50% by mass, preferably 12% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, Preferably, 30% by mass or more and less than 50% by mass can be easily achieved by a simple apparatus having about several distillation stages or less, and a part of the mixed steam of alcohol and water distilled from the distillation column. This is because, even when the water is condensed or refluxed to the mash tower, the rate of reflux can be made extremely low, so that rapid processing becomes possible and energy consumption can be suppressed.
  • the ratio of the condensate refluxed in the moromi tower is preferably 20% or less, more preferably 10% or less.
  • the role of the distillation column 20 is that the distillate from the mash column is 150 kPa (absolute pressure) or more, preferably 150 to 700 kPa (absolute pressure), more preferably 200 to 600 kPa (absolute pressure), and even more preferably 200 to 500 kPa.
  • Distilling at an operating pressure of (absolute pressure) is to concentrate the alcohol concentration to 55% by mass or more, preferably 60% by mass or more, more preferably 65% by mass or more. Although it may concentrate to near azeotropic composition here, it is preferred to concentrate to 90 mass% or less, more preferably 80 mass% or less.
  • the burden on the membrane separator increases, so the membrane separator becomes large and the fermentation alcohol is more convenient and extremely energy efficient as a whole process. This is not preferable because it cannot be purified to obtain anhydrous alcohol. On the other hand, it is not limited to make the alcohol concentration too high, but it is not preferable because the fermentation alcohol cannot be purified and processed in an extremely energy efficient manner as the whole process, so that anhydrous alcohol cannot be obtained.
  • a part of the mixed vapor of alcohol and water distilled in the distillation column 20 is condensed and refluxed as a condensate to the distillation column.
  • the remaining mixed vapor is reduced in pressure by a pressure reducing means while maintaining the vapor temperature. Then, it is supplied to the membrane separator 40.
  • the pressure reducing means is not particularly limited, but a pressure regulating valve having a throttle valve is preferably used. In addition, it is important that this depressurization results in the condensation temperature of the mixed steam of alcohol and water being lower than the temperature of the mixed steam.
  • the pressure is reduced to about 5 kPa or more, preferably 10 kPa or more, more preferably 10 to 500 kPa, and still more preferably about 10 to 300 kPa.
  • One of the features of the present invention is that after a mixed vapor of alcohol and water is generated by a distillation tower, the pressure is reduced by a pressure reducing means while maintaining the vapor temperature, and then supplied to the membrane separator.
  • the purpose of reducing the pressure is to sufficiently reduce the condensation temperature of the mixed vapor to be lower than the temperature of the mixed vapor so that the saturated mixed vapor does not condense in the membrane separator.
  • the condensation temperature of the mixed steam is 3 ° C. or more, preferably 5 ° C. or less lower than the temperature of the mixed steam. In addition, it is 10 degrees C or less normally.
  • reducing the pressure of the mixed steam once heated to a high pressure is poor in energy efficiency only in the process, but it is possible to improve the energy efficiency in the whole process.
  • the operating pressure of the distillation column 20 is set to 150 kPa (absolute pressure) or more, preferably 150 to 700 kPa (absolute pressure), because the pressure of the mixed vapor of alcohol and water supplied to the membrane separator is increased to increase the separation efficiency ( This is to improve the purification efficiency.
  • a pressure of less than 150 kPa (absolute pressure) is not preferable because the pressure of the mixed vapor supplied to the membrane separation device 40 becomes too low and the separation efficiency is lowered.
  • the pressure exceeds 700 kPa (absolute pressure) the separation efficiency in the membrane separation apparatus is improved, but the pressure resistance performance of the distillation apparatus and the membrane separation apparatus is excessively required, and there is a problem that the apparatus is enlarged. Since it occurs, it is not necessarily preferable.
  • the distillation column 20 is not particularly limited as long as it is suitable for a normal high-pressure distillation operation, such as a plate type or a packed column.
  • a supply unit for supplying an aqueous alcohol solution is disposed in the middle stage of the distillation column.
  • a part of the column bottom liquid is heated by the reboiler 21 to become vapor, and rises in the column while exchanging heat and materials with the liquid flowing down in the column.
  • steam of alcohol and water with which the alcohol concentration was concentrated distills from a tower top or a concentration stage.
  • a part of the mixed vapor of alcohol and water distilled by the distillation column 20 is cooled by the condenser 22 to become a condensate, and passes through the condensate tank 23 by, for example, a condensate pump. Alternatively, it is refluxed to the concentration stage.
  • the remainder of the mixed steam of alcohol and water distilled by the distillation tower 20 is decompressed by the decompression means 24 and then supplied to the membrane separation device 40.
  • the reboiler 21 that heats the bottom liquid of the distillation column 20 can also use the condensation heat of steam supplied from the outside.
  • the operating pressure of the distillation column 20 is suitably controlled by adjusting (limiting) the flow rate of steam for heating the bottom liquid of the distillation column.
  • the distillation column 20 by adjusting the ratio of the mixed vapor of alcohol and water distilled from the top of the column or the concentration stage to the distillation column 20 as a condensate and the number of stages of the distillation column,
  • the alcohol concentration of the mixed steam of alcohol and water to be distilled can be suitably controlled.
  • the ratio of the condensed liquid to be refluxed is relatively low. Is preferred. Preferably it is less than 50% of the condensate, more preferably less than 40%, even more preferably less than 20%, particularly preferably less than 10%.
  • the alcohol concentration of the mixed vapor of alcohol and water distilled from the top of the column or from the concentrating stage is not particularly limited.
  • any alcohol concentration from 50% by mass to azeotropic composition (or 96% by mass) can be used.
  • it is more preferably 55% to 90% by weight, further preferably 60% to 90% by weight, and particularly preferably 65% to 85% by weight. is there.
  • the condensation heat of the condenser 22 is preferably recovered by using the preheating of the aqueous alcohol solution supplied to the distillation column 20 or the reboiler heating of the mash column 10 and the necessary amount of reflux liquid cannot be condensed. It is preferable to add an auxiliary condenser and condense with cooling water.
  • the aqueous alcohol solution supplied to the distillation column 20 is preferably preheated to near its boiling point. At that time, it is preferable to effectively use the heat of the anhydrous alcohol purified by the reflux liquid of the distillation column 20 or the membrane separation device 40.
  • the mixed vapor of alcohol and water supplied to the membrane separation device 40 flows while in contact with the selectively permeable separation membrane. At that time, since the water vapor selectively permeates the separation membrane, the mixed vapor having a reduced alcohol concentration mainly composed of water vapor is recovered on the permeation side of the separation membrane.
  • the alcohol concentration of the mixed steam is about several to several mass% (for example, 20 mass% of alcohol), and is preferably circulated and supplied to the distillation column 20 in order to increase the alcohol recovery rate.
  • water vapor is removed on the non-permeating side of the separation membrane, high-purity anhydrous alcohol can be recovered.
  • the permeation amount of water vapor that permeates the separation membrane is proportional to the partial pressure difference between the water vapors on both sides of the membrane. For this reason, separation efficiency (purification efficiency) can be increased by increasing the partial pressure difference between the water vapors on both sides of the membrane.
  • a high-pressure mixed vapor of alcohol and water of 150 kPa (absolute pressure) or higher, preferably 150 to 700 kPa (absolute pressure) is supplied to the membrane separator. At the same time, it is also preferable to reduce the pressure on the permeate side of the separation membrane.
  • the space on the permeate side of the separation membrane is connected to a vacuum pump 42 via a heat exchanger (condenser) 41 to reduce the pressure, and the permeated vapor that has permeated the separation membrane is condensed in the condenser to be condensed.
  • This condensate is preferably stored in the condensate tank 43 and then circulated and supplied to the distillation column 20.
  • the membrane separation device 40 is not limited as long as it can separate water vapor from the mixed vapor of water vapor and ethanol vapor with a separation membrane.
  • the separation membrane is not particularly limited as long as it selectively permeates water vapor with respect to alcohol vapor. It may be made of a polymer such as polyimide, polyetherimide, polycarbonate, polysulfone or high molecular weight polyvinyl alcohol, or may be made of an inorganic material such as zeolite or zirconia.
  • the form of the membrane separation device is also a hollow fiber separation membrane module made of, for example, an asymmetric polyimide hollow fiber membrane, a shell-and-tube module comprising a tubular separation membrane element in which a zeolite is formed on a porous tubular support, etc.
  • the conventionally known ones can be suitably used. Examples of these include, but are not limited to, Japanese Unexamined Patent Application Publication Nos. 2000-262828 and 2001-62257 using polyimide hollow fiber membranes, and Japanese Unexamined Patent Application Publication No. 2003-93844 using zeolite membranes. Preferred examples include those described in JP-A-2006-263574, JP-A-2007-203210 and the like.
  • the water vapor transmission rate (P ′ H 2 O 2 ) is preferably 0.5 ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cm Hg or more, more preferably 1.0 in use.
  • ⁇ 10 ⁇ 3 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg or more, ratio of water vapor transmission rate (P ′ H 2 O ) to alcohol transmission rate (P ′ alcohol ) (P ′ H 2 O / P ′ alcohol ) Is preferably 50 or more, more preferably 100 or more.
  • FIG. 2 showing an outline of an example of another embodiment according to the present invention.
  • the role of the distillation column in FIG. 1 is that an aqueous alcohol solution having an alcohol concentration of less than 50% by mass from the mash column is distilled under pressure to concentrate the alcohol, and at the same time, the high-pressure alcohol of 150 kPa (absolute pressure) or higher and water It was to produce mixed steam.
  • the embodiment shown in FIG. 2 is characterized in that the distillation column is operated at a low pressure of about 50 to 150 kPa, preferably at atmospheric pressure, and the condensate obtained by condensing the mixed vapor of alcohol and water obtained here is evaporated. To generate a mixed vapor of alcohol and water having a high pressure of 150 kPa (absolute pressure) or higher.
  • the distillation tower and the evaporator which are the features of FIG. 2 will be described. The other points are as described with reference to FIG.
  • the operating pressure of the distillation column 20 is preferably in the range of 50 to 150 kPa, and is usually atmospheric pressure.
  • the reboiler 21 that heats the bottom liquid of the distillation column 20 can use the condensation heat of steam supplied from the outside, but the condensation heat of the non-permeated vapor of the membrane separation device 40 can be suitably used as preheating, for example. it can.
  • the condenser 22 cools the mixed vapor of alcohol and water distilled from the top of the distillation column 20 or the concentration stage to form a condensate.
  • the condensate may be temporarily stored in the condensate tank 23. A part of this condensate is refluxed to the top of the column or the concentration stage by, for example, a condensate pump, and the remainder is sent to the evaporator 30.
  • the alcohol concentration of the mixed vapor of alcohol and water obtained at the top of the distillation column or at the concentration stage can be suitably controlled by the ratio of the condensate refluxed to the distillation column 20 and the number of stages of the distillation column.
  • the alcohol concentration of the mixed steam of alcohol and water obtained at the top of the distillation column 20 or at the concentration stage is controlled to be 55% by mass or more.
  • the ratio of the condensed liquid to be refluxed is relatively low. Is preferred. Preferably it is less than 50% of the condensate, more preferably less than 35%, even more preferably less than 20%, particularly preferably less than 10%.
  • the condensation heat of the condenser 22 may be used for preheating the aqueous alcohol solution supplied to the distillation column.
  • the supplied aqueous alcohol solution is preferably preheated to near its boiling point. At that time, it is preferable that the steam that cannot be condensed by the condenser 22 is condensed by cooling water by the auxiliary condenser.
  • an aqueous alcohol solution having an alcohol concentration of 55% by mass or more is supplied from the distillation column 20 through the condenser 22 to the evaporator 30.
  • the role of the evaporator 30 is to heat the alcohol aqueous solution to evaporate the whole amount and supply it to the membrane separation device 40 as a mixed vapor of alcohol and water.
  • the evaporator 30 is provided with a sufficient heating function, and can be operated at a relatively high pressure of 150 kPa (absolute pressure) or higher, preferably 200 kPa (absolute pressure) or higher, in the pressure of the mixed alcohol and water vapor obtained. .
  • the upper limit of the pressure is usually about 700 kPa (absolute pressure) or less.
  • the operating pressure of the evaporator 30 is controlled by the amount of heat (steam amount) applied to the evaporator, but at that time, the flow rate of the mixed vapor distilled from the evaporator may be controlled. Further, the pressure of the mixed vapor can be suitably adjusted by adjusting (restricting) the flow rate of the vapor flowing through the pressure reducing means between the evaporator and the membrane separator and the non-permeate side of the membrane separator 40. And it is preferable to adjust the pressure in an evaporator so that the evaporation temperature in the evaporator 30 may become about 5 degreeC or more higher than the temperature of the tower bottom of the distillation column 20. FIG. This makes it possible to use the non-permeate vapor of the membrane separator 40 as a heat source for the reboiler of the distillation column 20.
  • the total amount of the mixed vapor of alcohol and water obtained in the evaporator 30 is reduced in pressure by the decompression means, and then supplied to the membrane separation device 40 for purification.
  • the pressure reducing means is not particularly limited, but a pressure regulating valve having a throttle valve is preferably used.
  • the pressure is reduced to about 5 kPa or more, preferably 10 kPa or more, more preferably 10 to 500 kPa, and still more preferably about 10 to 300 kPa.
  • one of the features of the present invention is that after the high-pressure alcohol / water mixed vapor is generated by the evaporator, the pressure of the mixed vapor is maintained while maintaining the temperature of the mixed vapor. It is to supply to the membrane separator after decompressing.
  • the purpose of reducing the pressure is to sufficiently reduce the condensation temperature of the mixed vapor to be lower than the temperature of the mixed vapor so that the saturated mixed vapor does not condense in the membrane separator.
  • the condensation temperature of the mixed steam is 3 ° C. or more, preferably 5 ° C. or more lower than the temperature of the mixed steam. In addition, it is 10 degrees C or less normally.
  • reducing the pressure of the mixed steam once heated to a high pressure is poor in energy efficiency only in the process, but it is possible to improve the energy efficiency in the whole process.
  • FIG. 3 shows an outline of another example of the embodiment according to the present invention which is basically the same as FIG.
  • the bottom liquid discharged from the mash tower 10 is used for preheating the aqueous fermentation alcohol solution supplied to the mash tower 10, and the reflux steam of the distillation tower 20 is obtained by condensing the permeate condensate of the membrane separation apparatus 40.
  • the non-permeated vapor (anhydrous alcohol vapor) of the membrane separation device 40 is preheated when the condensed liquid of the permeated vapor of the membrane separation device 40 is circulated and supplied to the distillation column 20.
  • a portion of the bottom liquid of the moromi tower 10 is used for heating the bottom liquid when it is circulated to the mash tower, and each is suitably heat-recovered.
  • the thermal energy of the mixed steam generated in the mash column, distillation column (and evaporator) and membrane separation apparatus is preferably recovered in another process in the system as described above. It may be recovered in a completely different heating process.
  • Example 1 The fermented ethanol aqueous solution with the ethanol concentration of 7.3 mass% obtained in the fermenter was refined using 72.7 tons per hour using the apparatus schematically shown in Fig. 3, and 99.8 mass% absolute ethanol was purified. An attempt was made to obtain 5 tons per hour.
  • Process 1 A fermented ethanol aqueous solution having an ethanol concentration of 7.3% by mass is preheated with a preheater, and is fed at a flow rate of 72.7 t / hour to a mash tower having a theoretical plate number equivalent to 5 with a liquid feed pump.
  • Water vapor (steam 1) necessary for carrying out a distillation process by evaporating the supplied aqueous solution of fermentation ethanol is directly blown into the bottom of the mash column.
  • the distillate containing the mixed vapor of ethanol and water produced in the moromi tower and sent from the top of the tower is condensed by the condenser.
  • a part of the condensate is refluxed to the mash column, and the remaining condensate is supplied to the distillation column.
  • the reflux amount is adjusted so that the ethanol concentration at the top of the mash column is 39% by mass.
  • the temperature of the mixed vapor of ethanol and water distilled from the distillation tower and sent from the top of the tower is adjusted to 135 ° C. by adjusting the heating amount of the distillation tower.
  • a part of the mixed vapor is condensed by a condenser and refluxed to the distillation column.
  • the reflux amount By adjusting the reflux amount, the ethanol concentration of the mixed vapor of ethanol and water at the top of the distillation column is adjusted to 75% by mass.
  • Process 3 The remaining mixed vapor of ethanol and water that has not been condensed is reduced from 551 kPa to 300 kPa (gauge pressure) by a pressure adjusting valve (throttle valve) while maintaining the vapor temperature, and supplied to the membrane separation device.
  • the mixed vapor of ethanol and water supplied to the membrane separator is 10.4 t per hour.
  • the membrane separation device is a module as described in Japanese Patent Application Laid-Open No. 2000-262838, and has a water vapor transmission rate (P ′ H2O ) at 135 ° C. of 1.2 ⁇ 10 ⁇ 3 cm 3 (STP) / cm.
  • a vacuum pump is provided via a condenser, and the pressure is reduced to 12 kPa (absolute pressure).
  • the vapor that has permeated the separation membrane is completely condensed by a condenser so that the degree of vacuum on the permeate side of the separation membrane is maintained.
  • a part of the non-permeated vapor discharged from the membrane separation device is configured to be supplied to the permeation side of the membrane separation device as a purge gas for increasing the separation efficiency of the membrane separation device.
  • Vapor recovered from the permeation side of the separation membrane of the membrane separation apparatus (permeated vapor and vapor supplied as purge gas) is condensed, preheated with non-permeated vapor, and circulated and supplied to the distillation column. Further, the non-permeate vapor recovered from the non-permeate side of the separation membrane of the membrane separator is used for heating the bottom liquid when circulating the low column liquid of the mash tower to the mash tower in addition to the preliminary heating. After being recovered by heat, it is cooled and recovered as absolute ethanol having an ethanol concentration of 99.8% by mass in a product tank at 5 tons per hour.
  • Table 1 shows the results when the same operation as in the example was performed except that the operation in the step 2 was changed as follows in the example 1.
  • Process 2 An ethanol aqueous solution having an ethanol concentration of 13.3 t per hour and an ethanol concentration of 39% by mass is supplied to a distillation column corresponding to 6 theoretical plates by a liquid feed pump.
  • a reboiler is provided at the bottom of the distillation column, and the bottom liquid extracted from the bottom is converted to a mixed vapor by the reboiler supplied with steam 2 and circulated and supplied to the distillation column.
  • the column bottom liquid extracted from the column bottom is circulated and supplied to the mash column at a flow rate of 8.3 t per hour.
  • the column bottom liquid is kept at an ethanol concentration of about 2.5% by mass or less.
  • the mixed vapor of ethanol and water sent from the top of the distillation column in the distillation column is adjusted by adjusting the flow rate at which the non-permeate side vapor of the membrane separation device 40 is discharged from the outlet of the membrane separation membrane device. Is adjusted to 300 kPa (gauge pressure).
  • a part of the mixed vapor is condensed by a condenser and refluxed to the distillation column.
  • the reflux amount By adjusting the reflux amount, the ethanol concentration of the mixed vapor of ethanol and water at the top of the distillation column is adjusted to 75% by mass.
  • the remaining mixed vapor of ethanol and water that has not been condensed is heated to 135 ° C. by a superheater (steam 3) and supplied to the membrane separation apparatus.
  • the mixed steam of ethanol and water supplied to the membrane separator is 10.4 t per hour.
  • Examples 2 to 7 Except that the conditions shown in Table 1 were adopted, an attempt was made to obtain 9 tons of absolute ethanol at 5 t / hour by the same operation as in Example 1.
  • Table 1 shows the results when operating in the same manner as in Reference Example 1 except that the conditions shown in Table 1 were adopted.
  • a fermentation alcohol aqueous solution is supplied to a mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water.
  • the first condensate obtained by condensing the distillate is supplied to the distillation column, and (2) a) the distillate or the first condensate is heated by the distillation column to distill the mixed vapor of alcohol and water.
  • the distillate or the first condensate is heated by a distillation column to distill a mixed vapor of alcohol and water, and the second condensate obtained by condensing the mixed vapor is supplied to an evaporator.
  • the second condensate in the evaporator is heated to generate a mixed vapor of alcohol and water and supplied to the membrane separator.
  • the purification process method for obtaining anhydrous alcohol is simpler and extremely A method for energy efficient purification can be provided.

Abstract

Disclosed is a purification treatment method for producing an absolute alcohol from an aqueous fermented alcohol solution. The method is characterized by reducing the pressure of a mixed steam containing an alcohol and water distilled in a distillation column and supplying the mixed steam to a membrane separation unit. The method can achieve a purification treatment through a more convenient process as a whole and with extremely high energy efficiency.

Description

醗酵アルコールの精製処理方法Method for purifying fermentation alcohol
 本発明は、醗酵アルコールの精製処理方法であって、特にもろみ塔と蒸留塔(及び蒸発器)と膜分離装置とを組み合せた醗酵アルコールの精製処理方法において、より簡便に且つ極めてエネルギー効率よく醗酵アルコールを精製処理する方法に関する。 The present invention relates to a fermentation alcohol purification process, particularly a fermentation alcohol purification process that combines a mash tower, a distillation tower (and an evaporator), and a membrane separation device. The present invention relates to a method for purifying alcohol.
 醗酵槽から取出した醗酵アルコール液を精製処理する方法として、従来、もろみ塔によって醗酵アルコール液(もろみ)からアルコール-水混合液を分離濃縮後、更に濃縮塔(蒸留塔)によってアルコール-水混合液を共沸組成近くまで濃縮し、次いで共沸蒸留塔によって高純度の無水アルコールを得る方法が採用されていた。 As a method for purifying the fermentation alcohol solution taken out from the fermentation tank, conventionally, the alcohol-water mixture solution is separated and concentrated from the fermentation alcohol solution (moromi) by the moromi tower, and then the alcohol-water mixture solution by the concentration tower (distillation tower). Was concentrated to near the azeotropic composition, and then a high-purity anhydrous alcohol was obtained by an azeotropic distillation column.
 特許文献1には、共沸混合物を蒸留塔で蒸留し、その共沸混合物の蒸気を膜分離装置へ供給し、分離膜によって分離する方法が記載されている。 Patent Document 1 describes a method in which an azeotropic mixture is distilled in a distillation tower, vapor of the azeotropic mixture is supplied to a membrane separation device, and separated by a separation membrane.
 特許文献2には、共沸蒸留塔の代わりに膜分離装置を用いて、蒸留塔で共沸組成近くまで濃縮したアルコール-水混合液を蒸発器で蒸発して膜分離装置へ導入して精製処理する方法が開示されている。また、ここには膜分離装置へ供給する混合蒸気を過熱することが記載されている。 In Patent Document 2, a membrane separation device is used instead of an azeotropic distillation column, and an alcohol-water mixture concentrated to near the azeotropic composition in the distillation column is evaporated by an evaporator and introduced into the membrane separation device for purification. A method of processing is disclosed. Further, it is described that the mixed vapor supplied to the membrane separation apparatus is superheated.
 特許文献3にも、特許文献2と同じシステムが開示されている。この文献では、同システムにおいて、蒸留塔の留分を蒸発器に導入して加熱すると、蒸留塔の操作圧力より高圧のアルコールと水との混合蒸気が生成し、この高圧の蒸気を膜分離器に導入するので、膜分離装置を高効率で操作できることが説明されている。 Patent Document 3 also discloses the same system as Patent Document 2. In this document, in the same system, when a distillation column fraction is introduced into an evaporator and heated, a mixed vapor of alcohol and water having a pressure higher than the operation pressure of the distillation column is generated, and this high pressure vapor is converted into a membrane separator. It is described that the membrane separation apparatus can be operated with high efficiency.
特開2003-93827号公報JP 2003-93827 A 特開昭63-258602号公報Japanese Unexamined Patent Publication No. 63-258602 WO2004/073841号公報WO2004 / 073841
 共沸蒸留塔の代わりに膜分離装置を用いれば、設備を簡便にでき且つエネルギー効率も向上できる。しかしながら、もろみ塔と蒸留塔(及び蒸発器)と膜分離装置とを組み合せた醗酵アルコールの精製処理方法において、具体的にどのようにすれば、工程全体としてより簡便で且つ極めてエネルギー効率よく醗酵アルコールを精製処理できるかについては十分な検討がされていなかった。 If a membrane separator is used instead of the azeotropic distillation tower, the equipment can be simplified and the energy efficiency can be improved. However, in the method for purifying fermentation alcohol by combining the moromi tower, distillation tower (and evaporator) and membrane separator, the fermentation alcohol is simpler and more energy efficient as a whole process. Sufficient studies have not been conducted on whether or not the product can be purified.
 すなわち、本発明の目的は、(工程1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水の混合蒸気を含む留出物を留出させ、この留出物またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、(工程2)a)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、またはb)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液を蒸発器へ供給し、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を発生させ、(工程3)前記a)において蒸留塔より留出させた混合蒸気または前記b)において蒸発器より発生させた混合蒸気を、膜分離装置へ供給し、(工程4)膜分離装置でアルコールと水との混合蒸気から水蒸気を選択的に除去する無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理する方法を提供することである。 That is, the object of the present invention is (Step 1) supplying a fermentation alcohol aqueous solution to a mash tower, heating the fermentation alcohol aqueous solution in the mash tower to distill a distillate containing a mixed vapor of alcohol and water, A distillate or a first condensate obtained by condensing the distillate is supplied to a distillation column. (Step 2) a) The distillate or the first condensate is heated by a distillation column to produce alcohol, water, Or b) a second condensate in which the distillate or the first condensate is heated by a distillation column to distill a mixed vapor of alcohol and water, and the mixed vapor is condensed. The liquid is supplied to the evaporator, the second condensate in the evaporator is heated to generate a mixed steam of alcohol and water, and (step 3) the mixed steam distilled from the distillation column in a) or The mixed vapor generated from the evaporator in b) is converted into a film. (Step 4) In the purification method for obtaining anhydrous alcohol that selectively removes water vapor from the mixed vapor of alcohol and water in the membrane separator, the process is simpler and extremely energy efficient as a whole process. It is to provide a well-purified process.
 本発明は以下の事項に関する。
1.(工程1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水の混合蒸気を含む留出物を留出させ、この留出物、またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給する工程と、
(工程2)a)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させる工程、または、b)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液を蒸発器へ供給し、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を発生させる工程と、
(工程3)前記a)において蒸留塔より留出させた混合蒸気または前記b)において蒸発器より発生させた混合蒸気を、減圧してから膜分離装置へ供給する工程と、
(工程4)膜分離装置によりアルコールと水との混合蒸気から水蒸気を選択的に除去する工程
を有することを特徴とする醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
2.工程2a)において蒸留塔より留出させる混合蒸気または工程2b)において蒸発器より発生させる混合蒸気の圧力が150kPa(絶対圧)以上であることを特徴とする前記項1に記載の方法。
3.工程3において、アルコールと水との混合蒸気の凝縮温度が該混合蒸気の温度よりも低くなるように減圧することを特徴とする前記項1または2に記載の方法。
4.工程3において、圧力を5kPa以上減圧することを特徴とする前記項1~3のいずれかに記載の方法。
5.工程1においてもろみ塔から蒸留塔へ供給する留出物または第1の凝縮液のアルコール濃度を50質量%未満にすることを特徴とする前記項1~4のいずれかに記載の方法。
6.工程4において膜分離装置へ供給するアルコールと水との混合蒸気のアルコール濃度が55~90質量%であることを特徴とする、前記項1~5のいずれかに記載の方法。
The present invention relates to the following matters.
1. (Step 1) A fermentation alcohol aqueous solution is supplied to the mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water, and this distillate or this distillate. Supplying a first condensate condensed with a product to a distillation column;
(Step 2) a) a step of heating the distillate or the first condensate by a distillation column to distill a mixed vapor of alcohol and water, or b) the distillate or the first by a distillation column. The condensate is heated to distill the mixed vapor of alcohol and water, the second condensate condensed with the mixed vapor is supplied to the evaporator, and the second condensate in the evaporator is heated. Generating a mixed steam of alcohol and water;
(Step 3) a step of supplying the mixed vapor distilled from the distillation column in the a) or the mixed vapor generated from the evaporator in the b) to the membrane separator after reducing the pressure;
(Step 4) A purification method for obtaining anhydrous alcohol from a fermented alcohol aqueous solution, comprising a step of selectively removing water vapor from a mixed steam of alcohol and water by a membrane separator.
2. Item 2. The method according to Item 1, wherein the pressure of the mixed steam distilled from the distillation column in Step 2a) or the mixed steam generated from the evaporator in Step 2b) is 150 kPa (absolute pressure) or more.
3. Item 3. The method according to Item 1 or 2, wherein in Step 3, the pressure is reduced so that the condensation temperature of the mixed vapor of alcohol and water is lower than the temperature of the mixed vapor.
4). Item 4. The method according to any one of Items 1 to 3, wherein in step 3, the pressure is reduced by 5 kPa or more.
5). Item 5. The method according to any one of Items 1 to 4, wherein the alcohol concentration of the distillate or the first condensate supplied from the mash column to the distillation column in Step 1 is less than 50% by mass.
6). Item 6. The method according to any one of Items 1 to 5, wherein the alcohol concentration of the mixed vapor of alcohol and water supplied to the membrane separator in Step 4 is 55 to 90% by mass.
 本発明によって、(1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水の混合蒸気を含む留出物を留出させ、この留出物またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、(2)a)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、またはb)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液を蒸発器へ供給し、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を発生させ、(3)前記a)において蒸留塔より留出させた混合蒸気または前記b)において蒸発器より発生させた混合蒸気を、膜分離装置へ供給し、(4)膜分離装置によりアルコールと水との混合蒸気から水蒸気を選択的に除去する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理する方法を提供することができる。 According to the present invention, (1) a fermentation alcohol aqueous solution is supplied to a mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water. The first condensate obtained by condensing the distillate is supplied to the distillation column, and (2) a) the distillate or the first condensate is heated by the distillation column to distill the mixed vapor of alcohol and water. Or b) heating the distillate or the first condensate with a distillation column to distill the mixed vapor of alcohol and water, and supplying the second condensate condensed with the mixed vapor to the evaporator Then, the second condensate in the evaporator is heated to generate a mixed vapor of alcohol and water. (3) The mixed vapor distilled from the distillation column in a) or the evaporator in b) The generated mixed vapor is supplied to the membrane separator, and (4 In a purification process for obtaining anhydrous alcohol from an aqueous fermentation alcohol solution that selectively removes water vapor from the mixed steam of alcohol and water by a membrane separator, a simpler and extremely energy efficient purification process as a whole process. Can be provided.
本発明の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法に係る実施態様の一例の概略図(ブロック図)である。It is the schematic (block diagram) of an example of the embodiment which concerns on the refinement | purification processing method for obtaining anhydrous alcohol from the fermentation alcohol aqueous solution of this invention. 本発明の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法に係る実施態様の別の一例の概略図(ブロック図)である。It is the schematic (block diagram) of another example of the embodiment which concerns on the refinement | purification processing method for obtaining anhydrous alcohol from the fermentation alcohol aqueous solution of this invention. 本発明の醗酵アルコール水溶液から無水アルコールを得るための精製処理方法に係る実施態様の別の一例の概略図(ブロック図)である。It is the schematic (block diagram) of another example of the embodiment which concerns on the refinement | purification processing method for obtaining anhydrous alcohol from the fermentation alcohol aqueous solution of this invention.
 なお、図面中、実線は液体又は気体(蒸気)の流れを示し、破線は制御系のつながりを示す。 In the drawing, the solid line indicates the flow of liquid or gas (vapor), and the broken line indicates the connection of the control system.
符号の説明Explanation of symbols
10   もろみ塔
11   凝縮器
12   凝縮液槽
20   蒸留塔
21   リボイラー
22   凝縮器
23   凝縮液槽
24   減圧手段
30   蒸発器
40   膜分離装置
41   熱交換器(コンデンサー)
42   真空ポンプ
43   凝縮液槽
FIC: 流量調節器
LIC: 液面調節器
TIC: 温度調節器
PIC: 圧力調節器
DESCRIPTION OF SYMBOLS 10 Moromi tower 11 Condenser 12 Condensate tank 20 Distillation tower 21 Reboiler 22 Condenser 23 Condensate tank 24 Decompression means 30 Evaporator 40 Membrane separator 41 Heat exchanger (condenser)
42 Vacuum pump 43 Condensate tank FIC: Flow controller LIC: Liquid level controller TIC: Temperature controller PIC: Pressure controller
 本発明に係る実施態様の一例の概略を示す図1に基づいて説明する。 Description will be made based on FIG. 1 showing an outline of an example of an embodiment according to the present invention.
 なお、本発明において、無水アルコールとは、99.0質量%以上、好ましくは99.5質量%以上、より好ましくは99.7質量%以上、特に好ましくは99.8質量%以上の純度を有するアルコールを意味する。 In the present invention, anhydrous alcohol has a purity of 99.0% by mass or more, preferably 99.5% by mass or more, more preferably 99.7% by mass or more, and particularly preferably 99.8% by mass or more. Means alcohol.
 また、本発明において、アルコールは、メチルアルコール、プロピルアルコール、ブチルアルコールなどの低級アルキルアルコールも含むが、好ましくはエタノールである。 In the present invention, the alcohol includes lower alkyl alcohols such as methyl alcohol, propyl alcohol, and butyl alcohol, and is preferably ethanol.
 本発明において、醗酵アルコール水溶液は限定されるものではない。例えば糖質系、デンプン系、セルロース系などの原料を醗酵して得られる醗酵アルコール水溶液である。これらの材料が醗酵槽で醗酵されて醗酵アルコール水溶液となる。この醗酵アルコール水溶液のアルコール濃度は通常は5~12質量%程度である。この醗酵アルコール水溶液には、主成分の水とアルコールの他に、酵母や菌、メタノールなどのアルコール類、蟻酸、酢酸、コハク酸、乳酸、酪酸等の脂肪酸類、アセトアルデヒド、ホルムアルデヒドなどのアルデヒド類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルアセタールなどのアセタール類、アセトン、メチルエチルケトンなどのケトン類、ピリジン、ピコリン、3-メチルアミン、4-メチルピリジンなどのアミン類、更に高級アルコールと脂肪酸エステルの混合物である所謂フーゼル油など、副生した種々の化合物が含まれている。また、通常は未醗酵の原料成分などが不溶成分として残存しスラリーになっている。 In the present invention, the fermented alcohol aqueous solution is not limited. For example, it is a fermented alcohol aqueous solution obtained by fermenting raw materials such as saccharides, starches, and celluloses. These materials are fermented in a fermenter to form a fermented alcohol aqueous solution. The alcohol concentration of the aqueous fermentation alcohol solution is usually about 5 to 12% by mass. In addition to the main components water and alcohol, this fermented alcohol aqueous solution includes alcohols such as yeast, fungus, methanol, fatty acids such as formic acid, acetic acid, succinic acid, lactic acid, butyric acid, aldehydes such as acetaldehyde, formaldehyde, Esters such as ethyl acetate and butyl acetate, acetals such as diethyl acetal, ketones such as acetone and methyl ethyl ketone, amines such as pyridine, picoline, 3-methylamine and 4-methylpyridine, and higher alcohols and fatty acid esters It contains various by-produced compounds such as so-called fusel oil which is a mixture. Moreover, normally, unfermented raw material components and the like remain as insoluble components to form a slurry.
 この醗酵アルコール水溶液は、醗酵槽から直接的に或いは一旦タンクで貯蔵された後に間接的にもろみ塔10へ供給される。もろみ塔へ供給される前に醗酵アルコール水溶液は粗ろ過によって大きな不溶成分が除去されることが好ましい。また、醗酵槽で醗酵した後の醗酵アルコール水溶液は副生した脂肪酸類などによってpHが3~5程度になっている場合がある。このため、醗酵アルコール水溶液中に含まれる酸成分をアルカリ成分の添加などによって中和処理を施すことが好ましい。この中和処理を施すことによって精製後の無水アルコールへの酸の混入を確実に防ぐことができるので好適である。添加するアルカリ成分としては、水酸化ナトリウム、水酸化カリウム、過マンガン酸カリウムなど水溶性のアルカリ化合物を好適に例示できる。 This aqueous fermented alcohol solution is directly supplied from the fermenter or temporarily stored in a tank and then indirectly supplied to the mash tower 10. It is preferable that a large insoluble component is removed from the fermentation alcohol aqueous solution by rough filtration before being supplied to the mash tower. In addition, the fermented alcohol aqueous solution after fermenting in the fermenter may have a pH of about 3 to 5 depending on by-product fatty acids. For this reason, it is preferable to neutralize the acid component contained in the fermentation alcohol aqueous solution by adding an alkali component or the like. By performing this neutralization treatment, it is possible to reliably prevent the acid from being mixed into the purified anhydrous alcohol. Suitable examples of the alkali component to be added include water-soluble alkali compounds such as sodium hydroxide, potassium hydroxide, and potassium permanganate.
 もろみ塔10内では醗酵アルコール水溶液を加熱して、アルコールと水との混合物を含む留出物を留出させ、この留出物を凝縮した凝縮液を蒸留塔20へ供給する。アルコールと水との混合物を含む留出物は、好ましくはアルコールと水との混合蒸気(気体の状態)であるが、アルコールと水との混合蒸気に醗酵アルコール水溶液の飛沫などを含んだ混合物(気液混合の状態)であっても構わない。
本発明において、もろみ塔10の主たる役割は、アルコールの系外への排出(ロス)を極力抑制しながら、醗酵アルコール水溶液から、未醗酵の原料成分などの不溶成分やフーゼル油などの高沸点成分を、好ましくは低沸の副生物成分や水とともに、分離して除去することにある。この目的を達成できるものであれば、もろみ塔は特に限定されるものではなく、従来公知の型式のものを好適に用いることができる。単蒸留式でも連続蒸留式でも構わない。蒸留段は数段程度のものが好適であり、例えば山型キャップ式トレー、或いはスケールの付着の少ないバッフル式トレーなどの棚段式のものを好適に使用できる。さらにフラッシュ蒸留などの単蒸留式のものでもよく、それを複数個組合せたものでも構わない。なお、もろみ塔の操作圧力は好ましくは減圧又は大気圧である。
In the moromi tower 10, the aqueous fermentation alcohol solution is heated to distill a distillate containing a mixture of alcohol and water, and a condensate obtained by condensing the distillate is supplied to the distillation tower 20. The distillate containing a mixture of alcohol and water is preferably a mixed vapor of alcohol and water (in a gaseous state), but a mixture containing droplets of a fermented alcohol aqueous solution in a mixed vapor of alcohol and water ( It may be a gas-liquid mixed state).
In the present invention, the main role of the moromi tower 10 is to suppress the discharge (loss) of alcohol outside the system as much as possible from the aqueous solution of fermentation alcohol, insoluble components such as unfermented raw material components, and high-boiling components such as fusel oil. Is preferably separated and removed together with low-boiling by-product components and water. As long as this object can be achieved, the moromi tower is not particularly limited, and a conventionally known type can be suitably used. Simple distillation or continuous distillation may be used. The number of distillation stages is preferably about several stages. For example, a tray-type tray such as a mountain-cap tray or a baffle tray with little scale adhesion can be suitably used. Furthermore, it may be a single distillation type such as flash distillation or a combination of a plurality of them. The operating pressure of the moromi tower is preferably reduced pressure or atmospheric pressure.
 図1に示しているように、原料の醗酵アルコール水溶液はもろみ塔10の比較的塔頂に近い供給口から塔内へ導入される。一方、塔底近くの導入口から水蒸気(スチーム)が吹き込まれる。この水蒸気は塔内を流下する液体と熱交換及び物質交換しながら塔内を上昇する。このため、塔底での蒸気成分はほとんど水になり、塔頂近くでは蒸気中のアルコール濃度が大きくなる。この結果、塔底からはアルコールをほとんど含まない水が不溶成分とともに塔底液として排出される。なお、塔底から水蒸気を導入する代わりに又は併用して塔底から排出する塔底液の一部をリボイラーによって蒸気化して塔内に導入する方法を用いることもできる。 As shown in FIG. 1, the raw fermentation alcohol aqueous solution is introduced into the tower from a feed port relatively close to the top of the moromi tower 10. On the other hand, steam (steam) is blown from the inlet near the tower bottom. This water vapor rises in the tower while exchanging heat and materials with the liquid flowing down the tower. For this reason, the steam component at the bottom of the tower is almost water, and the alcohol concentration in the steam increases near the top of the tower. As a result, water containing almost no alcohol is discharged from the bottom of the tower together with insoluble components as a bottom liquid. It is also possible to use a method in which a part of the column bottom liquid discharged from the column bottom is vaporized by a reboiler and introduced into the column instead of or in combination with the introduction of water vapor from the column bottom.
 もろみ塔10の塔頂或いは濃縮段から取出されるアルコールと水との混合物を含む留出物は、凝縮器11に送られ凝縮される。この凝縮液の一部はもろみ塔へ還流され、残りの凝縮液は蒸留塔20へ供給される。この凝縮液のもろみ塔10へ還流する割合と蒸留塔20の段数を変えることによってもろみ塔10から蒸留塔20へ供給される凝縮液のアルコール水溶液のアルコール濃度を制御することもできる。なお、図1に記載した態様ではないが、もろみ塔10の塔頂或いは濃縮段から取出されるアルコールと水との混合蒸気を含む留出物は、凝縮せず気体の状態または気液混合の状態で蒸留塔20へ供給することもできる。この態様では、限定するものではないが、アルコールと水との混合蒸気を含む留出物の一部を蒸溜塔20へ供給するとともに、残りの留出物を凝縮器で凝縮し、得られた凝縮液の全量をもろみ塔へ還流することもできる。その際、凝縮器へ供給する留出物の割合によってもろみ塔10から蒸留塔20へ供給される留出物のアルコール濃度を制御することができる。 The distillate containing a mixture of alcohol and water taken from the top of the moromi tower 10 or the concentration stage is sent to the condenser 11 and condensed. A part of this condensate is refluxed to the mash column, and the remaining condensate is supplied to the distillation column 20. The alcohol concentration of the alcohol aqueous solution of the condensate supplied from the mash tower 10 to the distillation tower 20 can be controlled by changing the ratio of the condensate refluxed to the mash tower 10 and the number of stages of the distillation tower 20. Although not the embodiment described in FIG. 1, the distillate containing a mixed vapor of alcohol and water taken out from the top of the mash tower 10 or the concentration stage is not condensed and is in a gaseous state or a gas-liquid mixture. It can also be supplied to the distillation column 20 in a state. In this embodiment, although not limited, a part of the distillate containing a mixed vapor of alcohol and water was supplied to the distillation column 20 and the remaining distillate was condensed by a condenser. The entire amount of the condensate can be refluxed to the mash tower. At that time, the alcohol concentration of the distillate supplied from the mash column 10 to the distillation column 20 can be controlled by the ratio of the distillate supplied to the condenser.
 また、アルコールと水との混合蒸気に膜分離装置40の分離膜へ悪影響を与えるアルデヒド化合物などの低沸成分が多く含まれる場合には、分離膜を保護のために、もろみ塔10の塔頂から取出したアルコールと水との混合蒸気を分縮(一部の低沸成分を蒸気のままとし、それ以外のアルコールと水との混合蒸気を凝縮)し、アルデヒドなどの低沸成分をアルコールと水との混合蒸気から分離して系外へ除去することが好適である。 In addition, when the mixed vapor of alcohol and water contains many low boiling components such as aldehyde compounds that adversely affect the separation membrane of the membrane separation device 40, the top of the mash column 10 is used to protect the separation membrane. The steam mixed with alcohol and water extracted from the water is partially condensed (some low-boiling components remain as steam, and the other steam-water mixture is condensed), and low-boiling components such as aldehydes are mixed with alcohol. It is preferable to separate from the mixed vapor with water and remove it out of the system.
 本発明において、もろみ塔10から蒸留塔20へ供給される凝縮液のアルコール水溶液のアルコール濃度は、もろみ塔から膜分離装置までの工程全体でのエネルギー効率を向上させるために、(当然醗酵アルコール水溶液の濃度以上であって)50質量%未満、好ましくは12質量%以上50質量%未満、より好ましくは20質量%以上50質量%未満、更に好ましくは30質量%以上50質量%未満になるように制御される。もろみ塔である程度までアルコールが濃縮することによって、蒸留塔20で加熱蒸気化するために必要とするエネルギー消費量を抑制できる。しかし、50質量%以上では、もろみ塔の前記役割(アルコールが排出することを極力抑制しながら、未醗酵の原料成分などの不溶成分やフーゼル油などの高沸点成分を、好ましくは低沸の副生物成分や水とともに、分離して除去する)に加えて、アルコールをより濃縮する役割が過大に加わるので、もろみ塔10の醗酵アルコール水溶液の供給口よりも上側に更に濃縮段を増やす必要が生じ、装置の大型化、複雑化が免れなくなる。そのような大型化、複雑化したもろみ塔に不溶成分(粗ろ過しても完全に除去されていない)や高沸成分を含む醗酵アルコール水溶液を供給すると、不溶成分や高沸成分が蒸気に同伴して濃縮段へ持ち込まれるので、スケールとして堆積するなどの問題が生じ易くなり、もろみ塔を安定的且つエネルギー効率よく運転することが極めて難しくなる。 In the present invention, the alcohol concentration of the alcohol aqueous solution of the condensate supplied from the mash tower 10 to the distillation tower 20 is (of course fermented alcohol aqueous solution) in order to improve the energy efficiency in the entire process from the mash tower to the membrane separator. The concentration is less than 50% by mass, preferably 12% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and further preferably 30% by mass or more and less than 50% by mass. Be controlled. By concentrating the alcohol to some extent in the mash tower, the energy consumption required for heating and vaporizing in the distillation tower 20 can be suppressed. However, at 50% by mass or more, the above-mentioned role of the mash tower (insoluble components such as unfermented raw material components and high-boiling components such as fusel oil are preferably added to the low-boiling side while suppressing the discharge of alcohol as much as possible. In addition to being separated and removed together with biological components and water, the role of concentrating the alcohol is excessively added, so that it is necessary to further increase the concentration stage above the supply port of the fermentation alcohol aqueous solution of the mash tower 10 Therefore, the size and complexity of the device cannot be avoided. When an aqueous solution of fermentation alcohol containing insoluble components (not completely removed by rough filtration) or high boiling components is supplied to such a large and complicated mash tower, the insoluble components and high boiling components are accompanied by steam. Then, since it is brought into the concentration stage, problems such as accumulation as a scale are likely to occur, and it becomes extremely difficult to operate the mash tower stably and energy-efficiently.
 蒸留塔20へ供給する留出物またはこの留出物の凝縮液のアルコール濃度を50質量%未満、好ましくは12質量%以上50質量%未満、より好ましくは20質量%以上50質量%未満、更に好ましくは30質量%以上50質量%未満とするのは、蒸留段が数段程度以下の簡便な装置で容易に達成できるし、蒸留塔より留出させたアルコールと水との混合蒸気の一部を凝縮してもろみ塔へ還流する場合でも、還流する割合を極めて低くできるので、迅速な処理が可能になりエネルギー消費量を抑制できるからである。 The alcohol concentration of the distillate supplied to the distillation column 20 or the condensate of this distillate is less than 50% by mass, preferably 12% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, Preferably, 30% by mass or more and less than 50% by mass can be easily achieved by a simple apparatus having about several distillation stages or less, and a part of the mixed steam of alcohol and water distilled from the distillation column. This is because, even when the water is condensed or refluxed to the mash tower, the rate of reflux can be made extremely low, so that rapid processing becomes possible and energy consumption can be suppressed.
 アルコールと水との混合蒸気を凝縮してもろみ塔へ還流する場合に、還流の割合が高くなると、単位操作あたりのもろみの処理量が少なくなり、逆に言えば単位アルコールあたりのエネルギー消費量が多くなるので工程全体でのエネルギー効率を低下させる。 When the mixed steam of alcohol and water is condensed and refluxed to the mash tower, if the reflux rate increases, the amount of mash processed per unit operation decreases, and conversely, the energy consumption per unit alcohol decreases. This increases the energy efficiency of the entire process.
 もろみ塔での還流する凝縮液の割合は、好ましくは20%以下、より好ましくは10%以下である。 The ratio of the condensate refluxed in the moromi tower is preferably 20% or less, more preferably 10% or less.
 蒸留塔20の役割は、もろみ塔からの留出物を、150kPa(絶対圧)以上、好ましくは150~700kPa(絶対圧)、より好ましくは200~600kPa(絶対圧)、更に好ましくは200~500kPa(絶対圧)の操作圧力で蒸留して、アルコール濃度が55質量%以上、好ましくは60質量%以上、より好ましくは65質量%以上まで濃縮することである。ここで共沸組成近くまで濃縮しても構わないが、好ましくは90質量%以下、より好ましくは80質量%以下まで濃縮することが好適である。 The role of the distillation column 20 is that the distillate from the mash column is 150 kPa (absolute pressure) or more, preferably 150 to 700 kPa (absolute pressure), more preferably 200 to 600 kPa (absolute pressure), and even more preferably 200 to 500 kPa. Distilling at an operating pressure of (absolute pressure) is to concentrate the alcohol concentration to 55% by mass or more, preferably 60% by mass or more, more preferably 65% by mass or more. Although it may concentrate to near azeotropic composition here, it is preferred to concentrate to 90 mass% or less, more preferably 80 mass% or less.
 蒸留塔20で、アルコール濃度が55質量%未満までしか濃縮しないと、膜分離装置に対する負担が大きくなるので、膜分離装置が大型になって、工程全体としてより簡便で且つ極めてエネルギー効率よく醗酵アルコールを精製処理して無水アルコールを得ることができなくなるので好ましくない。一方、アルコール濃度を高くしすぎるのも、限定するものではないが、工程全体としてより簡便で且つ極めてエネルギー効率よく醗酵アルコールを精製処理して無水アルコールを得ることができなくなるので好ましくない。 If the alcohol concentration in the distillation tower 20 is less than 55% by mass, the burden on the membrane separator increases, so the membrane separator becomes large and the fermentation alcohol is more convenient and extremely energy efficient as a whole process. This is not preferable because it cannot be purified to obtain anhydrous alcohol. On the other hand, it is not limited to make the alcohol concentration too high, but it is not preferable because the fermentation alcohol cannot be purified and processed in an extremely energy efficient manner as the whole process, so that anhydrous alcohol cannot be obtained.
 蒸留塔20で留出させたアルコールと水との混合蒸気は、一部が凝縮されて凝縮液として蒸留塔に還流されるが、残りの混合蒸気は、蒸気温度を保持したまま減圧手段によって減圧された後膜分離装置40へ供給される。減圧手段は、特に限定されないが絞り弁を有する圧力調整弁が好適に使用される。また、この減圧は、その結果としてアルコールと水との混合蒸気の凝縮温度が前記混合蒸気の温度よりも低くなるようにすることが重要である。通常は5kPa以上、好ましくは10kPa以上、より好ましくは10~500kPa、さらに好ましくは10~300kPa程度減圧する。 A part of the mixed vapor of alcohol and water distilled in the distillation column 20 is condensed and refluxed as a condensate to the distillation column. The remaining mixed vapor is reduced in pressure by a pressure reducing means while maintaining the vapor temperature. Then, it is supplied to the membrane separator 40. The pressure reducing means is not particularly limited, but a pressure regulating valve having a throttle valve is preferably used. In addition, it is important that this depressurization results in the condensation temperature of the mixed steam of alcohol and water being lower than the temperature of the mixed steam. Usually, the pressure is reduced to about 5 kPa or more, preferably 10 kPa or more, more preferably 10 to 500 kPa, and still more preferably about 10 to 300 kPa.
 本発明の特徴の一つは、蒸留塔によりアルコールと水との混合蒸気を発生させた後、蒸気温度を保持したまま減圧手段によって減圧した後に膜分離装置へ供給することにある。減圧する目的は、飽和状態の混合蒸気が膜分離装置内で凝縮しないように、混合蒸気の凝縮温度を混合蒸気の温度よりも十分に下げることにある。混合蒸気の凝縮温度が混合蒸気の温度が混合蒸気の温度よりも3℃以上、好ましくは5℃以上低くなるようにすることが好適である。なお、通常は10℃以下である。また、一度加熱して高圧にした混合蒸気を減圧するのは、その工程だけ見るとエネルギー効率が悪いが、工程全体ではエネルギー効率をよくすることが可能になる。 One of the features of the present invention is that after a mixed vapor of alcohol and water is generated by a distillation tower, the pressure is reduced by a pressure reducing means while maintaining the vapor temperature, and then supplied to the membrane separator. The purpose of reducing the pressure is to sufficiently reduce the condensation temperature of the mixed vapor to be lower than the temperature of the mixed vapor so that the saturated mixed vapor does not condense in the membrane separator. It is suitable that the condensation temperature of the mixed steam is 3 ° C. or more, preferably 5 ° C. or less lower than the temperature of the mixed steam. In addition, it is 10 degrees C or less normally. In addition, reducing the pressure of the mixed steam once heated to a high pressure is poor in energy efficiency only in the process, but it is possible to improve the energy efficiency in the whole process.
 蒸留塔20の操作圧力を150kPa(絶対圧)以上、好ましくは150~700kPa(絶対圧)にするのは、膜分離装置へ供給するアルコールと水との混合蒸気の圧力を高くして分離効率(精製効率)を高めるためである。150kPa(絶対圧)未満の圧力では膜分離装置40へ供給する混合蒸気の圧力が低くなりすぎて分離効率が低下するので好ましくない。一方、700kPa(絶対圧)を越える高圧になると、膜分離装置における分離効率は向上するが、蒸留装置や膜分離装置の耐圧性能が過度に必要になって、装置が大型化するなどの問題が生じるので必ずしも好適とは云えなくなる。 The operating pressure of the distillation column 20 is set to 150 kPa (absolute pressure) or more, preferably 150 to 700 kPa (absolute pressure), because the pressure of the mixed vapor of alcohol and water supplied to the membrane separator is increased to increase the separation efficiency ( This is to improve the purification efficiency. A pressure of less than 150 kPa (absolute pressure) is not preferable because the pressure of the mixed vapor supplied to the membrane separation device 40 becomes too low and the separation efficiency is lowered. On the other hand, when the pressure exceeds 700 kPa (absolute pressure), the separation efficiency in the membrane separation apparatus is improved, but the pressure resistance performance of the distillation apparatus and the membrane separation apparatus is excessively required, and there is a problem that the apparatus is enlarged. Since it occurs, it is not necessarily preferable.
 蒸留塔20は棚段式、充填塔等、通常の高圧の蒸留操作に適したものであれば特に限定されない。蒸留塔の中段にアルコール水溶液を供給するための供給部が配置される。塔底液の一部はリボイラー21によって加熱されて蒸気となり、塔内を流下する液体と熱交換及び物質交換をしながら塔内を上昇する。そして塔頂或いは濃縮段からアルコール濃度が濃縮されたアルコールと水の混合蒸気が留出する。 The distillation column 20 is not particularly limited as long as it is suitable for a normal high-pressure distillation operation, such as a plate type or a packed column. A supply unit for supplying an aqueous alcohol solution is disposed in the middle stage of the distillation column. A part of the column bottom liquid is heated by the reboiler 21 to become vapor, and rises in the column while exchanging heat and materials with the liquid flowing down in the column. And the mixed vapor | steam of alcohol and water with which the alcohol concentration was concentrated distills from a tower top or a concentration stage.
 この蒸留塔20により留出させたアルコールと水との混合蒸気の一部は、凝縮器22によって冷却されて凝縮液となり、凝縮液槽23を介して例えば凝縮液ポンプにより蒸留塔20の塔頂或いは濃縮段へ還流される。また、蒸留塔20により留出させたアルコールと水の混合蒸気のうちの残りは減圧手段24によって減圧された後、膜分離装置40へ供給される。 A part of the mixed vapor of alcohol and water distilled by the distillation column 20 is cooled by the condenser 22 to become a condensate, and passes through the condensate tank 23 by, for example, a condensate pump. Alternatively, it is refluxed to the concentration stage. The remainder of the mixed steam of alcohol and water distilled by the distillation tower 20 is decompressed by the decompression means 24 and then supplied to the membrane separation device 40.
 蒸留塔20の塔底液を加熱するリボイラー21は、外部から供給したスチームの凝縮熱を用いることもできる。 The reboiler 21 that heats the bottom liquid of the distillation column 20 can also use the condensation heat of steam supplied from the outside.
 蒸留塔20の操作圧力は、蒸留塔の塔底液を加熱するスチームの流量を調節(制限)することによって好適に制御される。 The operating pressure of the distillation column 20 is suitably controlled by adjusting (limiting) the flow rate of steam for heating the bottom liquid of the distillation column.
 蒸留塔20では、塔頂或いは濃縮段から留出したアルコールと水の混合蒸気のうち、凝縮液として蒸留塔20へ還流する割合と蒸留塔の段数を調節することによって、塔頂或いは濃縮段から留出するアルコールと水の混合蒸気のアルコール濃度を好適に制御することができる。 In the distillation column 20, by adjusting the ratio of the mixed vapor of alcohol and water distilled from the top of the column or the concentration stage to the distillation column 20 as a condensate and the number of stages of the distillation column, The alcohol concentration of the mixed steam of alcohol and water to be distilled can be suitably controlled.
 還流の割合が高くなると蒸留塔20における処理量が少なくなって、処理速度が遅くなり、エネルギー消費量が多くなるなど効率の低下を招くので、還流する凝縮液の割合は比較的低めであることが好ましい。好ましくは凝縮液の50%未満、より好ましくは40%未満、更に好ましくは20%未満、特に好ましくは10%未満である。 If the ratio of reflux increases, the throughput in the distillation column 20 decreases, the processing speed decreases, and the efficiency is reduced, for example, the energy consumption increases. Therefore, the ratio of the condensed liquid to be refluxed is relatively low. Is preferred. Preferably it is less than 50% of the condensate, more preferably less than 40%, even more preferably less than 20%, particularly preferably less than 10%.
 本発明において、塔頂或いは濃縮段から留出するアルコールと水の混合蒸気のアルコール濃度は、特に限定されることはなく、例えば50質量%~共沸組成(または96質量%)までのいずれの濃度であってもよいが、エネルギー消費量を制御する上では、より好ましくは55質量%~90質量%、さらに好ましくは60質量%~90質量%、特に好ましくは65質量%~85質量%である。 In the present invention, the alcohol concentration of the mixed vapor of alcohol and water distilled from the top of the column or from the concentrating stage is not particularly limited. For example, any alcohol concentration from 50% by mass to azeotropic composition (or 96% by mass) can be used. In terms of controlling the energy consumption, it is more preferably 55% to 90% by weight, further preferably 60% to 90% by weight, and particularly preferably 65% to 85% by weight. is there.
 凝縮器22の凝縮熱は、蒸留塔20に供給されるアルコール水溶液の予備加熱や、もろみ塔10のリボイラー加熱などに利用して好適に回収され、必要な還流液量を凝縮しきれない場合は、補助凝縮器を追加して冷却水により凝縮することが好ましい。蒸留塔20に供給されるアルコール水溶液はその沸点近くまで予備加熱するのが好ましい。その際、蒸留塔20の還流液や膜分離装置40で精製された無水アルコールの熱を有効に利用することが好ましい。 The condensation heat of the condenser 22 is preferably recovered by using the preheating of the aqueous alcohol solution supplied to the distillation column 20 or the reboiler heating of the mash column 10 and the necessary amount of reflux liquid cannot be condensed. It is preferable to add an auxiliary condenser and condense with cooling water. The aqueous alcohol solution supplied to the distillation column 20 is preferably preheated to near its boiling point. At that time, it is preferable to effectively use the heat of the anhydrous alcohol purified by the reflux liquid of the distillation column 20 or the membrane separation device 40.
 膜分離装置40に供給されたアルコールと水との混合蒸気は選択透過性を有する分離膜に接触しながら流れる。その際、水蒸気は分離膜を選択的に透過するので、分離膜の透過側では、主に水蒸気からなりアルコール濃度が低下した混合蒸気が回収される。この混合蒸気のアルコール濃度は数~数質量%程度(例えばアルコール20質量%)であり、アルコールの回収率を高めるために蒸留塔20へ循環供給されることが好適である。一方、分離膜の非透過側では水蒸気が除かれるので高純度の無水アルコールを回収することができる。 The mixed vapor of alcohol and water supplied to the membrane separation device 40 flows while in contact with the selectively permeable separation membrane. At that time, since the water vapor selectively permeates the separation membrane, the mixed vapor having a reduced alcohol concentration mainly composed of water vapor is recovered on the permeation side of the separation membrane. The alcohol concentration of the mixed steam is about several to several mass% (for example, 20 mass% of alcohol), and is preferably circulated and supplied to the distillation column 20 in order to increase the alcohol recovery rate. On the other hand, since water vapor is removed on the non-permeating side of the separation membrane, high-purity anhydrous alcohol can be recovered.
 一般に、水蒸気が分離膜を透過する透過量は、膜を挟んだ両側の水蒸気の分圧差に比例している。このため、膜を挟んだ両側の水蒸気の分圧差を大きくすることによって分離効率(精製効率)を高めることができる。本発明では、150kPa(絶対圧)以上、好ましくは150~700kPa(絶対圧)の高圧のアルコールと水との混合蒸気を膜分離装置へ供給している。同時に、分離膜の透過側を減圧にすることも好適である。具体的には、分離膜の透過側の空間を熱交換器(コンデンサー)41を介して真空ポンプ42に接続して減圧にするとともに、分離膜を透過した透過蒸気をコンデンサーで凝縮して凝縮液とする。この凝縮液は好ましくは凝縮液槽43に溜められ次いで蒸留塔20へ循環供給されるのが好ましい。 Generally, the permeation amount of water vapor that permeates the separation membrane is proportional to the partial pressure difference between the water vapors on both sides of the membrane. For this reason, separation efficiency (purification efficiency) can be increased by increasing the partial pressure difference between the water vapors on both sides of the membrane. In the present invention, a high-pressure mixed vapor of alcohol and water of 150 kPa (absolute pressure) or higher, preferably 150 to 700 kPa (absolute pressure) is supplied to the membrane separator. At the same time, it is also preferable to reduce the pressure on the permeate side of the separation membrane. Specifically, the space on the permeate side of the separation membrane is connected to a vacuum pump 42 via a heat exchanger (condenser) 41 to reduce the pressure, and the permeated vapor that has permeated the separation membrane is condensed in the condenser to be condensed. And This condensate is preferably stored in the condensate tank 43 and then circulated and supplied to the distillation column 20.
 膜分離装置40としては、水蒸気とエタノール蒸気との混合蒸気から水蒸気を分離膜で分離できるものであれば限定されるものではない。また、分離膜もアルコール蒸気に対して水蒸気を選択的に透過するものであれば特に限定されない。ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリスルフォン、高分子量ポリビニルアルコールなどのポリマーからなるものでも、ゼオライト、ジルコニア等の無機物からなるものでも構わない。そして、膜分離装置の形態も、例えば非対称ポリイミド中空糸膜からなる中空糸分離膜モジュール、多孔質からなる管状の支持体にゼオライトを成膜した管状分離膜エレメントを具備するシェルアンドチューブ型モジュールなどの従来公知のものなどを好適に用いることができる。これらの例としては、限定するものではないが、ポリイミド中空糸膜を用いた特開2000-262838号公報、特開2001-62257号公報など、ゼオライト膜を用いた特開2003-93844号公報、特開2006-263574号公報、特開2007-203210号公報などに記載されたものを好適に挙げることができる。 The membrane separation device 40 is not limited as long as it can separate water vapor from the mixed vapor of water vapor and ethanol vapor with a separation membrane. The separation membrane is not particularly limited as long as it selectively permeates water vapor with respect to alcohol vapor. It may be made of a polymer such as polyimide, polyetherimide, polycarbonate, polysulfone or high molecular weight polyvinyl alcohol, or may be made of an inorganic material such as zeolite or zirconia. And the form of the membrane separation device is also a hollow fiber separation membrane module made of, for example, an asymmetric polyimide hollow fiber membrane, a shell-and-tube module comprising a tubular separation membrane element in which a zeolite is formed on a porous tubular support, etc. The conventionally known ones can be suitably used. Examples of these include, but are not limited to, Japanese Unexamined Patent Application Publication Nos. 2000-262828 and 2001-62257 using polyimide hollow fiber membranes, and Japanese Unexamined Patent Application Publication No. 2003-93844 using zeolite membranes. Preferred examples include those described in JP-A-2006-263574, JP-A-2007-203210 and the like.
 分離膜の透過性能としては、使用時において、好ましくは水蒸気透過速度(P’H2O)が0.5×10-3cm(STP)/cm・sec・cmHg以上、より好ましくは1.0×10-3cm(STP)/cm・sec・cmHg以上であって、水蒸気透過速度(P’H2O)とアルコール透過速度(P’alcohol)との比(P’H2O/P’alcohol)が好ましくは50以上、より好ましくは100以上のものが好適である。 As the permeation performance of the separation membrane, the water vapor transmission rate (P ′ H 2 O 2 ) is preferably 0.5 × 10 −3 cm 3 (STP) / cm 2 · sec · cm Hg or more, more preferably 1.0 in use. × 10 −3 cm 3 (STP) / cm 2 · sec · cmHg or more, ratio of water vapor transmission rate (P ′ H 2 O ) to alcohol transmission rate (P ′ alcohol ) (P ′ H 2 O / P ′ alcohol ) Is preferably 50 or more, more preferably 100 or more.
 次の、本発明に係る別の実施態様の一例の概略を示す図2に基づいて説明する。 Next, a description will be given based on FIG. 2 showing an outline of an example of another embodiment according to the present invention.
 図1における蒸留塔の役割は、もろみ塔からのアルコール濃度が50質量%未満のアルコール水溶液を、加圧蒸留して、アルコールを濃縮するとともに150kPa(絶対圧)以上の高圧のアルコールと水との混合蒸気を生成することにあった。一方、図2の態様の特徴は、蒸留塔は50~150kPa程度の低圧、好ましくは大気圧で操作し、ここで得られたアルコールと水との混合蒸気を凝縮させた凝縮液を蒸発器30で蒸発させて、150kPa(絶対圧)以上の高圧のアルコールと水との混合蒸気を発生させることにある。以下、図2の特徴である蒸留塔と蒸発器に関して説明する。その他の点は図1に関して説明したとおりである。 The role of the distillation column in FIG. 1 is that an aqueous alcohol solution having an alcohol concentration of less than 50% by mass from the mash column is distilled under pressure to concentrate the alcohol, and at the same time, the high-pressure alcohol of 150 kPa (absolute pressure) or higher and water It was to produce mixed steam. On the other hand, the embodiment shown in FIG. 2 is characterized in that the distillation column is operated at a low pressure of about 50 to 150 kPa, preferably at atmospheric pressure, and the condensate obtained by condensing the mixed vapor of alcohol and water obtained here is evaporated. To generate a mixed vapor of alcohol and water having a high pressure of 150 kPa (absolute pressure) or higher. Hereinafter, the distillation tower and the evaporator which are the features of FIG. 2 will be described. The other points are as described with reference to FIG.
 図2において、蒸留塔20の操作圧力は好ましくは50~150kPaの範囲であり、通常は大気圧である。 In FIG. 2, the operating pressure of the distillation column 20 is preferably in the range of 50 to 150 kPa, and is usually atmospheric pressure.
 蒸留塔20の塔底液を加熱するリボイラー21は、外部から供給したスチームの凝縮熱を用いることもできるが、膜分離装置40の非透過蒸気の凝縮熱を例えば予熱として好適に利用することができる。 The reboiler 21 that heats the bottom liquid of the distillation column 20 can use the condensation heat of steam supplied from the outside, but the condensation heat of the non-permeated vapor of the membrane separation device 40 can be suitably used as preheating, for example. it can.
 凝縮器22は蒸留塔20の塔頂或いは濃縮段から留出したアルコールと水の混合蒸気を冷却して凝縮液とする。凝縮液は凝縮液槽23に一旦溜めても構わない。この凝縮液の一部は、例えば凝縮液ポンプにより塔頂或いは濃縮段へ還流され、残りが蒸発器30に送られる。凝縮液のうちの蒸留塔20へ還流する割合と蒸留塔の段数によって、蒸留塔の塔頂或いは濃縮段で得られるアルコールと水との混合蒸気のアルコール濃度を好適に制御できる。本発明においては、凝縮液のうちの蒸留塔20へ還流する割合と蒸留塔の段数を調節することによって、蒸留塔20の塔頂或いは濃縮段で得られるアルコールと水との混合蒸気のアルコール濃度が55質量%以上になるように制御する。 The condenser 22 cools the mixed vapor of alcohol and water distilled from the top of the distillation column 20 or the concentration stage to form a condensate. The condensate may be temporarily stored in the condensate tank 23. A part of this condensate is refluxed to the top of the column or the concentration stage by, for example, a condensate pump, and the remainder is sent to the evaporator 30. The alcohol concentration of the mixed vapor of alcohol and water obtained at the top of the distillation column or at the concentration stage can be suitably controlled by the ratio of the condensate refluxed to the distillation column 20 and the number of stages of the distillation column. In the present invention, by adjusting the ratio of the condensate refluxed to the distillation column 20 and the number of stages of the distillation column, the alcohol concentration of the mixed steam of alcohol and water obtained at the top of the distillation column 20 or at the concentration stage. Is controlled to be 55% by mass or more.
 還流の割合が高くなると蒸留塔20における処理量が少なくなって、処理速度が遅くなり、エネルギー消費量が多くなるなど効率の低下を招くので、還流する凝縮液の割合は比較的低めであることが好ましい。好ましくは凝縮液の50%未満、より好ましくは35%未満、更に好ましくは20%未満、特に好ましくは10%未満である。 If the ratio of reflux increases, the throughput in the distillation column 20 decreases, the processing speed decreases, and the efficiency is reduced, for example, the energy consumption increases. Therefore, the ratio of the condensed liquid to be refluxed is relatively low. Is preferred. Preferably it is less than 50% of the condensate, more preferably less than 35%, even more preferably less than 20%, particularly preferably less than 10%.
 凝縮器22の凝縮熱は、蒸留塔に供給されるアルコール水溶液の予備加熱に利用してもよい。供給されるアルコール水溶液はその沸点近くまで予備加熱するのが好ましい。その際、凝縮器22で凝縮しきれない蒸気は、補助凝縮器で冷却水により凝縮することが好ましい。 The condensation heat of the condenser 22 may be used for preheating the aqueous alcohol solution supplied to the distillation column. The supplied aqueous alcohol solution is preferably preheated to near its boiling point. At that time, it is preferable that the steam that cannot be condensed by the condenser 22 is condensed by cooling water by the auxiliary condenser.
 本発明においては、蒸留塔20から凝縮器22を介してアルコール濃度が55質量%以上のアルコール水溶液が蒸発器30へ供給される。蒸発器30の役割は、前記アルコール水溶液を加熱して全量蒸発させてアルコールと水との混合蒸気として膜分離装置40へ供給することである。蒸発器30は十分な加熱機能を備え、得られるアルコールと水の混合蒸気の圧力が150kPa(絶対圧)以上、好ましくは200kPa(絶対圧)以上の比較的高い圧力で操作できるものが好適である。なお、圧力の上限は通常は700kPa(絶対圧)程度以下である。 In the present invention, an aqueous alcohol solution having an alcohol concentration of 55% by mass or more is supplied from the distillation column 20 through the condenser 22 to the evaporator 30. The role of the evaporator 30 is to heat the alcohol aqueous solution to evaporate the whole amount and supply it to the membrane separation device 40 as a mixed vapor of alcohol and water. The evaporator 30 is provided with a sufficient heating function, and can be operated at a relatively high pressure of 150 kPa (absolute pressure) or higher, preferably 200 kPa (absolute pressure) or higher, in the pressure of the mixed alcohol and water vapor obtained. . The upper limit of the pressure is usually about 700 kPa (absolute pressure) or less.
 なお、蒸発器30の操作圧力は、蒸発器に加える熱量(スチーム量)によって制御されるが、その際蒸発器から留出する混合蒸気の流量を制御してもよい。さらに混合蒸気の圧力は蒸発器と膜分離装置の間の減圧手段および膜分離装置40の非透過側を流れる蒸気の流量を調節(制限)することによって好適に行うことができる。そして、蒸発器30内の蒸発温度は蒸留塔20の塔底の温度より5℃程度以上高くなるように蒸発器内の圧力を調節するのが好ましい。これにより膜分離装置40の非透過蒸気を蒸留塔20のリボイラ-の熱源として利用することが可能になる。 The operating pressure of the evaporator 30 is controlled by the amount of heat (steam amount) applied to the evaporator, but at that time, the flow rate of the mixed vapor distilled from the evaporator may be controlled. Further, the pressure of the mixed vapor can be suitably adjusted by adjusting (restricting) the flow rate of the vapor flowing through the pressure reducing means between the evaporator and the membrane separator and the non-permeate side of the membrane separator 40. And it is preferable to adjust the pressure in an evaporator so that the evaporation temperature in the evaporator 30 may become about 5 degreeC or more higher than the temperature of the tower bottom of the distillation column 20. FIG. This makes it possible to use the non-permeate vapor of the membrane separator 40 as a heat source for the reboiler of the distillation column 20.
 蒸発器30で得られたアルコールと水の混合蒸気は、全量が減圧手段で減圧された後、膜分離装置40へ供給されて精製処理が行われる。減圧手段は、特に限定されないが絞り弁を有する圧力調整弁が好適に使用される。また、この減圧は、その結果としてアルコールと水との混合蒸気の凝縮点が減圧後の混合蒸気の温度よりも低くなるようにすることが重要である。通常は5kPa以上、好ましくは10kPa以上、より好ましくは10~500kPa、さらに好ましくは10~300kPa程度減圧する。 The total amount of the mixed vapor of alcohol and water obtained in the evaporator 30 is reduced in pressure by the decompression means, and then supplied to the membrane separation device 40 for purification. The pressure reducing means is not particularly limited, but a pressure regulating valve having a throttle valve is preferably used. In addition, it is important that this depressurization results in that the condensation point of the mixed steam of alcohol and water is lower than the temperature of the mixed steam after depressurization. Usually, the pressure is reduced to about 5 kPa or more, preferably 10 kPa or more, more preferably 10 to 500 kPa, and still more preferably about 10 to 300 kPa.
 以下図1に関して説明したとおりであるが、本発明の特徴の一つは、蒸発器により高圧のアルコールと水との混合蒸気を発生させた後、混合蒸気の温度を保持したままで減圧手段によって減圧した後に膜分離装置へ供給することにある。減圧する目的は、飽和状態の混合蒸気が膜分離装置内で凝縮しないように、混合蒸気の凝縮温度を混合蒸気の温度よりも十分に下げることにある。混合蒸気の凝縮温度が混合蒸気の温度よりも3℃以上、好ましくは5℃以上低くなるようにすることが好適である。なお、通常は10℃以下である。また、一度加熱して高圧にした混合蒸気を減圧するのは、その工程だけ見るとエネルギー効率が悪いが、工程全体ではエネルギー効率をよくすることが可能になる。 As described with reference to FIG. 1 below, one of the features of the present invention is that after the high-pressure alcohol / water mixed vapor is generated by the evaporator, the pressure of the mixed vapor is maintained while maintaining the temperature of the mixed vapor. It is to supply to the membrane separator after decompressing. The purpose of reducing the pressure is to sufficiently reduce the condensation temperature of the mixed vapor to be lower than the temperature of the mixed vapor so that the saturated mixed vapor does not condense in the membrane separator. It is suitable that the condensation temperature of the mixed steam is 3 ° C. or more, preferably 5 ° C. or more lower than the temperature of the mixed steam. In addition, it is 10 degrees C or less normally. In addition, reducing the pressure of the mixed steam once heated to a high pressure is poor in energy efficiency only in the process, but it is possible to improve the energy efficiency in the whole process.
 図3は、基本的には図1と同じ本発明に係る実施態様の別の一例の概略を示すものである。 FIG. 3 shows an outline of another example of the embodiment according to the present invention which is basically the same as FIG.
 すなわち、もろみ塔10から排出される塔底液はもろみ塔10へ供給される醗酵アルコール水溶液の予備加熱に用いられ、蒸留塔20の還流蒸気は膜分離装置40の透過蒸気の凝縮液をもろみ塔10へ循環供給する際の予備加熱に用いられ、膜分離装置40の非透過蒸気(無水アルコール蒸気)は、膜分離装置40の透過蒸気の凝縮液を蒸留塔20へ循環供給する際の予備加熱、及びもろみ塔10の塔底液の一部をもろみ塔へ循環させる際の塔底液の加熱に用いられて、それぞれ好適に熱回収されている。 That is, the bottom liquid discharged from the mash tower 10 is used for preheating the aqueous fermentation alcohol solution supplied to the mash tower 10, and the reflux steam of the distillation tower 20 is obtained by condensing the permeate condensate of the membrane separation apparatus 40. The non-permeated vapor (anhydrous alcohol vapor) of the membrane separation device 40 is preheated when the condensed liquid of the permeated vapor of the membrane separation device 40 is circulated and supplied to the distillation column 20. , And a portion of the bottom liquid of the moromi tower 10 is used for heating the bottom liquid when it is circulated to the mash tower, and each is suitably heat-recovered.
 本発明において、もろみ塔と蒸留塔(及び蒸発器)と膜分離装置で発生した混合蒸気の熱エネルギーは、前述のように系内の別の工程に回収されることが好ましいが、また系外の全く別の熱工程で回収されても構わない。 In the present invention, the thermal energy of the mixed steam generated in the mash column, distillation column (and evaporator) and membrane separation apparatus is preferably recovered in another process in the system as described above. It may be recovered in a completely different heating process.
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
〔実施例1〕
 醗酵槽で得られたエタノール濃度が7.3質量%の醗酵エタノール水溶液を1時間当り72.7t、図3に概略を示した装置を用いて精製処理し、99.8質量%の無水エタノールを1時間当り5t得ることを試みた。
(工程1)
 エタノール濃度が7.3質量%の醗酵エタノール水溶液を予備加熱器で予熱し、送液ポンプで理論段数が5段相当のもろみ塔へ72.7t/時間の流量で供給する。このもろみ塔の塔底には、供給された醗酵エタノール水溶液を蒸発させて蒸留処理を行うために必要な水蒸気(スチーム1)を直接吹き込む。もろみ塔内で生成し塔頂から送出したエタノールと水との混合蒸気を含む留出物は凝縮器で全量凝縮する。凝縮液の一部はもろみ塔へ還流し、残りの凝縮液は蒸留塔へ供給する。この還流量は、もろみ塔の塔頂のエタノール濃度が39質量%になるように調節する。
(工程2)
 送液ポンプによって、1時間当り13.3tのエタノール濃度が39質量%のエタノール水溶液を理論段数6段相当の蒸留塔へ供給する。この蒸留塔の塔底にはリボイラーが備えられ、塔底から抜き出された塔底液は、スチーム2が供給されるリボイラーによって混合蒸気にされ蒸留塔へ循環供給する。同時に塔底から抜き出された塔底液は1時間当り8.3tの流量でもろみ塔へ循環供給する。塔底液はエタノール濃度が2.5質量%以下程度に保持する。
[Example 1]
The fermented ethanol aqueous solution with the ethanol concentration of 7.3 mass% obtained in the fermenter was refined using 72.7 tons per hour using the apparatus schematically shown in Fig. 3, and 99.8 mass% absolute ethanol was purified. An attempt was made to obtain 5 tons per hour.
(Process 1)
A fermented ethanol aqueous solution having an ethanol concentration of 7.3% by mass is preheated with a preheater, and is fed at a flow rate of 72.7 t / hour to a mash tower having a theoretical plate number equivalent to 5 with a liquid feed pump. Water vapor (steam 1) necessary for carrying out a distillation process by evaporating the supplied aqueous solution of fermentation ethanol is directly blown into the bottom of the mash column. The distillate containing the mixed vapor of ethanol and water produced in the moromi tower and sent from the top of the tower is condensed by the condenser. A part of the condensate is refluxed to the mash column, and the remaining condensate is supplied to the distillation column. The reflux amount is adjusted so that the ethanol concentration at the top of the mash column is 39% by mass.
(Process 2)
An ethanol aqueous solution having an ethanol concentration of 13.3 t per hour and an ethanol concentration of 39% by mass is supplied to a distillation column corresponding to 6 theoretical plates by a liquid feed pump. A reboiler is provided at the bottom of the distillation column, and the bottom liquid extracted from the bottom is converted to a mixed vapor by the reboiler supplied with steam 2 and circulated and supplied to the distillation column. At the same time, the column bottom liquid extracted from the column bottom is circulated and supplied to the mash column at a flow rate of 8.3 t per hour. The column bottom liquid is kept at an ethanol concentration of about 2.5% by mass or less.
 蒸留塔により留出させ塔頂から送出するエタノールと水との混合蒸気は、蒸留塔の加熱量を調節することによって、温度が135℃に調節される。そして、前記混合蒸気の一部は凝縮器によって凝縮されて蒸留塔へ還流される。この還流量を調節することによって、蒸留塔の塔頂のエタノールと水との混合蒸気のエタノール濃度を75質量%に調節する。
(工程3)
凝縮されなかった残りのエタノールと水との混合蒸気は、蒸気温度を保持したまま圧力調整弁(絞り弁)によって、551kPaから300kPa(ゲージ圧)まで減圧して、膜分離装置へ供給する。
The temperature of the mixed vapor of ethanol and water distilled from the distillation tower and sent from the top of the tower is adjusted to 135 ° C. by adjusting the heating amount of the distillation tower. A part of the mixed vapor is condensed by a condenser and refluxed to the distillation column. By adjusting the reflux amount, the ethanol concentration of the mixed vapor of ethanol and water at the top of the distillation column is adjusted to 75% by mass.
(Process 3)
The remaining mixed vapor of ethanol and water that has not been condensed is reduced from 551 kPa to 300 kPa (gauge pressure) by a pressure adjusting valve (throttle valve) while maintaining the vapor temperature, and supplied to the membrane separation device.
 膜分離装置へ供給されたエタノールと水との混合蒸気は1時間当り10.4tである。
(工程4)
 膜分離装置としては、特開2000-262838号公報に記載されたようなモジュールであって、135℃における水蒸気透過速度(P’H2O)が1.2×10-3cm(STP)/cm・sec・cmHg、水蒸気透過速度(P’H2O)とエタノール透過速度(P’EtOH)との比(P’H2O/P’EtOH)が143の、外径が500μm、内径が310μmのポリイミド非対称中空糸分離膜からなる有効膜面積が125mのモジュールを、26本収納したものを用いる。
The mixed vapor of ethanol and water supplied to the membrane separator is 10.4 t per hour.
(Process 4)
The membrane separation device is a module as described in Japanese Patent Application Laid-Open No. 2000-262838, and has a water vapor transmission rate (P ′ H2O ) at 135 ° C. of 1.2 × 10 −3 cm 3 (STP) / cm. 2 · sec · cmHg, the ratio of the water vapor transmission rate 'as (H2O ethanol permeation rate (P P)' and EtOH) (P 'H2O / P ' EtOH) 143, an outer diameter of 500 [mu] m, inner diameter of 310μm polyimide asymmetric A module containing 26 modules each having an effective membrane area of 125 m 2 made of a hollow fiber separation membrane is used.
 膜分離装置の透過側には凝縮器(コンデンサー)を介して真空ポンプが備えられ、12kPa(絶対圧)に減圧される。分離膜を透過した蒸気はコンデンサーで全量凝縮して、分離膜の透過側の減圧度が保たれるように構成する。また、膜分離装置から排出される非透過蒸気の一部は、膜分離装置の分離効率を高めるためのパージガスとして膜分離装置の透過側へ供給されるように構成する。 On the permeate side of the membrane separator, a vacuum pump is provided via a condenser, and the pressure is reduced to 12 kPa (absolute pressure). The vapor that has permeated the separation membrane is completely condensed by a condenser so that the degree of vacuum on the permeate side of the separation membrane is maintained. In addition, a part of the non-permeated vapor discharged from the membrane separation device is configured to be supplied to the permeation side of the membrane separation device as a purge gas for increasing the separation efficiency of the membrane separation device.
 膜分離装置の分離膜の透過側から回収した蒸気(透過蒸気とパージガスとして供給された蒸気)は全量凝縮した後、非透過蒸気によって予備加熱し、蒸留塔へ循環供給する。また、膜分離装置の分離膜の非透過側から回収した非透過蒸気は、前記予備加熱に加えて、もろみ塔の塔低液をもろみ塔へ循環供給する際の塔底液の加熱に用いられて熱回収された後、冷却されてエタノールの濃度が99.8質量%の無水エタノールとして製品タンクへ、1時間当り5tで回収する。 Vapor recovered from the permeation side of the separation membrane of the membrane separation apparatus (permeated vapor and vapor supplied as purge gas) is condensed, preheated with non-permeated vapor, and circulated and supplied to the distillation column. Further, the non-permeate vapor recovered from the non-permeate side of the separation membrane of the membrane separator is used for heating the bottom liquid when circulating the low column liquid of the mash tower to the mash tower in addition to the preliminary heating. After being recovered by heat, it is cooled and recovered as absolute ethanol having an ethanol concentration of 99.8% by mass in a product tank at 5 tons per hour.
 このような方法で99.8質量%の無水エタノールを得たときに、99.8質量%の無水エタノール1kgを得るために必要な熱量を、全工程で使用するスチームの合計量(スチーム1~2)から換算した。結果を表1に示した。 When 99.8% by mass of absolute ethanol was obtained by such a method, the amount of heat necessary to obtain 1kg of 99.8% by mass of absolute ethanol was determined as the total amount of steam used in all steps (steam 1 to Converted from 2). The results are shown in Table 1.
〔参考例1〕
 実施例1において、工程2の操作を以下のように変更した以外は実施例と同様に操作したときの結果を表1に示した。
(工程2)
 送液ポンプによって、1時間当り13.3tのエタノール濃度が39質量%のエタノール水溶液を理論段数6段相当の蒸留塔へ供給する。この蒸留塔の塔底にはリボイラーが備えられ、塔底から抜き出された塔底液は、スチーム2が供給されるリボイラーによって混合蒸気にされ蒸留塔へ循環供給する。同時に塔底から抜き出された塔底液は1時間当り8.3tの流量でもろみ塔へ循環供給する。塔底液はエタノール濃度が2.5質量%以下程度に保持する。
[Reference Example 1]
Table 1 shows the results when the same operation as in the example was performed except that the operation in the step 2 was changed as follows in the example 1.
(Process 2)
An ethanol aqueous solution having an ethanol concentration of 13.3 t per hour and an ethanol concentration of 39% by mass is supplied to a distillation column corresponding to 6 theoretical plates by a liquid feed pump. A reboiler is provided at the bottom of the distillation column, and the bottom liquid extracted from the bottom is converted to a mixed vapor by the reboiler supplied with steam 2 and circulated and supplied to the distillation column. At the same time, the column bottom liquid extracted from the column bottom is circulated and supplied to the mash column at a flow rate of 8.3 t per hour. The column bottom liquid is kept at an ethanol concentration of about 2.5% by mass or less.
 蒸留塔内で留出し塔頂から送出するエタノールと水との混合蒸気は、膜分離装置40の非透過側の蒸気が膜分離膜装置の排出口から排出される流量を調節することによって、圧力を300kPa(ゲージ圧)に調節する。そして、前記混合蒸気の一部は凝縮器によって凝縮されて蒸留塔へ還流される。この還流量を調節することによって、蒸留塔の塔頂のエタノールと水との混合蒸気のエタノール濃度を75質量%に調節する。凝縮されなかった残りのエタノールと水との混合蒸気は、過熱器(スチーム3)によって135℃に過熱して、膜分離装置へ供給する。 The mixed vapor of ethanol and water sent from the top of the distillation column in the distillation column is adjusted by adjusting the flow rate at which the non-permeate side vapor of the membrane separation device 40 is discharged from the outlet of the membrane separation membrane device. Is adjusted to 300 kPa (gauge pressure). A part of the mixed vapor is condensed by a condenser and refluxed to the distillation column. By adjusting the reflux amount, the ethanol concentration of the mixed vapor of ethanol and water at the top of the distillation column is adjusted to 75% by mass. The remaining mixed vapor of ethanol and water that has not been condensed is heated to 135 ° C. by a superheater (steam 3) and supplied to the membrane separation apparatus.
 膜分離装置へ供給されたエタノールと水との混合蒸気は1時間当り10.4tである。 The mixed steam of ethanol and water supplied to the membrane separator is 10.4 t per hour.
〔実施例2~7〕
 表1に示した条件を採用したこと以外は、実施例1と同様の操作によって、99.8質量%の無水エタノールを1時間当り5t得ることを試みた。
[Examples 2 to 7]
Except that the conditions shown in Table 1 were adopted, an attempt was made to obtain 9 tons of absolute ethanol at 5 t / hour by the same operation as in Example 1.
 結果を表1に示した。 The results are shown in Table 1.
〔参考例2、3〕
 表1に示した条件を採用したこと以外は、参考例1と同様に操作したときの結果を表1に示した。
[Reference Examples 2 and 3]
Table 1 shows the results when operating in the same manner as in Reference Example 1 except that the conditions shown in Table 1 were adopted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例は工程全体でみたときに極めてエネルギー効率が高い。 As is apparent from Table 1, the examples are extremely energy efficient when viewed as a whole process.
 本発明によって、(1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水の混合蒸気を含む留出物を留出させ、この留出物またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給し、(2)a)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、または、b)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液を蒸発器へ供給し、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を発生させて膜分離装置へ供給し、(3)前記a)において蒸留塔より留出させた混合蒸気または前記b)において蒸発器より発生させた混合蒸気を膜分離装置へ供給し、(4)膜分離装置でアルコールと水との混合蒸気から水蒸気を選択的に除去する醗酵アルコール水溶液から無水アルコールを得るための精製処理方法において、工程全体としてより簡便で且つ極めてエネルギー効率よく精製処理する方法を提供することができる。 According to the present invention, (1) a fermentation alcohol aqueous solution is supplied to a mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water. The first condensate obtained by condensing the distillate is supplied to the distillation column, and (2) a) the distillate or the first condensate is heated by the distillation column to distill the mixed vapor of alcohol and water. Or b) the distillate or the first condensate is heated by a distillation column to distill a mixed vapor of alcohol and water, and the second condensate obtained by condensing the mixed vapor is supplied to an evaporator. And the second condensate in the evaporator is heated to generate a mixed vapor of alcohol and water and supplied to the membrane separator. (3) Mixed vapor distilled from the distillation column in a) Or the mixed vapor generated from the evaporator in b) (4) In a purification method for obtaining anhydrous alcohol from a fermented alcohol aqueous solution in which water vapor is selectively removed from the mixed steam of alcohol and water with a membrane separator, the purification process method for obtaining anhydrous alcohol is simpler and extremely A method for energy efficient purification can be provided.

Claims (6)

  1. (工程1)醗酵アルコール水溶液をもろみ塔へ供給し、もろみ塔内の醗酵アルコール水溶液を加熱してアルコールと水の混合蒸気を含む留出物を留出させ、この留出物またはこの留出物を凝縮した第1の凝縮液を蒸留塔へ供給する工程と、
    (工程2)a)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させる工程、または、b)蒸留塔により前記留出物または第1の凝縮液を加熱してアルコールと水との混合蒸気を留出させ、この混合蒸気を凝縮した第2の凝縮液を蒸発器へ供給し、蒸発器内の第2の凝縮液を加熱してアルコールと水との混合蒸気を発生させる工程と、
    (工程3)前記a)において蒸留塔より留出させた混合蒸気または前記b)において蒸発器より発生させた混合蒸気を、減圧してから膜分離装置へ供給する工程と、
    (工程4)膜分離装置によりアルコールと水との混合蒸気から水蒸気を選択的に除去する工程
    とを有することを特徴とする醗酵アルコール水溶液から無水アルコールを得るための精製処理方法。
    (Step 1) A fermentation alcohol aqueous solution is supplied to the mash tower, the fermentation alcohol aqueous solution in the mash tower is heated to distill a distillate containing a mixed vapor of alcohol and water, and this distillate or this distillate. Supplying a first condensate condensed with a distillation column;
    (Step 2) a) a step of heating the distillate or the first condensate by a distillation column to distill a mixed vapor of alcohol and water, or b) the distillate or the first by a distillation column. The condensate is heated to distill the mixed vapor of alcohol and water, the second condensate condensed with the mixed vapor is supplied to the evaporator, and the second condensate in the evaporator is heated. Generating a mixed steam of alcohol and water;
    (Step 3) a step of supplying the mixed vapor distilled from the distillation column in the a) or the mixed vapor generated from the evaporator in the b) to the membrane separator after reducing the pressure;
    (Step 4) A purification treatment method for obtaining anhydrous alcohol from a fermented alcohol aqueous solution, comprising a step of selectively removing water vapor from a mixed steam of alcohol and water by a membrane separator.
  2. 工程2a)において蒸留塔より留出させる混合蒸気または工程2b)において蒸発器より発生させる混合蒸気の圧力が150kPa(絶対圧)以上であることを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the pressure of the mixed steam distilled from the distillation column in step 2a) or the mixed steam generated from the evaporator in step 2b) is 150 kPa (absolute pressure) or more.
  3. 工程3において、アルコールと水との混合蒸気の凝縮温度が該混合蒸気の温度よりも低くなるように減圧することを特徴とする請求項1または2に記載の方法。 3. The method according to claim 1, wherein in step 3, the pressure is reduced so that the condensation temperature of the mixed steam of alcohol and water is lower than the temperature of the mixed steam.
  4.  工程3において、圧力を5kPa以上減圧することを特徴とする請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein in step 3, the pressure is reduced to 5 kPa or more.
  5.  工程1においてもろみ塔から蒸留塔へ供給する留出物または第1の凝縮液のアルコール濃度を50質量%未満にすることを特徴とする請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the alcohol concentration of the distillate or the first condensate supplied from the mash column to the distillation column in step 1 is less than 50% by mass.
  6.  工程4において膜分離装置へ供給するアルコールと水との混合蒸気のアルコール濃度が55~90質量%であることを特徴とする、請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the alcohol concentration of the mixed steam of alcohol and water supplied to the membrane separator in step 4 is 55 to 90 mass%.
PCT/JP2009/056727 2008-03-31 2009-03-31 Purification treatment method for fermented alcohol WO2009123223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008092076 2008-03-31
JP2008-092076 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123223A1 true WO2009123223A1 (en) 2009-10-08

Family

ID=41135591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056727 WO2009123223A1 (en) 2008-03-31 2009-03-31 Purification treatment method for fermented alcohol

Country Status (2)

Country Link
JP (1) JP2009263356A (en)
WO (1) WO2009123223A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171417A (en) * 2013-03-07 2014-09-22 Mitsui Eng & Shipbuild Co Ltd Bioethanol recovering method and bioethanol recovering system
US9120724B2 (en) 2011-09-09 2015-09-01 Takara Shuzo Co., Ltd. Method for producing absolute alcohol and absolute alcohol
CN108905259A (en) * 2018-07-18 2018-11-30 芜湖青悠静谧环保科技有限公司 A kind of novel process unit for preparing alcohol fuel
JP2019509324A (en) * 2016-11-14 2019-04-04 エルジー・ケム・リミテッド Method for purifying phenol

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859827B2 (en) 2011-11-18 2014-10-14 Celanese International Corporation Esterifying acetic acid to produce ester feed for hydrogenolysis
US20120010445A1 (en) * 2010-07-09 2012-01-12 Celanese International Corporation Low Energy Alcohol Recovery Processes
US8748675B2 (en) 2011-06-16 2014-06-10 Celanese International Corporation Extractive distillation of crude alcohol product
US8829251B2 (en) 2011-11-18 2014-09-09 Celanese International Corporation Liquid esterification method to produce ester feed for hydrogenolysis
US8802901B2 (en) 2011-11-18 2014-08-12 Celanese International Corporation Continuous ethyl acetate production and hydrogenolysis thereof
US8853468B2 (en) 2011-11-18 2014-10-07 Celanese International Corporation Vapor esterification method to produce ester feed for hydrogenolysis
US8748673B2 (en) 2011-11-18 2014-06-10 Celanese International Corporation Process of recovery of ethanol from hydrogenolysis process
US9024089B2 (en) 2011-11-18 2015-05-05 Celanese International Corporation Esterification process using extractive separation to produce feed for hydrogenolysis
US8829249B2 (en) 2011-11-18 2014-09-09 Celanese International Corporation Integrated esterification and hydrogenolysis process for producing ethanol
WO2013078207A1 (en) 2011-11-22 2013-05-30 Celanese International Corporation Esterifying an ethanol and acetic acid mixture to produce an ester feed for hydrogenolysis
US9029614B2 (en) 2011-12-14 2015-05-12 Celanese International Corporation Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol
US8907139B2 (en) 2011-12-28 2014-12-09 Celanese International Corporation Process for acetal removal in the purification of a crude ethanol product
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
CN104039448B (en) 2012-01-06 2016-11-16 国际人造丝公司 There is the hydrogenation catalyst of Co-modified supports
US8957262B2 (en) 2012-11-20 2015-02-17 Celanese International Corporation Olefin hydration for hydrogenation processes
US9000237B2 (en) 2012-12-20 2015-04-07 Celanese International Corporation Ethanol refining process using intermediate reboiler
US8975451B2 (en) 2013-03-15 2015-03-10 Celanese International Corporation Single phase ester feed for hydrogenolysis
US8926718B2 (en) 2013-03-15 2015-01-06 Celanese International Corporation Thermochemically produced ethanol compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830301A (en) * 1981-08-13 1983-02-22 Kuraray Co Ltd Separation of liquid mixture
JP2003093827A (en) * 2001-09-26 2003-04-02 Tsukishima Kikai Co Ltd Azeotropic mixture separation method, azotropic mixture separator and distillation column
WO2004073841A1 (en) * 2003-02-21 2004-09-02 Bussan Nanotech Research Institute, Inc. Method for concentrating water-soluble organic material
JP2006263561A (en) * 2005-03-23 2006-10-05 Mitsui Eng & Shipbuild Co Ltd Distillation-membrane separation hybrid apparatus and separation method in which distillation and membrane separation are combined

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830301A (en) * 1981-08-13 1983-02-22 Kuraray Co Ltd Separation of liquid mixture
JP2003093827A (en) * 2001-09-26 2003-04-02 Tsukishima Kikai Co Ltd Azeotropic mixture separation method, azotropic mixture separator and distillation column
WO2004073841A1 (en) * 2003-02-21 2004-09-02 Bussan Nanotech Research Institute, Inc. Method for concentrating water-soluble organic material
JP2006263561A (en) * 2005-03-23 2006-10-05 Mitsui Eng & Shipbuild Co Ltd Distillation-membrane separation hybrid apparatus and separation method in which distillation and membrane separation are combined

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120724B2 (en) 2011-09-09 2015-09-01 Takara Shuzo Co., Ltd. Method for producing absolute alcohol and absolute alcohol
JP2014171417A (en) * 2013-03-07 2014-09-22 Mitsui Eng & Shipbuild Co Ltd Bioethanol recovering method and bioethanol recovering system
JP2019509324A (en) * 2016-11-14 2019-04-04 エルジー・ケム・リミテッド Method for purifying phenol
US10532968B2 (en) 2016-11-14 2020-01-14 Lg Chem, Ltd. Method for purifying phenol
CN108905259A (en) * 2018-07-18 2018-11-30 芜湖青悠静谧环保科技有限公司 A kind of novel process unit for preparing alcohol fuel

Also Published As

Publication number Publication date
JP2009263356A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
WO2009123223A1 (en) Purification treatment method for fermented alcohol
JP5593629B2 (en) Method for purifying fermentation alcohol
JP5369765B2 (en) Method for purifying fermentation alcohol
JP3764894B2 (en) Method for concentrating water-soluble organic substances
US8128787B2 (en) Membrane-augmented distillation with pressure change to separate solvents from water
US20130015052A1 (en) Liquid Separation by membrane assisted vapor stripping process
JP2006263561A (en) Distillation-membrane separation hybrid apparatus and separation method in which distillation and membrane separation are combined
JP2007275690A (en) Method for separating and recovering organic liquid from organic liquid aqueous solution
CN104557529B (en) A kind of process for purification for n-propyl acetate lactate synthesis and device
JP4831934B2 (en) Water-soluble organic substance concentrator
JP6196807B2 (en) Water-soluble organic substance concentration method and water-soluble organic substance concentration apparatus
JPH0463110A (en) Separation purification method of alcohol-containing reaction liquid
JP2020075864A (en) Method for producing alcohol
JP2003093827A (en) Azeotropic mixture separation method, azotropic mixture separator and distillation column
JP4360194B2 (en) Method and apparatus for concentrating water-soluble organic substances
JPS63175602A (en) Concentration of aqueous solution of organic substance
JP2009045573A (en) Purification method and system for fermented ethanol
JPS63278522A (en) Separation of volatile mixture
KR20180018955A (en) Process and apparatus for refining acetic acid
CN113543869A (en) Dehydration of glycol-containing mixtures with high water content using optimized pervaporation
JPS63258602A (en) Separation of volatile mixture
JPH0533978B2 (en)
JPH025441B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727442

Country of ref document: EP

Kind code of ref document: A1