WO2022191228A1 - Dehydration system and dehydration method - Google Patents

Dehydration system and dehydration method Download PDF

Info

Publication number
WO2022191228A1
WO2022191228A1 PCT/JP2022/010232 JP2022010232W WO2022191228A1 WO 2022191228 A1 WO2022191228 A1 WO 2022191228A1 JP 2022010232 W JP2022010232 W JP 2022010232W WO 2022191228 A1 WO2022191228 A1 WO 2022191228A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
distillation column
membrane module
module group
compressor unit
Prior art date
Application number
PCT/JP2022/010232
Other languages
French (fr)
Japanese (ja)
Inventor
和也 前川
秀人 日高
幸一 山崎
颯 藤井
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2022191228A1 publication Critical patent/WO2022191228A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/08Ethanol

Definitions

  • the present invention relates to a dehydration system and a dehydration method for separating water from a fluid containing water and water-soluble organic compounds.
  • Distillation is usually used as a method for removing only water from a mixture containing water-soluble organic compounds and water.
  • water-soluble organic compound has the property of azeotroping with water, water is inevitably contained in the overhead steam of the distillation column, and it has been difficult to improve the purity.
  • the gist of the present invention is as follows.
  • a dehydration system for separating water from a fluid to be treated containing water and water-soluble organic compounds a plurality of distillation columns including a first distillation column and a second distillation column; one or more separation membrane units; one or more compressor units;
  • the separation membrane unit has one or more separation membrane module groups,
  • the separation membrane module group has a separation membrane module comprising one or more separation membranes that selectively permeate water,
  • the compressor unit comprises one or more compressors;
  • the first distillation column, the second distillation column, one or more of the separation membrane module groups, and one or more of the compressor units are arranged in order, and one or more of the compressor units is connected to the outlet side of the first distillation column, dehydration system.
  • the separation membrane unit includes a first separation membrane module group and a second separation membrane module group, The dehydration system according to [1], wherein the permeation side of either the first separation membrane module group or the second separation membrane module group is connected to the inlet side of the compressor unit.
  • the separation membrane unit includes a first separation membrane module group and a second separation membrane module group, and the compressor unit has a first compressor unit and a second compressor unit, The permeate side of the first separation membrane module group is connected to the inlet side of the first compressor unit, and the permeate side of the second separation membrane module group is connected to the inlet side of the second compressor unit.
  • the dehydration system according to [1].
  • a third compressor unit is provided, the outlet sides of the first compressor unit and the second compressor unit are connected to the inlet side of the third compressor unit, The dehydration system of [6], wherein the outlet side of the third compressor unit is connected to the first distillation column.
  • a dehydration system that separates water from a fluid to be treated that contains at least water and water-soluble organic compounds, which can reduce operating costs by increasing the energy efficiency of processes using membrane separation.
  • FIG. 3 illustrates another example of a dehydration system according to an embodiment of the invention
  • FIG. 10 illustrates yet another example of a dehydration system according to an embodiment of the invention
  • FIG. 5 is a diagram showing another example of a dehydration system according to a comparative example of the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the separation membrane unit of this invention, a separation membrane module row, a separation membrane module group, and a separation membrane module. It is a figure explaining the connection pattern of the compressor of this invention.
  • the present invention provides at least one separation membrane module group having at least one separation membrane module comprising a plurality of distillation columns including a first distillation column and a second distillation column, and a separation membrane module that selectively permeates water. and one or more compressor units comprising one or more compressors, wherein the first distillation column, the second distillation column, and one of the separation membrane module groups
  • a dehydration system for separating water from a fluid to be treated containing water and a water-soluble organic compound characterized in that at least one of the compressor units and the first distillation column are arranged in this order.
  • a fluid to be treated by the dehydration system of the present invention is a liquid containing at least water and a water-soluble organic compound.
  • Water-soluble organic compounds to be concentrated by the concentration method of the present invention include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, acetonitrile, acetone, dioxane, DMF, pyridine, formic acid, ethyl acetate, and the like.
  • it is preferably a water-soluble organic compound that azeotropes with water. More preferred water-soluble organic compounds are ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, acetonitrile, pyridine, formic acid and ethyl acetate.
  • the content of the water-soluble organic compound in the fluid to be treated which is supplied to the nearest distillation column from the raw material supply side of the dehydration system of the present invention, is not specified, but is preferably 1 wt% or more, more preferably 1 wt% or more, 2 wt % or more is particularly preferred. 20 wt% or less is preferable, 15 wt% or less is more preferable, and 10 wt% or less is particularly preferable.
  • the dehydration system of the present invention includes multiple distillation columns including a first distillation column and a second distillation column.
  • the multiple distillation columns are preferably multi-effect distillation columns.
  • the plurality of distillation columns are multiple-effect distillation columns, they are more preferably multiple-effect distillation columns including a vacuum distillation column and a high-pressure distillation column, and a multiple-effect distillation column including a mash column for simultaneously separating water-soluble organic compounds and solid-liquid.
  • the moromi column is operated under reduced pressure conditions and the other one or more distillation columns comprises a high pressure distillation column.
  • the multiple distillation columns include a first distillation column and a second distillation column.
  • the first distillation column preferably has at least an operating pressure equal to or lower than the pressure on the outlet side of the compressor described later, and the operating pressure is equal to or lower than the pressure on the outlet side of the compressor and is a vacuum distillation column. It is more preferable to have
  • the first distillation column is a moromi column, preferably a vacuum distillation column.
  • the plurality of distillation columns preferably further includes a distillation column other than the first distillation column and the second distillation column, and the distillation columns other than the first distillation column and the second distillation column include: Preferably, a third distillation column is included.
  • the first distillation column is a vacuum distillation column and the second distillation column is a high pressure distillation column.
  • the multiple distillation columns include a first distillation column, a second distillation column, and a third distillation column, the first distillation column is a vacuum distillation column and the second distillation column is a high pressure distillation column. and the third distillation column is preferably a medium pressure distillation column.
  • the separation membrane unit of the present invention includes at least one separation membrane module.
  • the separation membrane unit contains a plurality of separation membrane modules, the number of separation membrane modules can be appropriately set according to the concentration of the fluid to be concentrated to be processed by the separation membrane module, the concentration of the target concentrated fluid, the processing amount, etc. is.
  • the arrangement method may be only serial arrangement, parallel arrangement only, or a combination of serial arrangement and parallel arrangement.
  • the series arrangement and the parallel arrangement are combined, it is preferable to line up a plurality of rows of modules in which a plurality of modules are connected in series arrangement in parallel arrangement. At this time, it is preferable to set the number of modules in each row to be the same, because this facilitates designing the degree of purification of the fluid to be concentrated and the control pressure of the modules.
  • the separation membrane unit of the present invention includes a plurality of separation membrane modules, it has one or more separation membrane module groups.
  • the content of water-soluble organic compounds in the fluid to be concentrated supplied to the separation membrane unit is preferably 80 wt% or more, more preferably 85 wt% or more, and particularly preferably 88 wt% or more. 97 wt% or less is preferable, 95 wt% or less is more preferable, and 92 wt% or less is particularly preferable.
  • the separation membrane module group is obtained by dividing a plurality of modules as a group of one or more separation membrane modules in order from the supply side of the fluid to be concentrated. This group is called a first separation membrane module group, a second separation membrane module group, .
  • the number of separation membrane modules included in the separation membrane module group may be the same or different.
  • the separation membrane module group is defined as follows.
  • the permeate side piping of multiple separation membrane modules is usually used to reduce the cost of manufacturing piping and the mounting frame that supports the piping, and to simplify the control conditions for the entire process. , are combined into one collecting pipe.
  • a plurality of separation membrane modules whose permeate sides are combined into one collecting pipe is defined as one separation membrane module group.
  • a separation membrane module group is set across different rows as illustrated in FIG.
  • each row included in one separation membrane module group may be divided so that the same number of separation membrane modules are included. preferred in doing so.
  • the permeate sides of all the separation membrane modules in the first separation membrane module group are connected to the first collecting pipe, and the permeate sides of all the separation membrane modules in the second separation membrane module group are connected to the second collecting pipe. Connected.
  • the vacuum pressure of the first collection pipe to which the permeation side of the first separation membrane module group is connected is preferably 3 kPaA or more. , more preferably 5 kPaA or more, and even more preferably 10 kPaA or more. 150 kPaA or less is preferable, 100 kPaA or less is more preferable, and 50 kPaA or less is even more preferable.
  • the vacuum pressure of the second collecting pipe to which the permeate side of the second separation membrane module group is connected is preferably 0.5 kPaA or higher, more preferably 1 kPaA or higher.
  • the separation membrane module includes a separation membrane (membrane), a container shell (shell), a supply port for the fluid to be concentrated, an outlet for the concentrated fluid, and a permeate outlet separated by the membrane.
  • a separation membrane module As a separation membrane module, a large number of tubular separation membranes are arranged in a container shell, a fluid to be concentrated is allowed to flow outside the tubular separation membranes, and water is permeated inside the tubular separation membranes, or It is preferable to allow the fluid to be concentrated to flow through the tubular separation membrane and allow water to permeate the outside of the tubular separation membrane, but the form of the separation membrane may be a honeycomb structure, hollow fiber structure, sheet structure, etc. is not.
  • tubular separation membrane it is preferable to have a membrane that selectively permeates water on the inner peripheral surface and/or the outer peripheral surface of a tubular porous substrate.
  • the porous substrate functions as a support that supports the molecular sieve membrane.
  • Materials constituting the porous substrate are not particularly limited, and various materials such as glass, ceramics, metals, carbon moldings, and resins can be applied.
  • any porous inorganic material may be used as long as it is chemically stable such that zeolite can be crystallized in the form of a film on its surface.
  • Specific examples include sintered ceramics such as silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride and silicon carbide.
  • alumina such as ⁇ -alumina and ⁇ -alumina and mullite are preferable, and alumina is particularly preferable.
  • alumina is particularly preferable.
  • the porous substrate itself need not have molecular sieving ability.
  • the porous substrate has fine pores (voids, voids) that communicate between the outer wall side (outer peripheral surface) and the inner wall side (inner peripheral surface).
  • the porosity of the porous substrate is usually 20% or more, preferably 25% or more, more preferably 30% or more, and is usually 80% or less, preferably 60% or less, more preferably 50% or less, and the average
  • the pore diameter is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and the upper limit is usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • a porous substrate having such pores can appropriately support the molecular sieve membrane with sufficient strength, and can allow molecules that have passed through the molecular sieve membrane to permeate at a sufficient speed. Alternatively, it is possible to allow the molecules to reach the molecular sieve membrane at sufficient velocity.
  • the porosity and pore size of the porous substrate can be easily specified by a mercury intrusion method, observation of a cross section with an SEM, or the like. Similar to the average pore diameter, it can also be calculated from volume and mass using true specific gravity.
  • the maximum diameter of the openings of the through pores extending from the outer peripheral surface to the inner peripheral surface of the porous substrate for forming the zeolite membrane as the molecular sieve membrane is usually 10 ⁇ m or less, preferably 8 ⁇ m or less.
  • the lower limit of the maximum diameter is preferably 0.05 ⁇ m or more.
  • all of the penetrating portions from the outer peripheral surface to the inner peripheral surface may have the same pore size. may be used.
  • both the outer peripheral surface and the inner peripheral surface of the cross section perpendicular to the tube axis direction are circular.
  • the thickness of the tubular porous substrate (the difference between the radius of the outer peripheral surface and the radius of the inner peripheral surface) is not particularly limited.
  • the thickness is preferably 0.5 mm or more, more preferably 0.8 mm or more, and even more preferably 1.0 mm or more, although it varies depending on the material, porosity, and the like.
  • the inner diameter of the tubular porous substrate is not particularly limited.
  • the ratio of the inner diameter (diameter) to the thickness of the porous substrate is preferably 20 or less, more preferably 17 or less. , more preferably 13 or less, particularly preferably 9 or less.
  • the inner diameter is preferably 3 mm or more, particularly 5 mm or more, and 20 mm or less, particularly 15 mm or less.
  • the length (axial length) of the porous substrate is not particularly limited.
  • a molecular sieve membrane is formed on the surface of the porous substrate.
  • the molecular sieve membrane is formed on the outer peripheral surface and/or the inner peripheral surface.
  • the form of the molecular sieve membrane is not particularly limited as long as it can exhibit molecular sieving ability appropriately.
  • the molecular sieve membrane may be either an organic membrane or an inorganic membrane, but an inorganic membrane is preferable.
  • the inorganic membrane is preferably a zeolite membrane, a silica membrane, or a carbon membrane, or a combination thereof. Among them, a zeolite membrane or a silica membrane is preferred, and a zeolite membrane is particularly preferred from the viewpoint of separation performance, water resistance, and durability. is preferred.
  • the zeolite is preferably an aluminosilicate, but Ga, Fe, B, Ti, Zr, Sn, Zn, etc., can be used instead of Al as long as the performance of the membrane is not significantly impaired. may be used, and elements such as Ga, Fe, B, Ti, Zr, Sn, Zn, and P may be included together with Al.
  • the skeleton of the crystalline zeolite that forms the pores of the zeolite membrane is preferably an oxygen 8-membered ring or less, more preferably an oxygen 6- to 8-membered ring.
  • zeolite structures include AEI, AFG, ANA, CHA, DDR, EAB, ERI, ESV, FAR, FRA, GIS, ITE, KFI, LEV, LIO, LOS, LTA, LTN, MAR, MWF, PAU, RHO , RTH, SOD, STI, TOL, UFI, and the like.
  • the n value of zeolite having n-membered oxygen rings indicates the largest number of oxygen atoms among the pores composed of the zeolite skeleton and T elements (elements other than oxygen constituting the skeleton).
  • an organic template (structure directing agent) can be used as necessary, but usually there is no particular limitation as long as the template can create the desired zeolite structure, and there is no template. It is not necessary to use if it is possible to synthesize with
  • the thickness of the molecular sieve membrane is not particularly limited, the lower limit of the thickness of the zeolite membrane is usually 0.01 ⁇ m or more.
  • the upper limit of the thickness is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the silica film may be a film consisting of a single layer or a film consisting of two or more layers, and the thickness thereof is preferably 1 nm or more.
  • the thickness is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the carbon film preferably has a thickness of 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or less.
  • the upper limit of the thickness is preferably 5 mm or less, more preferably 500 ⁇ m or less.
  • the method of forming the molecular sieve on the surface of the porous substrate is not limited to the above-mentioned methods. For example, (1) a method in which a substance capable of forming a molecular sieve is adhered to the surface of a porous substrate with a binder or the like, and (2) a porous substrate is impregnated with a slurry or solution in which a substance capable of forming a molecular sieve is dispersed. and (3) a method of crystallizing a substance (especially zeolite) that can constitute a molecular sieve membrane on the surface of the porous substrate into a film. For example, see International Publication No. 2013/125660 pamphlet, etc.).
  • the dehydrator of the present invention includes one or more compressor units.
  • a compressor unit of the present invention includes one or more compressors.
  • a compressor imparts energy to a fluid to change the pressure of the fluid.
  • a positive displacement compressor that changes the pressure by reducing the volume of fluid is preferable.
  • a vapor compressor, a vacuum pump, and an ejector are preferable from the viewpoint of being able to compress a fluid under negative pressure conditions.
  • An ejector is more preferable from the viewpoint of high energy-saving performance.
  • both the steam used as the driving force and the fluid drawn by the ejector can be directly introduced into the subsequent processing equipment, so that the energy loss can be minimized and transferred to the subsequent processing.
  • a steam ejector is preferable from the viewpoint of efficiency.
  • the fluid that has passed through the compressor is a combination of the fluid that has passed through the compressor and the steam.
  • FIG. 7 is a diagram when a steam ejector is used as a compressor.
  • (a) is a diagram in which a single compressor is used
  • (b) is a diagram in which two compressors are connected in series
  • (c) is a diagram in which two compressors are connected in series in parallel. It is a figure which connected two rows with.
  • Reference numeral 9 indicates a separation membrane module
  • reference numeral 12 indicates a steam ejector.
  • the value obtained by dividing the amount of steam supplied to one steam ejector by the total fluid amount of the steam amount and the fluid to be compressed supplied to the steam ejector is 0.65 or more. It is preferably 0.999 or less, more preferably 0.75 or more and 0.999 or less, and particularly preferably 0.75 or more and 0.98 or less. Within the above range, operation can be performed with the minimum amount of steam necessary for compressing the fluid to be compressed, and the fluid to be compressed can be efficiently compressed.
  • the compression ratio obtained by dividing the discharge pressure of one steam ejector by the suction pressure of the fluid is preferably 1 or more and 20 or less, more preferably 1 or more and 15 or less, and particularly 1 or more and 10 or less. preferable. By being within the above range, efficient compression can be achieved while reducing energy loss due to heat radiation generated during compression.
  • the dehydration system of the present invention comprises a separation membrane module group having at least one separation membrane module comprising a plurality of distillation columns including a first distillation column and a second distillation column, and a separation membrane module that selectively permeates water.
  • a separation membrane module group having at least one separation membrane module comprising a plurality of distillation columns including a first distillation column and a second distillation column, and a separation membrane module that selectively permeates water.
  • one or more separation membrane units, and one or more compressor units comprising one or more compressors, the first distillation column, the second distillation column, and the separation membrane module group , one or more of the compressor units, and the first distillation column are arranged in order.
  • the permeation side of the separation membrane module group is connected to the inlet side of the compressor unit.
  • the outlet side of the compressor unit is connected to a distillation column whose operating pressure is less than or equal to the pressure on the outlet side of the compressor unit and which is different from the distillation column that supplies the fluid to be enriched to the separation membrane module unit.
  • the permeate sides of all the separation membrane modules may be connected to the inlet side of one compressor unit.
  • the permeate side of either the first separation membrane module group or the second separation membrane module group is the compressor unit. and the outlet side of the compressor unit may be connected to the first distillation column.
  • the permeate side of the separation membrane module group that is not connected to the compressor unit is condensed and cooled using refrigerant. It may be connected to a condenser that allows the gas to flow, or may be connected to the first distillation column.
  • the permeate side of the second separation membrane module group is preferably connected to a condenser, and more preferably connected to a distillation column different from the first distillation column. and the fluid on the permeate side of the first separation membrane module group are combined and connected to the first distillation column.
  • the separation membrane unit includes a first separation membrane module group and a second separation membrane module group, and has a first compressor unit and a second compressor unit as compressor units
  • the first separation membrane The permeate side of the module group may be connected to the inlet side of the first compressor unit, and the permeate side of the second separation membrane module group may be connected to the inlet side of the second compressor unit.
  • the outlet side of the first compressor unit may be connected to the second distillation column and the outlet side of the second compressor unit may be connected to the first distillation column, Both the outlet side of the first compressor unit and the outlet side of said second compressor unit may be connected to the first distillation column.
  • the separation membrane unit includes a first separation membrane module group and a second separation membrane module group
  • the compressor units include a first compressor unit, a second compressor unit, and a third compressor unit. If so, connecting the outlet side of each of the first compressor unit and the second compressor unit to the inlet side of the third compressor unit, the outlet side of the third compressor unit being connected to the first distillation It may be connected to a tower.
  • the pervaporation method or the vapor permeation method may be used.
  • FIG. 1 is a schematic diagram showing one aspect of the dehydration system according to the present invention.
  • This dehydration system basically comprises a first distillation column 1a, a second distillation column 1b, a third distillation column 1f, a separation membrane unit including a first separation membrane module group 1c, and a steam ejector 1d, Distillation and membrane separation are used to separate water from a treated fluid containing a mixture of water-soluble organic compounds and water.
  • the separation membrane unit includes a first separation membrane module group 1c, and the first separation membrane module group 1c includes one separation membrane module.
  • a compressor (not shown) is connected to the top of the first distillation column 1a, and the compressed top fluid is heat-exchanged with water.
  • a multiple-effect distillation column is used in which the overhead vapor of the second distillation column 1b is used as a heat source for the bottom reboiler of the first distillation column 1a, the multiple-effect process is not limited to this.
  • a liquid which is a fluid to be treated containing at least a water-soluble organic compound and water, is introduced as a raw material into the first distillation column 1a.
  • the first distillation column 1a separates the fluid to be treated into overhead vapor containing gaseous water-soluble organic compounds and bottoms consisting of liquid water.
  • the overhead vapor is supplied to the second distillation column 1b and the third distillation column 1f.
  • the type of the first distillation column 1a is not particularly limited as long as it is suitable for the distillation operation, such as a tray type.
  • the operating pressure of the first distillation column is set to be equal to or lower than the pressure on the outlet side of the steam ejector 1d in order to prevent the fluid permeated from the separation membrane module group 1c from flowing back.
  • the first distillation column 1a is preferably a vacuum distillation column. Also, when the fluid to be treated is supplied from a fermenter, it is preferably a moromi tower.
  • Part of the liquid at the bottom of the first distillation column 1a is a fluid introduced from the steam ejector 1e and a compressor (not shown) connected to the top of the first distillation column 1a.
  • the vapor is heated by the water heated by the steam and the water heated by the overhead steam of the third distillation column 1f to become steam, and rises in the column while exchanging heat with the liquid flowing down the column. For this reason, most of the vapor component is water at the bottom of the column, but the concentration of water-soluble organic compounds increases near the top of the column.
  • the rest of the liquid taken out from the bottom of the column is taken out as a bottom product.
  • the second distillation column 1b and the third distillation column 1f can carry out various distillations such as pressurized distillation, normal pressure distillation, vacuum distillation, etc. in order to utilize multiple effects.
  • the number of stages of the second distillation column 1b and the third distillation column 1f is not particularly limited, and can be appropriately determined according to the required concentration specifications of the water-soluble organic compound.
  • the required concentration specification is 99.0
  • it is preferable to concentrate the water-soluble organic compound to 0.0% by mass or more and less than 99.9% by mass the range is not particularly limited.
  • the overhead vapors of the second distillation column 1b and the third distillation column 1f are introduced into the first separation membrane module group 1c as a fluid to be concentrated.
  • the concentrated fluid discharged from the concentration-side outlet of the first separation membrane module group 1c is heat-recovered by a heat exchanger connected to the bottom of the second distillation column 1b, and is recovered as a product.
  • the method used is not limited to this.
  • the permeate-side fluid coming out of the permeate-side outlet of the first separation membrane module group 1c is introduced into the steam ejector 1d, and introduced into the first distillation column 1a from the outlet side of the steam ejector 1d.
  • the non-permeate side fluid coming out of the non-permeate side outlet of the first separation membrane module group 1c is heat-recovered in the second distillation column 1b via a heat exchanger and recovered in a product tank (not shown).
  • FIG. 2 is another example of an embodiment of the dehydration system and dehydration method of the present invention.
  • the separation membrane unit comprises a first separation membrane module group 2c and a second separation membrane module group 2d.
  • This dehydration system includes a separation membrane unit including a first distillation column 2a, a second distillation column 2b, a third distillation column 2f, a first separation membrane module group 2c, a second separation membrane module group 2d, and A steam ejector 2e is used as a basic configuration.
  • the first distillation column 2a is fed with a liquid, which is a fluid to be treated containing at least water-soluble organic compounds and water, as a raw material.
  • the first distillation column 2a separates the fluid to be treated into overhead vapor containing gaseous water-soluble organic compounds and bottoms consisting of liquid water.
  • the overhead vapor is supplied to the second distillation column 2b and the third distillation column 2f.
  • the type of the first distillation column 2a is not particularly limited as long as it is suitable for the distillation operation, such as a tray type.
  • the operating pressure of the first distillation column 2a is set at the outlet side of the steam ejector 2e so that the mixed fluid in which the outlet side fluid of the steam ejector 2e and the permeation side fluid of the separation membrane module group 2c are mixed does not flow back. Keep under pressure.
  • the first distillation column 2a is preferably a vacuum distillation column. Also, when the fluid to be treated is supplied from a fermenter, it is preferably a moromi tower.
  • Part of the bottom liquid in the first distillation column 2a is the fluid introduced from the steam ejector 2e and the permeation side of the separation membrane module group 2c, and the compressor connected to the top of the first distillation column 2a. (not shown) and the water heated by the overhead steam of the third distillation column 2f is heated to become steam and heat exchange with the liquid flowing down the column. While ascending the tower. For this reason, most of the vapor component is water at the bottom of the column, but the concentration of water-soluble organic compounds increases near the top of the column. The rest of the liquid taken out from the bottom of the column is taken out as a bottom product.
  • the second distillation column 2b and the third distillation column 2f utilize multiple effects, various distillations such as pressurized distillation, normal pressure distillation, and vacuum distillation can be performed.
  • the number of stages of the second distillation column 2b and the third distillation column 2f is not particularly limited, and can be appropriately determined depending on the required concentration specifications of the water-soluble organic compound.
  • the required concentration specification is 99.0
  • it is preferable to concentrate the water-soluble organic compound to 0.0% by mass or more and less than 99.9% by mass the range is not particularly limited.
  • the overhead vapors of the second distillation column 2b and the third distillation column 2f are introduced into the first separation membrane module group 2c as a fluid to be concentrated.
  • the first concentrated fluid coming out of the concentration-side outflow port of the first separation membrane module group 2c enters as the fluid to be concentrated from the supply port of the fluid to be concentrated of the second separation membrane module group 2d.
  • the second concentrated fluid discharged from the concentration side outlet of the second separation membrane module group 2d is heat-recovered by a heat exchanger connected to the bottom of the second distillation column 2b and recovered as a product. , the method of heat recovery is not limited to this.
  • the first permeate-side fluid concentrated in the first separation membrane module group 2c is introduced into the first distillation column 2a.
  • the second permeate-side fluid concentrated in the second separation membrane module group 2d is introduced into the steam ejector 2e and introduced into the first distillation column 2a from the outlet side of the steam ejector 2e.
  • the non-permeate side fluid coming out of the non-permeate side outlet of the second separation membrane module group 2d is heat-recovered in the second distillation column 2f via a heat exchanger and recovered in a product tank (not shown).
  • the number of separation membrane modules included in the first separation membrane module group 2c and the number of the separation membrane modules included in the second separation membrane module group 2d are one each.
  • FIG. 3 shows a first comparative example.
  • no membrane separation device is installed, and the fluid to be concentrated is dehydrated only by the PSA 3c, and the desorbed fluid of the PSA 3c is introduced into the first distillation column 3a via the condenser 3d.
  • the concentrated fluid coming out of the PSA 3c is heat-recovered in the second distillation column 3f through a heat exchanger and recovered in a product tank (not shown).
  • the desorbed fluid is intermittently condensed and cooled by the condenser 3d using refrigerant, temporarily stored in a tank (not shown), and then continuously fed by a liquid feed pump (not shown). After forming the stream, it is introduced into the first distillation column 3a.
  • the desorption process uses a fluid in which water-soluble organic compounds have been concentrated through the adsorption process, the concentration of the water-soluble organic compounds in the desorbed fluid can be determined using the membrane separation units shown in FIGS.
  • FIG. 4 shows a second comparative example.
  • the permeate side fluid of the separation membrane module group 4c is introduced into the first distillation column 4a through the condenser 4d.
  • this method as compared with the process using PSA shown in FIG. (not shown)), and then introduced into the first distillation column 4a by a liquid feed pump (not shown).
  • the heat of the permeate-side fluid of the separation membrane module group 4c cannot be sufficiently recovered, and energy for cooling the condenser is required.
  • the required energy per refined amount is high.
  • FIG. 5 shows a third comparative example.
  • the permeation-side fluids of the first separation membrane module group 5c and the second separation membrane module group 5d pass through the condensers 5e and 5g, respectively, to the first distillation column 5a. be introduced.
  • the non-permeate side fluid coming out of the non-permeate side outlet of the second separation membrane module group 5d is heat-recovered in the second distillation column 5f via a heat exchanger and recovered in a product tank (not shown).
  • distillation columns there are three distillation columns, the first distillation column, the second distillation column, and the third distillation column, but only the first distillation column and the second distillation column may be used, Four or more distillation columns may be provided.
  • the raw material flow rate was 20,750 kg/h and the product flow rate was 693 kg/h.
  • the PSA inlet temperature was set equal to the separation membrane unit inlet temperature.
  • the first distillation column was a moromi column, the operating pressure was 8 kPaA, and the EtOH concentrations in the feed liquid, column top, and column bottom were 3.35 wt%, 26.82 wt%, and 100 ppm, respectively.
  • the second distillation column was a high-pressure distillation column, the operating pressure was 448 kPaA, and the EtOH concentrations in the feed liquid, column top, and column bottom were 26.82 wt%, 91.3 wt%, and 100 ppm, respectively.
  • the third distillation column was a medium-pressure distillation column, the operating pressure was 82.8 kPaA, and the EtOH concentrations in the feed liquid, column top, and column bottom were 26.82 wt%, 91.3 wt%, and 100 ppm, respectively.
  • the CO 2 conversion factor for steam used as a utility was set at 2.71 tCO 2 /kL, and the CO 2 conversion factor for electricity used to produce electricity, cooling water, and low-temperature refrigerant was set at 0.00047 tCO 2 /kWh.
  • the EtOH concentrations of the PSA supply liquid, concentrated liquid, and desorbed liquid were 91.3 wt%, 99.7 wt%, and 68.7 wt%, respectively.
  • EtOH of the fluid to be concentrated supply liquid
  • the concentrated fluid concentrated liquid
  • the permeate side fluid permeate liquid
  • the first separation membrane module group When there are two membrane separation module groups, a first separation membrane module group and a second separation membrane module group, and the number of membrane separation modules included in each membrane separation module group is one, the first separation membrane module group
  • the EtOH concentrations of the fluid to be concentrated (supply liquid), concentrated fluid (concentrated liquid), and permeate-side fluid (permeated liquid) were set to 91.3 wt%, 98.0 wt%, and 2 wt%, respectively.
  • the EtOH concentrations of the to-be-concentrated fluid (supply fluid), concentrated fluid (concentrated fluid), and permeate-side fluid (permeated fluid) were 98.0 wt %, 99.7 wt %, and 11.7 wt %, respectively.
  • Example 1 A water-ethanol mixture is introduced into the first distillation column 2a, and overhead vapor is supplied to the second distillation column 2b and the third distillation column 2f. After obtaining crude alcohol in the second distillation column 2b and the third distillation column 2f, the entire amount of the crude alcohol is introduced into the first separation membrane module group 2c, and then concentrated in the first separation membrane module group 2c. The first concentrated fluid coming out of the side outlet is introduced into the second separation membrane module group 2d.
  • the second permeate-side fluid coming out of the permeate-side outlet of the second separation membrane module group is introduced into the steam ejector 2e, and the fluid coming out of the outlet of the steam ejector 2e is introduced into the permeate-side of the first separation membrane module group 2c. It is introduced into the first distillation column 2a together with the first permeate side fluid coming out of the outlet.
  • a water-ethanol mixture is introduced into the first distillation column 5a, and overhead vapor is supplied to the second distillation column 5b and the third distillation column 5f.
  • the entire amount of the crude alcohol is introduced into the first separation membrane module group 5c, and then permeated through the first separation membrane module group 5c.
  • the first permeate-side fluid coming out of the side outlet is passed through the condenser 5e to be the first condensate.
  • the first concentrated fluid coming out of the concentration-side outlet of the first separation membrane module group 5c is introduced into the second separation membrane module group 5d.
  • the second permeate-side fluid coming out of the permeate-side outlet of the second separation membrane module group 5d passes through the condenser 5g and is used as the second condensate. Evaluated for a process using the dehydration system of FIG . , 3.45 ⁇ 10 ⁇ 4 tCO 2 /kg-alcohol.
  • the present invention can be advantageously used, for example, as a means for dehydrating and concentrating a high-concentration water-soluble organic compound from a mixture of a water-soluble organic compound such as ethanol and water. Extremely high.

Abstract

The present invention reduces the operating cost of a process that comprises membrane separation by enhancing the energy efficiency. A dehydration system for separating water from a fluid to be processed, said fluid containing water and a water-soluble organic compound. This dehydration system comprises: a plurality of distillation columns including a first distillation column and a second distillation column; a separation membrane unit that comprises one or more separation membrane module groups, each of which comprises one or more separation membrane modules each comprising a separation membrane that is selectively permeable to water; and one or more compressor units, each of which comprises one or more compressors. With respect to this dehydration system, the first distillation column, the second distillation column, at least one group among the separation membrane module groups, at least one compressor unit among the compressor units, and the first distillation column are sequentially arranged.

Description

脱水システム及び脱水方法Dehydration system and dehydration method
 本発明は、水と水溶性有機化合物とを含む流体から水を分離する脱水システム及び脱水方法に関する。 The present invention relates to a dehydration system and a dehydration method for separating water from a fluid containing water and water-soluble organic compounds.
 通常、水溶性有機化合物と水を含む混合物から、水のみを除去する方法として、蒸留法等が用いられている。しかしながら、水溶性有機化合物が水と共沸する性質を有する場合は、蒸留塔の塔頂蒸気に水が必然的に含まれるため、純度を向上させることが困難であった。 Distillation is usually used as a method for removing only water from a mixture containing water-soluble organic compounds and water. However, when the water-soluble organic compound has the property of azeotroping with water, water is inevitably contained in the overhead steam of the distillation column, and it has been difficult to improve the purity.
 このような、水と共沸する水溶性有機化合物を、高純度に得る精製方法として、水と共沸する水溶性有機化合物に含まれる水のうちの大部分を蒸留により除去してから、吸着塔などにより残りの水分を除去することで、最終的に高純度の水溶性有機化合物を得る方法が知られている(特許文献1参照)。 As a purification method for obtaining a high-purity water-soluble organic compound azeotroping with water, most of the water contained in the water-soluble organic compound azeotroping with water is removed by distillation, followed by adsorption. A method of finally obtaining a highly pure water-soluble organic compound by removing the remaining water using a tower or the like is known (see Patent Document 1).
 また、水-アルコール混合物を、多重効用蒸留塔に導入して濃縮してから、膜分離を行うことで、水-アルコール混合物から水を除去する、エネルギー効率に優れた方法が知られている(特許文献2参照)。 Also known is an energy-efficient method of removing water from a water-alcohol mixture by introducing the water-alcohol mixture into a multiple-effect distillation column for concentration, followed by membrane separation ( See Patent Document 2).
特開2000-334257号公報JP-A-2000-334257 国際公開第2018/168651号WO2018/168651
 しかしながら、近年の蒸留技術の発展により、多重効用蒸留塔と吸着塔を組み合わせたプロセスに必要なエネルギーと、多重効用蒸留塔と膜分離を組み合わせたプロセスに必要なエネルギーの差は縮まってきている。本発明は、膜分離を使ったプロセスのエネルギー効率をさらに高めることで、運転コストを削減できる、少なくとも水と水溶性有機化合物を含む被処理流体から水を分離する脱水システムを提供することを課題とする。 However, due to the recent development of distillation technology, the difference between the energy required for the process combining the multiple-effect distillation column and the adsorption column and the energy required for the process combining the multiple-effect distillation column and membrane separation has narrowed. SUMMARY OF THE INVENTION It is an object of the present invention to provide a dehydration system for separating water from a fluid to be treated which contains at least water and water-soluble organic compounds, which can reduce operating costs by further increasing the energy efficiency of processes using membrane separation. and
 本発明の要旨は次の通りである。 The gist of the present invention is as follows.
[1] 水と水溶性有機化合物を含む被処理流体から水を分離する脱水システムであって、
 第1の蒸留塔と第2の蒸留塔を含む複数の蒸留塔と、
 1以上の分離膜ユニットと、
 1以上の圧縮機ユニットと、を有し、
 該分離膜ユニットは、1以上の分離膜モジュール群を有し、
 該分離膜モジュール群は、水を選択的に透過する、1以上の分離膜を備える分離膜モジュールを有し、
 該圧縮機ユニットは、1以上の圧縮機を備え、
 該第1の蒸留塔と、該第2の蒸留塔と、該分離膜モジュール群のうち1以上と、前記圧縮機ユニットのうち1以上が順に配置され、且つ、該圧縮機ユニットのうち1以上の出口側と、該第1の蒸留塔とが接続されている、
 脱水システム。
[1] A dehydration system for separating water from a fluid to be treated containing water and water-soluble organic compounds,
a plurality of distillation columns including a first distillation column and a second distillation column;
one or more separation membrane units;
one or more compressor units;
The separation membrane unit has one or more separation membrane module groups,
The separation membrane module group has a separation membrane module comprising one or more separation membranes that selectively permeate water,
The compressor unit comprises one or more compressors;
The first distillation column, the second distillation column, one or more of the separation membrane module groups, and one or more of the compressor units are arranged in order, and one or more of the compressor units is connected to the outlet side of the first distillation column,
dehydration system.
[2] 前記分離膜モジュールユニットに含まれる全ての分離膜モジュールの透過側が、前記圧縮機ユニットの入口側に接続している、[1]に記載の脱水システム。 [2] The dehydration system according to [1], wherein the permeate sides of all the separation membrane modules included in the separation membrane module unit are connected to the inlet side of the compressor unit.
[3] 前記分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含み、
 該第1の分離膜モジュール群または該第2の分離膜モジュール群のいずれか一方の透過側が、前記圧縮機ユニットの入口側に接続している、[1]に記載の脱水システム。
[3] the separation membrane unit includes a first separation membrane module group and a second separation membrane module group,
The dehydration system according to [1], wherein the permeation side of either the first separation membrane module group or the second separation membrane module group is connected to the inlet side of the compressor unit.
[4] 前記分離膜モジュール群のうち、前記圧縮機ユニットに接続していない分離膜モジュール群の透過側が、凝縮器と接続されている、[3]に記載の脱水システム。 [4] The dehydration system according to [3], wherein the permeation side of the separation membrane module group that is not connected to the compressor unit among the separation membrane module groups is connected to a condenser.
[5] 前記分離膜モジュールのうち、前記圧縮機ユニットに接続していない分離膜モジュール群の透過側が、前記第1の蒸留塔と接続されている、[3]に記載の脱水システム。 [5] The dehydration system according to [3], wherein the permeation side of the separation membrane module group that is not connected to the compressor unit among the separation membrane modules is connected to the first distillation column.
[6] 前記分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含み、前記圧縮機ユニットとして、第1の圧縮機ユニットと第2の圧縮機ユニットを有し、前記第1の分離膜モジュール群の透過側が、前記第1の圧縮機ユニットの入口側に接続し、前記第2の分離膜モジュール群の透過側が、前記第2の圧縮機ユニットの入口側に接続している、[1]に記載の脱水システム。 [6] The separation membrane unit includes a first separation membrane module group and a second separation membrane module group, and the compressor unit has a first compressor unit and a second compressor unit, The permeate side of the first separation membrane module group is connected to the inlet side of the first compressor unit, and the permeate side of the second separation membrane module group is connected to the inlet side of the second compressor unit. The dehydration system according to [1].
[7]  前記第1の圧縮機ユニットの出口側が前記第2の蒸留塔に接続しており、前記第2の圧縮機ユニットの出口側が前記第1の蒸留塔に接続している、
[6]に記載の脱水システム。
[7] the outlet side of the first compressor unit is connected to the second distillation column, and the outlet side of the second compressor unit is connected to the first distillation column;
The dehydration system according to [6].
[8] 前記第1の圧縮機ユニットの出口側、及び前記第2の圧縮機ユニットの出口側が、前記第1の蒸留塔に接続している、[6]に記載の脱水システム。 [8] The dehydration system according to [6], wherein the outlet side of the first compressor unit and the outlet side of the second compressor unit are connected to the first distillation column.
[9] さらに第3の圧縮機ユニットを有し、前記第1の圧縮機ユニット、及び前記第2の圧縮機ユニットのそれぞれの出口側が第3の圧縮機ユニットの入口側に接続しており、前記第3の圧縮機ユニットの出口側が、前記第1の蒸留塔に接続している、[6]に記載の脱水システム。 [9] Furthermore, a third compressor unit is provided, the outlet sides of the first compressor unit and the second compressor unit are connected to the inlet side of the third compressor unit, The dehydration system of [6], wherein the outlet side of the third compressor unit is connected to the first distillation column.
[10] 前記圧縮機ユニットが、1以上の直列で接続されている圧縮機及び/または並列に配置された1以上の圧縮機を含む[1]~[9]のいずれかに記載の脱水システム。 [10] The dehydration system according to any one of [1] to [9], wherein the compressor unit includes one or more compressors connected in series and/or one or more compressors arranged in parallel .
[11] 前記第1の蒸留塔の運転圧力が、前記第2の蒸留塔の運転圧力よりも小さい、[1]~[10]のいずれかに記載の脱水システム。 [11] The dehydration system according to any one of [1] to [10], wherein the operating pressure of the first distillation column is lower than the operating pressure of the second distillation column.
[12] 前記第1の蒸留塔が減圧蒸留塔であり、前記第2の蒸留塔が高圧蒸留塔である、[1]~[11]のいずれかに記載の脱水システム。 [12] The dehydration system according to any one of [1] to [11], wherein the first distillation column is a vacuum distillation column and the second distillation column is a high-pressure distillation column.
[13] 水と水溶性有機化合物を含む被処理流体から水を分離する脱水方法であって、前記第1の蒸留塔の運転圧力が、前記圧縮機ユニットの出口側圧力以下である、[1]~[12]のいずれかに記載の脱水システムを用いた、脱水方法。 [13] A dehydration method for separating water from a fluid to be treated containing water and water-soluble organic compounds, wherein the operating pressure of the first distillation column is equal to or lower than the pressure on the outlet side of the compressor unit, [1 ] A dehydration method using the dehydration system according to any one of [12].
 膜分離を使ったプロセスのエネルギー効率を高めることで、運転コストを削減できる、少なくとも水と水溶性有機化合物を含む被処理流体から水を分離する脱水システムを提供する。 Provide a dehydration system that separates water from a fluid to be treated that contains at least water and water-soluble organic compounds, which can reduce operating costs by increasing the energy efficiency of processes using membrane separation.
本発明の実施態様に係る脱水システムの一例を示す図である。It is a figure showing an example of a dehydration system concerning an embodiment of the present invention. 本発明の実施態様に係る脱水システムの別の例を示す図である。FIG. 3 illustrates another example of a dehydration system according to an embodiment of the invention; 本発明の実施態様に係る脱水システムのさらに別の例を示す図である。FIG. 10 illustrates yet another example of a dehydration system according to an embodiment of the invention; 本発明の比較例に係る脱水システムの一例を示す図である。It is a figure showing an example of a dehydration system concerning a comparative example of the present invention. 本発明の比較例に係る脱水システムの別の例を示す図である。FIG. 5 is a diagram showing another example of a dehydration system according to a comparative example of the present invention; 本発明の分離膜ユニット、分離膜モジュール列、分離膜モジュール群、分離膜モジュールの説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the separation membrane unit of this invention, a separation membrane module row, a separation membrane module group, and a separation membrane module. 本発明の圧縮機の接続パターンを説明する図である。It is a figure explaining the connection pattern of the compressor of this invention.
 以下、本発明について、詳細に説明するが、本発明は具体的な実施態様のみに限定されるものではない。 Although the present invention will be described in detail below, the present invention is not limited only to specific embodiments.
 本発明は、第1の蒸留塔と第2の蒸留塔を含む複数の蒸留塔と、水を選択的に透過する分離膜を備える分離膜モジュールを、1以上有する分離膜モジュール群を、1以上含む分離膜ユニットと、1以上の圧縮機を備える、1以上の圧縮機ユニット、とを有し、前記第1の蒸留塔と、前記第2の蒸留塔と、前記分離膜モジュール群のうち1以上と、前記圧縮機ユニットのうち1以上と、前記第1の蒸留塔が順に配置されていることを特徴とする、水と水溶性有機化合物を含む被処理流体から水を分離する脱水システムに関する。 The present invention provides at least one separation membrane module group having at least one separation membrane module comprising a plurality of distillation columns including a first distillation column and a second distillation column, and a separation membrane module that selectively permeates water. and one or more compressor units comprising one or more compressors, wherein the first distillation column, the second distillation column, and one of the separation membrane module groups A dehydration system for separating water from a fluid to be treated containing water and a water-soluble organic compound, characterized in that at least one of the compressor units and the first distillation column are arranged in this order. .
[被処理流体]
 本発明の脱水システムの処理対象とする被処理流体は、少なくとも水と水溶性有機化合物を含む液体である。本発明の濃縮方法により濃縮する水溶性有機化合物は、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブタノール、アセトニトリル、アセトン、ジオキサン、DMF、ピリジン、ギ酸、酢酸エチル等、特に限定されないが、本発明の脱水システムの効果を充分に発揮する観点で、水と共沸する水溶性有機化合物であることが好ましい。すなわち、水溶性有機化合物としては、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブタノール、アセトニトリル、ピリジン、ギ酸、酢酸エチルがより好ましい。
[Fluid to be treated]
A fluid to be treated by the dehydration system of the present invention is a liquid containing at least water and a water-soluble organic compound. Water-soluble organic compounds to be concentrated by the concentration method of the present invention include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, acetonitrile, acetone, dioxane, DMF, pyridine, formic acid, ethyl acetate, and the like. However, from the viewpoint of sufficiently exhibiting the effects of the dehydration system of the present invention, it is preferably a water-soluble organic compound that azeotropes with water. More preferred water-soluble organic compounds are ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, acetonitrile, pyridine, formic acid and ethyl acetate.
 本発明の脱水システムの原料供給側から一番近い蒸留塔に供給される被処理流体中の水溶性有機化合物の含有量は、特に指定しないが1wt%以上が好ましく、1wt%以上がより好ましく、2wt%以上が特に好ましい。20wt%以下が好ましく、15wt%以下がより好ましく、10wt%以下が特に好ましい。 The content of the water-soluble organic compound in the fluid to be treated, which is supplied to the nearest distillation column from the raw material supply side of the dehydration system of the present invention, is not specified, but is preferably 1 wt% or more, more preferably 1 wt% or more, 2 wt % or more is particularly preferred. 20 wt% or less is preferable, 15 wt% or less is more preferable, and 10 wt% or less is particularly preferable.
[蒸留塔]
 本発明の脱水システムは、第1の蒸留塔と第2の蒸留塔を含む複数の蒸留塔、を含む。
エネルギーを効率的に利用する観点で、複数の蒸留塔は、多重効用蒸留塔であることが好ましい。複数の蒸留塔が多重効用蒸留塔である場合、減圧蒸留塔と高圧蒸留塔を含む多重効用蒸留塔であることがより好ましく、水溶性有機化合物と固液を同時に分離するもろみ塔を含んだ多重効用蒸留塔で、そのもろみ塔は減圧条件下で運転されており、その他1以上の蒸留塔は高圧蒸留塔を含むことがさらに好ましい。
[Distillation column]
The dehydration system of the present invention includes multiple distillation columns including a first distillation column and a second distillation column.
From the viewpoint of efficient use of energy, the multiple distillation columns are preferably multi-effect distillation columns. When the plurality of distillation columns are multiple-effect distillation columns, they are more preferably multiple-effect distillation columns including a vacuum distillation column and a high-pressure distillation column, and a multiple-effect distillation column including a mash column for simultaneously separating water-soluble organic compounds and solid-liquid. More preferably, in the utility distillation column, the moromi column is operated under reduced pressure conditions and the other one or more distillation columns comprises a high pressure distillation column.
 複数の蒸留塔は、第1の蒸留塔と、第2の蒸留塔を含む。前記第1の蒸留塔は、少なくとも、その運転圧力が、後述する圧縮機の出口側の圧力以下であることが好ましく、その運転圧力が圧縮機の出口側の圧力以下でありかつ減圧蒸留塔であることがより好ましい。
被処理流体が、発酵槽から得られるバイオエタノールを含み、第1の蒸留塔に供給される流体が発酵槽からの固液混合流体である場合、被処理流体に含まれる固体を除去する観点から、第1の蒸留塔はもろみ塔であって、減圧蒸留塔であることが好ましい。
The multiple distillation columns include a first distillation column and a second distillation column. The first distillation column preferably has at least an operating pressure equal to or lower than the pressure on the outlet side of the compressor described later, and the operating pressure is equal to or lower than the pressure on the outlet side of the compressor and is a vacuum distillation column. It is more preferable to have
When the fluid to be treated contains bioethanol obtained from the fermenter and the fluid supplied to the first distillation column is a solid-liquid mixed fluid from the fermenter, from the viewpoint of removing solids contained in the fluid to be treated , the first distillation column is a moromi column, preferably a vacuum distillation column.
 複数の蒸留塔は、さらに、第1の蒸留塔と第2の蒸留塔、以外の蒸留塔を含むことが好ましく、前記第1の蒸留塔と第2の蒸留塔、以外の蒸留塔としては、第3の蒸留塔を含むことが好ましい。 The plurality of distillation columns preferably further includes a distillation column other than the first distillation column and the second distillation column, and the distillation columns other than the first distillation column and the second distillation column include: Preferably, a third distillation column is included.
 複数の蒸留塔が第1の蒸留塔と第2の蒸留塔からなる場合、第1の蒸留塔が減圧蒸留塔であり、第2の蒸留塔が高圧蒸留塔であることが好ましい。複数の蒸留塔が、第1の蒸留塔、第2の蒸留塔、及び第3の蒸留塔を含む場合、第1の蒸留塔が減圧蒸留塔であり、第2の蒸留塔が高圧蒸留塔であり、第3の蒸留塔が中圧蒸留塔であることが好ましい。 When the plurality of distillation columns consist of a first distillation column and a second distillation column, it is preferable that the first distillation column is a vacuum distillation column and the second distillation column is a high pressure distillation column. When the multiple distillation columns include a first distillation column, a second distillation column, and a third distillation column, the first distillation column is a vacuum distillation column and the second distillation column is a high pressure distillation column. and the third distillation column is preferably a medium pressure distillation column.
[分離膜ユニット]
 本発明の分離膜ユニットは、少なくとも1つの分離膜モジュールを含む。分離膜ユニットが複数の分離膜モジュールを含有する場合、分離膜モジュールの数は、分離膜モジュールで処理する被濃縮流体の濃度、目的とする濃縮流体の濃度、処理量等に応じて適宜設定可能である。
[Separation membrane unit]
The separation membrane unit of the present invention includes at least one separation membrane module. When the separation membrane unit contains a plurality of separation membrane modules, the number of separation membrane modules can be appropriately set according to the concentration of the fluid to be concentrated to be processed by the separation membrane module, the concentration of the target concentrated fluid, the processing amount, etc. is.
 分離膜モジュールを複数用いる場合、その配列方法は、直列配置のみであってもよく、並列配置のみであっても良く、直列配置と並列配置を組み合わせてもよい。直列配置と並列配置を組み合わせる場合は、複数個のモジュールを直列配置に接続した一列のモジュールを、並列配置で複数並べることが好ましい。このとき、各列のモジュールの個数は同じにすることが、被濃縮流体の精製度や、モジュールの制御圧力を設計することが容易になるため好ましい。
 本発明の分離膜ユニットは、複数の分離膜モジュールを含む場合、1以上の分離膜モジュール群を有する。
When a plurality of separation membrane modules are used, the arrangement method may be only serial arrangement, parallel arrangement only, or a combination of serial arrangement and parallel arrangement. When the series arrangement and the parallel arrangement are combined, it is preferable to line up a plurality of rows of modules in which a plurality of modules are connected in series arrangement in parallel arrangement. At this time, it is preferable to set the number of modules in each row to be the same, because this facilitates designing the degree of purification of the fluid to be concentrated and the control pressure of the modules.
When the separation membrane unit of the present invention includes a plurality of separation membrane modules, it has one or more separation membrane module groups.
 分離膜ユニットに供給される被濃縮流体中の水溶性有機化合物の含有量は、80wt%以上が好ましく、85wt%以上がより好ましく、88wt%以上が特に好ましい。97wt%以下が好ましく、95wt%以下がより好ましく、92wt%以下が特に好ましい。 The content of water-soluble organic compounds in the fluid to be concentrated supplied to the separation membrane unit is preferably 80 wt% or more, more preferably 85 wt% or more, and particularly preferably 88 wt% or more. 97 wt% or less is preferable, 95 wt% or less is more preferable, and 92 wt% or less is particularly preferable.
[分離膜モジュール群]
 分離膜モジュール群は、複数のモジュールを、被濃縮流体の供給側から順に、1以上の分離膜モジュールのまとまりとして分けたものである。このまとまりを、被濃縮流体の供給側から順に、第1の分離膜モジュール群、第2の分離膜モジュール群、…第nの分離膜モジュール群とする。分離膜モジュール群に含まれる分離膜モジュールの数は、同じでもよく、異なっていてもよい。
[Separation membrane module group]
The separation membrane module group is obtained by dividing a plurality of modules as a group of one or more separation membrane modules in order from the supply side of the fluid to be concentrated. This group is called a first separation membrane module group, a second separation membrane module group, . The number of separation membrane modules included in the separation membrane module group may be the same or different.
 分離膜モジュール群は、以下のように定める。分離膜ユニットが複数の分離膜モジュールを有する場合、通常、配管の製作や配管を支える架台コストの削減、およびプロセス全体の制御条件を簡素化するため、複数個の分離膜モジュールの透過側配管を、1つの集合配管にまとめる。この、透過側が1つの集合配管にまとめられた複数の分離膜モジュールを、1つの分離膜モジュール群とする。 The separation membrane module group is defined as follows. When a separation membrane unit has a plurality of separation membrane modules, the permeate side piping of multiple separation membrane modules is usually used to reduce the cost of manufacturing piping and the mounting frame that supports the piping, and to simplify the control conditions for the entire process. , are combined into one collecting pipe. A plurality of separation membrane modules whose permeate sides are combined into one collecting pipe is defined as one separation membrane module group.
 複数の分離膜モジュールを直列に配置した分離膜モジュールの列を、並列に複数列配置する場合は、図6に例示するように、異なる列にまたがって、分離膜モジュール群を設定する。このとき、図6に示すように、1つの分離膜モジュール群に含まれるそれぞれの列で、同数の分離膜モジュールを含むように分けることが、被濃縮流体の濃縮度等を考慮してプロセス設計する上で好ましい。図6においては、第1の分離膜モジュール群の全ての分離膜モジュールの透過側が第1の集合配管に、第2の分離膜モジュール群の全ての分離膜モジュールの透過側が第2の集合配管に接続している。 When arranging a plurality of rows of separation membrane modules in which a plurality of separation membrane modules are arranged in series in parallel, a separation membrane module group is set across different rows as illustrated in FIG. At this time, as shown in FIG. 6, each row included in one separation membrane module group may be divided so that the same number of separation membrane modules are included. preferred in doing so. In FIG. 6, the permeate sides of all the separation membrane modules in the first separation membrane module group are connected to the first collecting pipe, and the permeate sides of all the separation membrane modules in the second separation membrane module group are connected to the second collecting pipe. Connected.
 分離膜モジュール群が第1の分離膜モジュール群と第2の分離膜モジュール群からなるとき、第1の分離膜モジュール群の透過側が接続する第1の集合配管の真空圧力は、3kPaA以上が好ましく、5kPaA以上がより好ましく、10kPaA以上がさらに好ましい。150kPaA以下が好ましく、100kPaA以下がより好ましく、50kPaA以下がさらに好ましい。第2の分離膜モジュール群の透過側が接続する第2の集合配管の真空圧力は、0.5kPaA以上が好ましく、1kPaA以上がより好ましい。10kPaA以下が好ましく、5kPaA以下がより好ましく、3kPaA以下がさらに好ましい。前記下限値以上、上限値以下であることで、分離膜の供給側と透過側の差圧を発生させ、透過駆動力を十分に確保でき、透過側流体を冷却・凝縮する際に必要な低温冷媒の流量を小さくして、省エネ効果を発現させられる。 When the separation membrane module group consists of the first separation membrane module group and the second separation membrane module group, the vacuum pressure of the first collection pipe to which the permeation side of the first separation membrane module group is connected is preferably 3 kPaA or more. , more preferably 5 kPaA or more, and even more preferably 10 kPaA or more. 150 kPaA or less is preferable, 100 kPaA or less is more preferable, and 50 kPaA or less is even more preferable. The vacuum pressure of the second collecting pipe to which the permeate side of the second separation membrane module group is connected is preferably 0.5 kPaA or higher, more preferably 1 kPaA or higher. 10 kPaA or less is preferable, 5 kPaA or less is more preferable, and 3 kPaA or less is even more preferable. By being above the lower limit value and below the upper limit value, a differential pressure between the feed side and the permeate side of the separation membrane can be generated, a sufficient permeation driving force can be secured, and the low temperature necessary for cooling and condensing the permeate side fluid. By reducing the flow rate of the refrigerant, an energy-saving effect can be realized.
[分離膜モジュール]
 分離膜モジュールは、分離膜(膜)、容器シェル(殻)、被濃縮流体の供給口、濃縮流体の流出口、及び膜を介して隔てられた透過側流出口を含む。
[Separation membrane module]
The separation membrane module includes a separation membrane (membrane), a container shell (shell), a supply port for the fluid to be concentrated, an outlet for the concentrated fluid, and a permeate outlet separated by the membrane.
 分離膜モジュールとしては、容器シェル内に多数本の管状分離膜を配置し、管状分離膜の外側に被濃縮流体を流し、管状分離膜の内側に水を透過させるか、又は管状分離膜の内側に被濃縮流体を流し、管状分離膜の外側に水を透過させるものが好適であるが、分離膜の形態としては、ハニカム構造、中空糸構造、シート構造などであってもよく、限定するものではない。 As a separation membrane module, a large number of tubular separation membranes are arranged in a container shell, a fluid to be concentrated is allowed to flow outside the tubular separation membranes, and water is permeated inside the tubular separation membranes, or It is preferable to allow the fluid to be concentrated to flow through the tubular separation membrane and allow water to permeate the outside of the tubular separation membrane, but the form of the separation membrane may be a honeycomb structure, hollow fiber structure, sheet structure, etc. is not.
 管状分離膜としては、管状の多孔質基体の内周面及び/又は外周面に水を選択的に透過する膜を有するものが好適である。 As the tubular separation membrane, it is preferable to have a membrane that selectively permeates water on the inner peripheral surface and/or the outer peripheral surface of a tubular porous substrate.
[多孔質基体]
 多孔質基体は、分子篩膜を支持する支持体として機能する。多孔質基体を構成する材料は特に限定されるものではなく、ガラス、セラミックス、金属、カーボン成型体、又は樹脂等の種々の材料を適用可能である。セラミックス支持体の場合は、その表面などにゼオライトを膜状に結晶化できるような化学的安定性がある多孔質の無機物質であればいかなるものであってもよい。具体的には、例えば、シリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などのセラミックス焼結体などが挙げられる。中でも、α-アルミナ、γ-アルミナ等のアルミナやムライトが好ましく、アルミナが特に好ましい。これらの支持体を用いれば、部分的なゼオライト化が容易であるため、支持体とゼオライトの結合が強固になり緻密で分離性能の高い膜が形成されやすくなる。
[Porous substrate]
The porous substrate functions as a support that supports the molecular sieve membrane. Materials constituting the porous substrate are not particularly limited, and various materials such as glass, ceramics, metals, carbon moldings, and resins can be applied. In the case of the ceramic support, any porous inorganic material may be used as long as it is chemically stable such that zeolite can be crystallized in the form of a film on its surface. Specific examples include sintered ceramics such as silica, α-alumina, γ-alumina, mullite, zirconia, titania, yttria, silicon nitride and silicon carbide. Among them, alumina such as α-alumina and γ-alumina and mullite are preferable, and alumina is particularly preferable. When these supports are used, partial zeolite formation is facilitated, so that the bond between the support and zeolite is strengthened, and a dense membrane with high separation performance can be easily formed.
 本発明において、多孔質基体それ自体は分子篩能を有する必要はない。多孔質基体は、外壁側(外周面)と内壁側(内周面)とを連通する細かな気孔(空孔、空隙)を有する。 In the present invention, the porous substrate itself need not have molecular sieving ability. The porous substrate has fine pores (voids, voids) that communicate between the outer wall side (outer peripheral surface) and the inner wall side (inner peripheral surface).
 多孔質基体は、気孔率が、通常20%以上、好ましくは25%以上、より好ましくは30%以上であり、通常80%以下、好ましくは60%以下、より好ましくは50%以下で、その平均細孔径が通常0.01μm以上、好ましくは0.05μm以上より好ましくは0.1μm以上、上限は通常20μm以下、好ましくは10μm以下、より好ましくは5μm以下である。このような気孔を有する多孔質基体であれば、十分な強度を有して分子篩膜を適切に支持することができ、また、分子篩膜を透過した分子を十分な速度で透過させることが可能、或いは、分子篩膜へと分子を十分な速度で到達させることが可能である。尚、多孔質基体の気孔率や細孔径は、水銀圧入法、断面をSEMで観察することなどによって容易に特定可能である。平均細孔径についても同様であるが、真比重を用いて体積と質量から計算することもできる。 The porosity of the porous substrate is usually 20% or more, preferably 25% or more, more preferably 30% or more, and is usually 80% or less, preferably 60% or less, more preferably 50% or less, and the average The pore diameter is usually 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more, and the upper limit is usually 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less. A porous substrate having such pores can appropriately support the molecular sieve membrane with sufficient strength, and can allow molecules that have passed through the molecular sieve membrane to permeate at a sufficient speed. Alternatively, it is possible to allow the molecules to reach the molecular sieve membrane at sufficient velocity. Incidentally, the porosity and pore size of the porous substrate can be easily specified by a mercury intrusion method, observation of a cross section with an SEM, or the like. Similar to the average pore diameter, it can also be calculated from volume and mass using true specific gravity.
 分子篩膜としてゼオライト膜を製膜する際の多孔質基体は、外周面から内周面に亘る貫通細孔の開口の最大径が通常10μm以下であり、好ましくは8μm以下である。前記最大径の下限値は、0.05μm以上が好ましい。また、外周面から内周面に亘る貫通部が全て同一の細孔径を有していてもよく、例えば、特開2005-270887号公報に記載のように、部分的又は段階的に異なる細孔径を有するものを用いてもよい。 The maximum diameter of the openings of the through pores extending from the outer peripheral surface to the inner peripheral surface of the porous substrate for forming the zeolite membrane as the molecular sieve membrane is usually 10 µm or less, preferably 8 µm or less. The lower limit of the maximum diameter is preferably 0.05 μm or more. In addition, all of the penetrating portions from the outer peripheral surface to the inner peripheral surface may have the same pore size. may be used.
 管状の多孔質基体は、管軸方向と垂直な断面が、外周面及び内周面ともに円形であることが好ましい。管状の多孔質基体の厚み(外周面の半径と内周面の半径との差)は特に限定されるものではない。材質や気孔率等によっても異なるが、例えば、厚みは0.5mm以上であることが好ましく、より好ましくは0.8mm以上、さらに好ましくは1.0mm以上である。 In the tubular porous substrate, it is preferable that both the outer peripheral surface and the inner peripheral surface of the cross section perpendicular to the tube axis direction are circular. The thickness of the tubular porous substrate (the difference between the radius of the outer peripheral surface and the radius of the inner peripheral surface) is not particularly limited. For example, the thickness is preferably 0.5 mm or more, more preferably 0.8 mm or more, and even more preferably 1.0 mm or more, although it varies depending on the material, porosity, and the like.
 管状の多孔質基体の内径は、特に限定されるものではない。材質や気孔率等によっても異なるが、例えば、上記した多孔質基体の厚みに対する内径(直径)の比(内径(mm)/厚み(mm))は20以下が好ましく、より好ましくは17以下であり、さらに好ましくは13以下であり、特に好ましくは9以下である。セラミックス焼結体製多孔質基体の場合、内径は3mm以上、特に5mm以上で、20mm以下、特に15mm以下であることが好ましい。 The inner diameter of the tubular porous substrate is not particularly limited. For example, the ratio of the inner diameter (diameter) to the thickness of the porous substrate (inner diameter (mm)/thickness (mm)) is preferably 20 or less, more preferably 17 or less. , more preferably 13 or less, particularly preferably 9 or less. In the case of a ceramic sintered porous substrate, the inner diameter is preferably 3 mm or more, particularly 5 mm or more, and 20 mm or less, particularly 15 mm or less.
 多孔質基体の長さ(軸方向長さ)は特に限定されるものではない。 The length (axial length) of the porous substrate is not particularly limited.
[分子篩膜]
 分子篩膜は、多孔質基体の表面に形成される。多孔質基体の形態が管状である場合、分子篩膜は、外周面及び/又は内周面に形成される。分子篩膜は、適切に分子篩能を発揮できれば、その形態は特に限定されるものではない。
[Molecular Sieve Membrane]
A molecular sieve membrane is formed on the surface of the porous substrate. When the porous substrate has a tubular shape, the molecular sieve membrane is formed on the outer peripheral surface and/or the inner peripheral surface. The form of the molecular sieve membrane is not particularly limited as long as it can exhibit molecular sieving ability appropriately.
 分子篩膜は、有機膜、無機膜のいずれでもよいが、無機膜が好適である。無機膜としては、ゼオライト膜、シリカ膜、及び炭素膜のいずれか、又はその組み合わせであることが好ましく、中でもゼオライト膜またはシリカ膜が好ましく、特に分離性能、耐水性、耐久性の観点でゼオライト膜が好ましい。 The molecular sieve membrane may be either an organic membrane or an inorganic membrane, but an inorganic membrane is preferable. The inorganic membrane is preferably a zeolite membrane, a silica membrane, or a carbon membrane, or a combination thereof. Among them, a zeolite membrane or a silica membrane is preferred, and a zeolite membrane is particularly preferred from the viewpoint of separation performance, water resistance, and durability. is preferred.
 ここで、分子篩膜としてゼオライト膜を用いる場合、ゼオライトはアルミノケイ酸塩であることが好ましいが、膜の性能を大きく損なわない限りAlの代わりにGa、Fe、B、Ti、Zr、Sn、Zn等の金属元素を用いてもよく、Alと共にGa、Fe、B、Ti、Zr、Sn、Zn、P等の元素を含んでいてもよい。 Here, when a zeolite membrane is used as the molecular sieve membrane, the zeolite is preferably an aluminosilicate, but Ga, Fe, B, Ti, Zr, Sn, Zn, etc., can be used instead of Al as long as the performance of the membrane is not significantly impaired. may be used, and elements such as Ga, Fe, B, Ti, Zr, Sn, Zn, and P may be included together with Al.
 また、ゼオライト膜の細孔を形成する結晶ゼオライトの骨格が酸素8員環以下の環であることが好ましく、酸素6~8員環であることがより好ましい。 In addition, the skeleton of the crystalline zeolite that forms the pores of the zeolite membrane is preferably an oxygen 8-membered ring or less, more preferably an oxygen 6- to 8-membered ring.
 ゼオライトの構造としては、例えばAEI、AFG、ANA、CHA、DDR、EAB、ERI、ESV、FAR、FRA、GIS、ITE、KFI、LEV、LIO、LOS、LTA、LTN、MAR、MWF、PAU、RHO、RTH、SOD、STI、TOL、UFIなどが挙げられる。これらのうち、AEI、CHA、DDR、ERI、KFI、LEV、MWF、PAU、RHO、RTH、SOD、LTA、UFI型ゼオライトにより構成される膜を用いることが好ましく、CHA、DDR、MWF、RHO、SOD型ゼオライトにより構成される膜を用いることがより好ましい。なお、酸素n員環を有するゼオライトのnの値は、ゼオライト骨格とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素原子の数が大きいものをさす。 Examples of zeolite structures include AEI, AFG, ANA, CHA, DDR, EAB, ERI, ESV, FAR, FRA, GIS, ITE, KFI, LEV, LIO, LOS, LTA, LTN, MAR, MWF, PAU, RHO , RTH, SOD, STI, TOL, UFI, and the like. Among these, it is preferable to use a membrane composed of AEI, CHA, DDR, ERI, KFI, LEV, MWF, PAU, RHO, RTH, SOD, LTA, UFI-type zeolite, and CHA, DDR, MWF, RHO, It is more preferable to use a membrane composed of SOD-type zeolite. The n value of zeolite having n-membered oxygen rings indicates the largest number of oxygen atoms among the pores composed of the zeolite skeleton and T elements (elements other than oxygen constituting the skeleton).
 分子篩膜としてゼオライト膜を合成する場合、必要に応じて有機テンプレート(構造規定剤)を用いることができるが、通常は目的とするゼオライト構造を作成可能なテンプレートであれば特に制限はなく、テンプレートなしで合成可能であれば用いなくてもよい。 When synthesizing a zeolite membrane as a molecular sieve membrane, an organic template (structure directing agent) can be used as necessary, but usually there is no particular limitation as long as the template can create the desired zeolite structure, and there is no template. It is not necessary to use if it is possible to synthesize with
 分子篩膜の厚みは、特に限定されないが、ゼオライト膜では通常、厚みの下限値は、0.01μm以上である。厚みの上限値は、30μm以下が好ましく、10μm以下がより好ましい。シリカ膜では、単層からなる膜でも、2層以上からなる膜でもよく、その厚みは、1nm以上が好ましい。厚みは、10μm以下が好ましく、1μm以下がより好ましい。炭素膜では、厚みは、0.05μm以上が好ましく、0.1μm以下がより好ましい。厚みの上限値は、5mm以下が好ましく、500μm以下がより好ましいが、膜性能を大きく損なわない限り膜厚は薄いことが好ましい。 Although the thickness of the molecular sieve membrane is not particularly limited, the lower limit of the thickness of the zeolite membrane is usually 0.01 μm or more. The upper limit of the thickness is preferably 30 μm or less, more preferably 10 μm or less. The silica film may be a film consisting of a single layer or a film consisting of two or more layers, and the thickness thereof is preferably 1 nm or more. The thickness is preferably 10 μm or less, more preferably 1 μm or less. The carbon film preferably has a thickness of 0.05 μm or more, and more preferably 0.1 μm or less. The upper limit of the thickness is preferably 5 mm or less, more preferably 500 μm or less.
 多孔質基体の表面に分子篩膜を形成する方法としては上述した方法に限定されるものではない。例えば、(1)多孔質基体の表面に、分子篩膜を構成し得る物質をバインダー等で固着させる方法、(2)分子篩膜を構成し得る物質を分散させたスラリー又は溶液に多孔質基体を含浸させて、多孔質基体表面に当該物質を固着させる方法、(3)多孔質基体の表面において、分子篩膜を構成し得る物質(特に、ゼオライト)を膜状に結晶化させる方法等が挙げられる(例えば、国際公開第2013/125660号パンフレット等を参照)。 The method of forming the molecular sieve on the surface of the porous substrate is not limited to the above-mentioned methods. For example, (1) a method in which a substance capable of forming a molecular sieve is adhered to the surface of a porous substrate with a binder or the like, and (2) a porous substrate is impregnated with a slurry or solution in which a substance capable of forming a molecular sieve is dispersed. and (3) a method of crystallizing a substance (especially zeolite) that can constitute a molecular sieve membrane on the surface of the porous substrate into a film. For example, see International Publication No. 2013/125660 pamphlet, etc.).
[圧縮機ユニット]
 本発明の脱水装置は、1以上の圧縮機ユニットを含む。本発明の圧縮機ユニットは、1以上の圧縮機を含む。
[Compressor unit]
The dehydrator of the present invention includes one or more compressor units. A compressor unit of the present invention includes one or more compressors.
[圧縮機]
 圧縮機は、流体にエネルギーを与えて、流体の圧力を変化させるものである。圧縮機としては、流体の体積を小さくすることで圧力を変化させる容積圧縮機が好ましい。その中でも、負圧条件の流体を圧縮することができる観点で、ベーパーコンプレッサや真空ポンプ、エジェクタが好ましい。省エネ性能が高い観点で、エジェクタがより好ましい。エジェクタの中でも、駆動力として用いるスチームと、エジェクタによって引き込まれた流体の両方を、後続する処理設備に直接導入できることから、当該後続する処理へエネルギーロスを極力減らしたままを引き渡すことができ、エネルギー効率が良い観点で、スチームエジェクタが好ましい。圧縮機がスチームエジェクタである場合は、圧縮機を通過した流体と、スチームを合わせた流体を、圧縮機を通過した流体とする。
[Compressor]
A compressor imparts energy to a fluid to change the pressure of the fluid. As the compressor, a positive displacement compressor that changes the pressure by reducing the volume of fluid is preferable. Among them, a vapor compressor, a vacuum pump, and an ejector are preferable from the viewpoint of being able to compress a fluid under negative pressure conditions. An ejector is more preferable from the viewpoint of high energy-saving performance. Among the ejectors, both the steam used as the driving force and the fluid drawn by the ejector can be directly introduced into the subsequent processing equipment, so that the energy loss can be minimized and transferred to the subsequent processing. A steam ejector is preferable from the viewpoint of efficiency. When the compressor is a steam ejector, the fluid that has passed through the compressor is a combination of the fluid that has passed through the compressor and the steam.
 圧縮機は、1つを単独で用いても良く、複数を接続して用いてもよい。圧縮機の接続パターンを、図7に示す。図7は、圧縮機としてスチームエジェクタを用いた場合の図である。(a)は圧縮機を単独で用いた場合の図であり、(b)は圧縮機を直列で2つ接続した図であり、(c)は圧縮機を直列で2つ接続したものを並列で2列接続した図である。符号9は分離膜モジュールを示し、符号12はスチームエジェクタを示す。複数の圧縮機を用いる場合は、全てを直列に配置してもよく、全てを並列に配置しても良く、直列と並列を組み合わせて配置してもよい。直列と並列を組み合わせて配置する場合は、複数の圧縮機を直列配置に接続した一列の圧縮機を、並列に複数並べることが好ましい。このとき、各列の圧縮機の個数は同じにすることが、個々の圧縮機を制御するプロセスを設計することが容易になるため好ましい。 One compressor may be used alone, or a plurality of compressors may be connected and used. The connection pattern of the compressor is shown in FIG. FIG. 7 is a diagram when a steam ejector is used as a compressor. (a) is a diagram in which a single compressor is used, (b) is a diagram in which two compressors are connected in series, and (c) is a diagram in which two compressors are connected in series in parallel. It is a figure which connected two rows with. Reference numeral 9 indicates a separation membrane module, and reference numeral 12 indicates a steam ejector. When using a plurality of compressors, all may be arranged in series, all may be arranged in parallel, or a combination of series and parallel may be arranged. When arranging the compressors in series and in parallel, it is preferable to arrange in parallel a plurality of compressors in a row, each of which is a series connection of a plurality of compressors. At this time, it is preferable to set the number of compressors in each row to be the same, because this facilitates the design of the process for controlling each compressor.
 圧縮機としてスチームエジェクタを用いる場合、1つのスチームエジェクタに供給されるスチーム量を、そのスチーム量と、スチームエジェクタに供給される被圧縮流体を合計した流体量で除算した値は、0.65以上0.999以下が好ましく、0.75以上0.999以下がより好ましく、0.75以上0.98以下が特に好ましい。前記範囲内であることで、被圧縮流体を圧縮するための必要最低限のスチーム量で操作でき、効率的に被流体を圧縮できる。 When a steam ejector is used as a compressor, the value obtained by dividing the amount of steam supplied to one steam ejector by the total fluid amount of the steam amount and the fluid to be compressed supplied to the steam ejector is 0.65 or more. It is preferably 0.999 or less, more preferably 0.75 or more and 0.999 or less, and particularly preferably 0.75 or more and 0.98 or less. Within the above range, operation can be performed with the minimum amount of steam necessary for compressing the fluid to be compressed, and the fluid to be compressed can be efficiently compressed.
 圧縮機としてスチームエジェクタを用いる場合、1つのスチームエジェクタにおける吐出圧力を被流体の吸込み圧力で除算した圧縮比は、1以上20以下が好ましく、1以上15以下がより好ましく、1以上10以下が特に好ましい。前記範囲内にあることで、圧縮時に発生する放熱によるエネルギー損失を小さくしつつ効率的に圧縮することが出来る。 When a steam ejector is used as a compressor, the compression ratio obtained by dividing the discharge pressure of one steam ejector by the suction pressure of the fluid is preferably 1 or more and 20 or less, more preferably 1 or more and 15 or less, and particularly 1 or more and 10 or less. preferable. By being within the above range, efficient compression can be achieved while reducing energy loss due to heat radiation generated during compression.
[脱水システム]
 本発明の脱水システムは、第1の蒸留塔と第2の蒸留塔を含む複数の蒸留塔と、水を選択的に透過する分離膜を備える分離膜モジュールを、1以上有する分離膜モジュール群を、1以上含む分離膜ユニットと、1以上の圧縮機を備える、1以上の圧縮機ユニット、とを有し、前記第1の蒸留塔と、前記第2の蒸留塔と、前記分離膜モジュール群のうち1以上と、前記圧縮機ユニットのうち1以上と、前記第1の蒸留塔が順に配置されている。
[Dehydration system]
The dehydration system of the present invention comprises a separation membrane module group having at least one separation membrane module comprising a plurality of distillation columns including a first distillation column and a second distillation column, and a separation membrane module that selectively permeates water. , one or more separation membrane units, and one or more compressor units comprising one or more compressors, the first distillation column, the second distillation column, and the separation membrane module group , one or more of the compressor units, and the first distillation column are arranged in order.
 圧縮機ユニットの入口側には、分離膜モジュール群の透過側を接続する。圧縮機ユニットの出口側は、運転圧力が、圧縮機ユニットの出口側の圧力以下であり、分離膜モジュールユニットに供給する被濃縮流体を供給する蒸留塔とは異なる蒸留塔、に接続する。  The permeation side of the separation membrane module group is connected to the inlet side of the compressor unit. The outlet side of the compressor unit is connected to a distillation column whose operating pressure is less than or equal to the pressure on the outlet side of the compressor unit and which is different from the distillation column that supplies the fluid to be enriched to the separation membrane module unit.
 分離膜ユニットが複数の分離膜モジュールを有する場合、全ての分離膜モジュールの透過側を、1つの圧縮機ユニットの入口側に接続してもよい。 When the separation membrane unit has a plurality of separation membrane modules, the permeate sides of all the separation membrane modules may be connected to the inlet side of one compressor unit.
 分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含む場合、第1の分離膜モジュール群または第2の分離膜モジュール群のいずれか一方の透過側が、圧縮機ユニットの入口側に接続し、圧縮機ユニットの出口側が、第1の蒸留塔に接続するようにしてもよい。 When the separation membrane unit includes the first separation membrane module group and the second separation membrane module group, the permeate side of either the first separation membrane module group or the second separation membrane module group is the compressor unit. and the outlet side of the compressor unit may be connected to the first distillation column.
 このとき、前記第1の分離膜モジュール群と第2の分離膜モジュール群のうち、圧縮機ユニットに接続していない分離膜モジュール群の透過側を、冷媒を使って被透過流体を凝縮・冷却させるコンデンサと接続してもよく、第1の蒸留塔と接続してもよい。 At this time, of the first separation membrane module group and the second separation membrane module group, the permeate side of the separation membrane module group that is not connected to the compressor unit is condensed and cooled using refrigerant. It may be connected to a condenser that allows the gas to flow, or may be connected to the first distillation column.
 透過側の流体を効率よく熱回収する観点で、第2の分離膜モジュール群の透過側を圧縮機ユニットに接続し、第1の蒸留塔に接続することが好ましい。この場合、さらに、第1の分離膜モジュール群の透過側は、凝縮器に接続することが好ましく、第1の蒸留塔と異なる蒸留塔に接続することがより好ましく、圧縮機の出口側の流体と、第1の分離膜モジュール群の透過側の流体を合一させ、第1の蒸留塔に接続することがさらに好ましい。 From the viewpoint of efficiently recovering heat from the fluid on the permeate side, it is preferable to connect the permeate side of the second separation membrane module group to the compressor unit and connect it to the first distillation column. In this case, the permeate side of the first separation membrane module group is preferably connected to a condenser, and more preferably connected to a distillation column different from the first distillation column. and the fluid on the permeate side of the first separation membrane module group are combined and connected to the first distillation column.
 分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含み、圧縮機ユニットとして、第1の圧縮機ユニットと第2の圧縮機ユニットを有する場合、第1の分離膜モジュー群の透過側が、第1の圧縮機ユニットの入口側に接続し、第2の分離膜モジュール群の透過側が、第2の圧縮機ユニットの入口側に接続するようにしてもよい。 When the separation membrane unit includes a first separation membrane module group and a second separation membrane module group, and has a first compressor unit and a second compressor unit as compressor units, the first separation membrane The permeate side of the module group may be connected to the inlet side of the first compressor unit, and the permeate side of the second separation membrane module group may be connected to the inlet side of the second compressor unit.
 この場合、第1の圧縮機ユニットの出口側を第2の蒸留塔に接続し、第2の圧縮機ユニットの出口側を第1の蒸留塔に接続してもよく、
第1の圧縮機ユニットの出口側、及び前記第2の圧縮機ユニットの出口側の両方を、第1の蒸留塔に接続してもよい。
In this case, the outlet side of the first compressor unit may be connected to the second distillation column and the outlet side of the second compressor unit may be connected to the first distillation column,
Both the outlet side of the first compressor unit and the outlet side of said second compressor unit may be connected to the first distillation column.
 分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含み、圧縮機ユニットとして、第1の圧縮機ユニット、第2の圧縮機ユニット、及び第3の圧縮機ユニットを有する場合、第1の圧縮機ユニット、及び第2の圧縮機ユニットのそれぞれの出口側を第3の圧縮機ユニットの入口側に接続し、第3の圧縮機ユニットの出口側が、第1の蒸留塔に接続するようにしてもよい。 The separation membrane unit includes a first separation membrane module group and a second separation membrane module group, and the compressor units include a first compressor unit, a second compressor unit, and a third compressor unit. If so, connecting the outlet side of each of the first compressor unit and the second compressor unit to the inlet side of the third compressor unit, the outlet side of the third compressor unit being connected to the first distillation It may be connected to a tower.
 以下図面を参照して説明するが、図面中または以下説明に記載の脱水システムは一例であり、これに限定されるものではない。 Although the following description will be made with reference to the drawings, the dehydration system described in the drawings or described below is an example and is not limited to this.
 なお、以下の分離膜モジュール群による被処理流体の脱水に関しては、浸透気化法を用いてもよく、蒸気透過法を用いてもよい。 Regarding the dehydration of the fluid to be treated by the separation membrane module group below, the pervaporation method or the vapor permeation method may be used.
 図1を参照して、本発明の実施態様に係る脱水システム、及び脱水方法の一例を説明する。図1は、本発明に係る脱水システムの一態様を示した概略図である。 An example of a dehydration system and a dehydration method according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing one aspect of the dehydration system according to the present invention.
 この脱水システムは、第1の蒸留塔1a、第2の蒸留塔1b、第3の蒸留塔1f、第1の分離膜モジュール群1cを含む分離膜ユニット、及びスチームエジェクタ1dを基本構成として備え、蒸留と膜分離により水溶性有機化合物と水との混合物を含む被処理流体から水を分離するものである。なお、図1では、分離膜ユニットは、第1の分離膜モジュール群1cを備え、第1の分離膜モジュール群1cは、1つの分離膜モジュールを備える。第1の蒸留塔1aの塔頂部に圧縮機(不図示)が接続され、圧縮された塔頂流体が水と熱交換されている。なお第2の蒸留塔1bの塔頂蒸気を第1の蒸留塔1aの塔底リボイラーの熱源として使用する多重効用蒸留塔としているが、多重効用のプロセスはこれに限定されるものではない。 This dehydration system basically comprises a first distillation column 1a, a second distillation column 1b, a third distillation column 1f, a separation membrane unit including a first separation membrane module group 1c, and a steam ejector 1d, Distillation and membrane separation are used to separate water from a treated fluid containing a mixture of water-soluble organic compounds and water. In FIG. 1, the separation membrane unit includes a first separation membrane module group 1c, and the first separation membrane module group 1c includes one separation membrane module. A compressor (not shown) is connected to the top of the first distillation column 1a, and the compressed top fluid is heat-exchanged with water. Although a multiple-effect distillation column is used in which the overhead vapor of the second distillation column 1b is used as a heat source for the bottom reboiler of the first distillation column 1a, the multiple-effect process is not limited to this.
 図1に示す脱水システムにおいて、第1の蒸留塔1aは、少なくとも水溶性有機化合物と水を含む被処理流体である液体が原料として導入される。 In the dehydration system shown in FIG. 1, a liquid, which is a fluid to be treated containing at least a water-soluble organic compound and water, is introduced as a raw material into the first distillation column 1a.
 第1の蒸留塔1aは、被処理流体を、気体状態の水溶性有機化合物を含む塔頂蒸気と、液体状態の水からなる缶出液に分離する。塔頂蒸気は、第2の蒸留塔1b、および第3の蒸留塔1fに供給される。第1の蒸留塔1aは、棚段式等、蒸留操作に適したものであれば、その種類は特に限定されない。第1の蒸留塔の運転圧力は、分離膜モジュール群1cから透過した流体が逆流しないようにするため、スチームエジェクタ1dの出口側圧力以下になるようにする。第1の蒸留塔1aは、減圧蒸留塔であることが好ましい。また、被処理流体が、発酵槽から供給される場合は、もろみ塔であることが好ましい。 The first distillation column 1a separates the fluid to be treated into overhead vapor containing gaseous water-soluble organic compounds and bottoms consisting of liquid water. The overhead vapor is supplied to the second distillation column 1b and the third distillation column 1f. The type of the first distillation column 1a is not particularly limited as long as it is suitable for the distillation operation, such as a tray type. The operating pressure of the first distillation column is set to be equal to or lower than the pressure on the outlet side of the steam ejector 1d in order to prevent the fluid permeated from the separation membrane module group 1c from flowing back. The first distillation column 1a is preferably a vacuum distillation column. Also, when the fluid to be treated is supplied from a fermenter, it is preferably a moromi tower.
 第1の蒸留塔1aにおける塔底の液の一部は、スチームエジェクタ1eから導入された流体および、第1の蒸留塔1aの塔頂と接続された圧縮機(不図示)を経由した塔頂蒸気によって加熱された水、および第3の蒸留塔1fの塔頂蒸気によって加熱された水によって加熱されて蒸気となり、塔内を流下する液体と熱交換をしながら塔内を上昇する。このため、塔底においては蒸気の成分のほとんどは水であるが、塔頂の近くでは水溶性有機化合物の濃度が高くなる。なお、塔底から取り出された液の残部は、缶出液として取り出される。 Part of the liquid at the bottom of the first distillation column 1a is a fluid introduced from the steam ejector 1e and a compressor (not shown) connected to the top of the first distillation column 1a. The vapor is heated by the water heated by the steam and the water heated by the overhead steam of the third distillation column 1f to become steam, and rises in the column while exchanging heat with the liquid flowing down the column. For this reason, most of the vapor component is water at the bottom of the column, but the concentration of water-soluble organic compounds increases near the top of the column. The rest of the liquid taken out from the bottom of the column is taken out as a bottom product.
 第2の蒸留塔1bおよび第3の蒸留塔1fは、多重効用を利用するために、加圧蒸留、常圧蒸留、減圧蒸留等の各種蒸留を実施することができる。第2の蒸留塔1bおよび第3の蒸留塔1fの段数としては、特に制限はなく、要求される水溶性有機化合物の濃度スペック等により適宜決定することができる。また、第2の蒸留塔1bおよび第3の蒸留塔1fでは、原料を概ね85.0質量%以上の水溶性有機化合物に濃縮することが好ましく、例えば、要求濃度スペック(仕様)が99.0質量%を超え99.9質量%未満である場合は、85.0質量%以上から99.0質量%未満となることが好ましく、要求濃度スペックが99.9質量%以上である場合は、85.0質量%以上99.9質量%未満の水溶性有機化合物に濃縮することが好ましいが、特にこの範囲には限定されない。 The second distillation column 1b and the third distillation column 1f can carry out various distillations such as pressurized distillation, normal pressure distillation, vacuum distillation, etc. in order to utilize multiple effects. The number of stages of the second distillation column 1b and the third distillation column 1f is not particularly limited, and can be appropriately determined according to the required concentration specifications of the water-soluble organic compound. In addition, in the second distillation column 1b and the third distillation column 1f, it is preferable to concentrate the raw material to approximately 85.0% by mass or more of the water-soluble organic compound, for example, the required concentration specification (specification) is 99.0 When it is more than 99.9% by mass, it is preferably 85.0% by mass or more and less than 99.0% by mass, and when the required concentration specification is 99.9% by mass or more, 85% by mass Although it is preferable to concentrate the water-soluble organic compound to 0.0% by mass or more and less than 99.9% by mass, the range is not particularly limited.
 第2の蒸留塔1bおよび第3の蒸留塔1fの塔頂蒸気は、被濃縮流体として、第1の分離膜モジュール群1cに導入される。第1の分離膜モジュール群1cの濃縮側流出口から出た濃縮流体は、第2の蒸留塔1bの塔底に接続された熱交換器によって熱回収され、製品として回収されるが、熱回収される方法はこれに限定されない。 The overhead vapors of the second distillation column 1b and the third distillation column 1f are introduced into the first separation membrane module group 1c as a fluid to be concentrated. The concentrated fluid discharged from the concentration-side outlet of the first separation membrane module group 1c is heat-recovered by a heat exchanger connected to the bottom of the second distillation column 1b, and is recovered as a product. The method used is not limited to this.
 第1の分離膜モジュール群1cの透過側流出口から出た透過側流体は、スチームエジェクタ1dに導入され、スチームエジェクタ1dの出口側から、第1の蒸留塔1aに導入される。第1の分離膜モジュール群1cの非透過側流出口から出た非透過側流体は、熱交換器を経て第2の蒸留塔1bに熱回収され、製品タンク(不図示)に回収される。 The permeate-side fluid coming out of the permeate-side outlet of the first separation membrane module group 1c is introduced into the steam ejector 1d, and introduced into the first distillation column 1a from the outlet side of the steam ejector 1d. The non-permeate side fluid coming out of the non-permeate side outlet of the first separation membrane module group 1c is heat-recovered in the second distillation column 1b via a heat exchanger and recovered in a product tank (not shown).
 図2は、本発明の脱水システム、及び脱水方法の実施態様の別の一例である。この態様では、分離膜ユニットは、第1の分離膜モジュール群2cと、第2の分離膜モジュール群2dを備える。 FIG. 2 is another example of an embodiment of the dehydration system and dehydration method of the present invention. In this aspect, the separation membrane unit comprises a first separation membrane module group 2c and a second separation membrane module group 2d.
 この脱水システムは、第1の蒸留塔2a、第2の蒸留塔2b、第3の蒸留塔2f、第1の分離膜モジュール群2c、第2の分離膜モジュール群2dを含む分離膜ユニット、及びスチームエジェクタ2eを基本構成とする。 This dehydration system includes a separation membrane unit including a first distillation column 2a, a second distillation column 2b, a third distillation column 2f, a first separation membrane module group 2c, a second separation membrane module group 2d, and A steam ejector 2e is used as a basic configuration.
 図2に示す脱水システムにおいて、第1の蒸留塔2aは、少なくとも水溶性有機化合物と水を含む被処理流体である液体が原料として導入される。 In the dehydration system shown in FIG. 2, the first distillation column 2a is fed with a liquid, which is a fluid to be treated containing at least water-soluble organic compounds and water, as a raw material.
 第1の蒸留塔2aは、被処理流体を、気体状態の水溶性有機化合物を含む塔頂蒸気と、液体状態の水からなる缶出液に分離する。塔頂蒸気は、第2の蒸留塔2bおよび第3の蒸留塔2fに供給される。第1の蒸留塔2aは、棚段式等、蒸留操作に適したものであれば、その種類は特に限定されない。第1の蒸留塔2aは、スチームエジェクタ2eの出口側流体と分離膜モジュール群2cの透過側流体が混合した混合流体が逆流しないようにするため、その運転圧力が、スチームエジェクタ2eの出口側の圧力以下になるようにする。 The first distillation column 2a separates the fluid to be treated into overhead vapor containing gaseous water-soluble organic compounds and bottoms consisting of liquid water. The overhead vapor is supplied to the second distillation column 2b and the third distillation column 2f. The type of the first distillation column 2a is not particularly limited as long as it is suitable for the distillation operation, such as a tray type. The operating pressure of the first distillation column 2a is set at the outlet side of the steam ejector 2e so that the mixed fluid in which the outlet side fluid of the steam ejector 2e and the permeation side fluid of the separation membrane module group 2c are mixed does not flow back. Keep under pressure.
 第1の蒸留塔2aは、減圧蒸留塔であることが好ましい。また、被処理流体が、発酵槽から供給される場合は、もろみ塔であることが好ましい。 The first distillation column 2a is preferably a vacuum distillation column. Also, when the fluid to be treated is supplied from a fermenter, it is preferably a moromi tower.
 第1の蒸留塔2aにおける塔底の液の一部は、スチームエジェクタ2eおよび分離膜モジュール群2cの透過側から導入された流体および、第1の蒸留塔2aの塔頂と接続された圧縮機(不図示)を経由した塔頂蒸気によって加熱された水、および第3の蒸留塔2fの塔頂蒸気によって加熱された水によって加熱されて蒸気となり、塔内を流下する液体と熱交換をしながら塔内を上昇する。このため、塔底においては蒸気の成分のほとんどは水であるが、塔頂の近くでは水溶性有機化合物の濃度が高くなる。なお、塔底から取り出された液の残部は、缶出液として取り出される。 Part of the bottom liquid in the first distillation column 2a is the fluid introduced from the steam ejector 2e and the permeation side of the separation membrane module group 2c, and the compressor connected to the top of the first distillation column 2a. (not shown) and the water heated by the overhead steam of the third distillation column 2f is heated to become steam and heat exchange with the liquid flowing down the column. While ascending the tower. For this reason, most of the vapor component is water at the bottom of the column, but the concentration of water-soluble organic compounds increases near the top of the column. The rest of the liquid taken out from the bottom of the column is taken out as a bottom product.
 第2の蒸留塔2bおよび第3の蒸留塔2fは、多重効用を利用するため、加圧蒸留、常圧蒸留、減圧蒸留等の各種蒸留を実施することができる。第2の蒸留塔2b、第3の蒸留塔2fの段数としては、特に制限はなく、要求される水溶性有機化合物の濃度スペック等により適宜決定することができる。また、第2の蒸留塔2bおよび第3の蒸留塔2fでは、原料を概ね85.0質量%以上の水溶性有機化合物に濃縮することが好ましく、例えば、要求濃度スペック(仕様)が99.0質量%を超え99.9質量%未満である場合は、85.0質量%以上から99.0質量%未満となることが好ましく、要求濃度スペックが99.9質量%以上である場合は、85.0質量%以上99.9質量%未満の水溶性有機化合物に濃縮することが好ましいが、特にこの範囲には限定されない。 Since the second distillation column 2b and the third distillation column 2f utilize multiple effects, various distillations such as pressurized distillation, normal pressure distillation, and vacuum distillation can be performed. The number of stages of the second distillation column 2b and the third distillation column 2f is not particularly limited, and can be appropriately determined depending on the required concentration specifications of the water-soluble organic compound. In addition, in the second distillation column 2b and the third distillation column 2f, it is preferable to concentrate the raw material to approximately 85.0% by mass or more of the water-soluble organic compound, for example, the required concentration specification (specification) is 99.0 When it is more than 99.9% by mass, it is preferably 85.0% by mass or more and less than 99.0% by mass, and when the required concentration specification is 99.9% by mass or more, 85% by mass Although it is preferable to concentrate the water-soluble organic compound to 0.0% by mass or more and less than 99.9% by mass, the range is not particularly limited.
 第2の蒸留塔2bおよび第3の蒸留塔2fの塔頂蒸気は、被濃縮流体として、第1の分離膜モジュール群2cに導入される。第1の分離膜モジュール群2cの濃縮側流出口から出た第1の濃縮流体は、被濃縮流体として、第2の分離膜モジュール群2dの被濃縮流体の供給口から入る。第2の分離膜モジュール群2dの濃縮側流出口から出た第2の濃縮流体は、第2の蒸留塔2bの塔底に接続された熱交換器によって熱回収され、製品として回収されるが、熱回収される方法はこれに限定されない。 The overhead vapors of the second distillation column 2b and the third distillation column 2f are introduced into the first separation membrane module group 2c as a fluid to be concentrated. The first concentrated fluid coming out of the concentration-side outflow port of the first separation membrane module group 2c enters as the fluid to be concentrated from the supply port of the fluid to be concentrated of the second separation membrane module group 2d. The second concentrated fluid discharged from the concentration side outlet of the second separation membrane module group 2d is heat-recovered by a heat exchanger connected to the bottom of the second distillation column 2b and recovered as a product. , the method of heat recovery is not limited to this.
 第1の分離膜モジュール群2cで濃縮された第1の透過側流体は、第1の蒸留塔2aへ導入される。第2の分離膜モジュール群2dで濃縮された第2の透過側流体は、スチームエジェクタ2eに導入され、スチームエジェクタ2eの出口側から、第1の蒸留塔2aに導入される。第2の分離膜モジュール群2dの非透過側流出口から出た非透過側流体は、熱交換器を経て第2の蒸留塔2fに熱回収され、製品タンク(不図示)に回収される。 The first permeate-side fluid concentrated in the first separation membrane module group 2c is introduced into the first distillation column 2a. The second permeate-side fluid concentrated in the second separation membrane module group 2d is introduced into the steam ejector 2e and introduced into the first distillation column 2a from the outlet side of the steam ejector 2e. The non-permeate side fluid coming out of the non-permeate side outlet of the second separation membrane module group 2d is heat-recovered in the second distillation column 2f via a heat exchanger and recovered in a product tank (not shown).
 なお、図2では、第1の分離膜モジュール群2c及び第2の分離膜モジュール群2dに含まれる分離膜モジュールの数は、それぞれ1つである。 Note that in FIG. 2, the number of separation membrane modules included in the first separation membrane module group 2c and the number of the separation membrane modules included in the second separation membrane module group 2d are one each.
 図3は、第1の比較例を示している。この第1比較例では、膜分離装置を設置せず、PSA3cだけで被濃縮流体の脱水を行い、PSA3cの脱着流体は凝縮器3dを経て、第1の蒸留塔3aへ導入される。PSA3cから出た濃縮流体は、熱交換器を経て第2の蒸留塔3fに熱回収され、製品タンク(不図示)に回収される。 FIG. 3 shows a first comparative example. In this first comparative example, no membrane separation device is installed, and the fluid to be concentrated is dehydrated only by the PSA 3c, and the desorbed fluid of the PSA 3c is introduced into the first distillation column 3a via the condenser 3d. The concentrated fluid coming out of the PSA 3c is heat-recovered in the second distillation column 3f through a heat exchanger and recovered in a product tank (not shown).
 この方法では、一方の吸着カラムと他方の脱着カラムをスイッチさせながら運転するため、脱着される流体は熱回収プロセスを構築しにくい、断続的な流れとなる。したがって脱着された流体は、冷媒を用いた凝縮器3dによって断続的に凝縮・冷却され、タンク(不図示)に一時的に貯留された後、送液ポンプ(不図示)を使って連続的な流れを作った後、第1の蒸留塔3aに導入される。また脱着工程では吸着工程を経て水溶性有機化合物が濃縮された流体が用いられるため、脱着された流体の水溶性有機化合物の濃度は、後述する図1,2,4,5の膜分離ユニットを透過した透過側流体の水溶性有機化合物濃度よりも大きくなる。このように、脱着された流体中の水溶性有機化合物の濃度の観点と、運転が断続的である観点から、十分に熱回収が出来ず、かつ多量の水溶性有機化合物が第1の蒸留塔3aに戻されるため、後述するように、水溶性有機化合物の精製量当たりのCO排出量が高い結果となってしまう。 In this method, one adsorption column and the other desorption column are operated while being switched, so the fluid to be desorbed becomes an intermittent flow that makes it difficult to establish a heat recovery process. Therefore, the desorbed fluid is intermittently condensed and cooled by the condenser 3d using refrigerant, temporarily stored in a tank (not shown), and then continuously fed by a liquid feed pump (not shown). After forming the stream, it is introduced into the first distillation column 3a. In addition, since the desorption process uses a fluid in which water-soluble organic compounds have been concentrated through the adsorption process, the concentration of the water-soluble organic compounds in the desorbed fluid can be determined using the membrane separation units shown in FIGS. It becomes higher than the concentration of water-soluble organic compounds in the permeated fluid on the permeation side. In this way, from the viewpoint of the concentration of the water-soluble organic compounds in the desorbed fluid and the viewpoint of intermittent operation, sufficient heat recovery is not possible, and a large amount of water-soluble organic compounds is accumulated in the first distillation column. Since it is returned to 3a, as will be described later, the result is a high CO 2 emission amount per purified amount of water-soluble organic compounds.
 図4は、第2の比較例を示している。この第2比較例では、分離膜モジュール群4cの透過側流体は、凝縮器4dを経て、第1の蒸留塔4aに導入される。この方法では、図3に示すPSAを用いたプロセスと比較して、分離膜モジュール群4cの透過側流体は連続的な流体流れであるが、凝縮器4dによって凝縮・冷却されてから、タンク(不図示)に一時貯留された後、送液ポンプ(不図示)によって第1の蒸留塔4aに導入される。 FIG. 4 shows a second comparative example. In this second comparative example, the permeate side fluid of the separation membrane module group 4c is introduced into the first distillation column 4a through the condenser 4d. In this method, as compared with the process using PSA shown in FIG. (not shown)), and then introduced into the first distillation column 4a by a liquid feed pump (not shown).
 したがって、分離膜モジュール群4cの透過側流体の熱を十分に回収できず、かつ凝縮器を冷却するためのエネルギーが必要であることから、図2に記載したプロセスよりも、水溶性有機化合物の精製量当たりの必要エネルギーが高い結果となってしまう。 Therefore, the heat of the permeate-side fluid of the separation membrane module group 4c cannot be sufficiently recovered, and energy for cooling the condenser is required. The required energy per refined amount is high.
 図5は、第3の比較例を示している。この第3比較例では、第1の分離膜モジュール群5c及び、第2の分離膜モジュール群5dの透過側流体は、それぞれ、凝縮器5eと凝縮器5gを経て、第1の蒸留塔5aに導入される。第2の分離膜モジュール群5dの非透過側流出口から出た非透過側流体は、熱交換器を経て第2の蒸留塔5fに熱回収され、製品タンク(不図示)に回収される。 FIG. 5 shows a third comparative example. In this third comparative example, the permeation-side fluids of the first separation membrane module group 5c and the second separation membrane module group 5d pass through the condensers 5e and 5g, respectively, to the first distillation column 5a. be introduced. The non-permeate side fluid coming out of the non-permeate side outlet of the second separation membrane module group 5d is heat-recovered in the second distillation column 5f via a heat exchanger and recovered in a product tank (not shown).
 図4に示す具体的様態では、分離膜モジュールユニットを透過した全透過側流体を低温冷媒によって凝縮・冷却する必要があったが、図5に示す具体的様態では、それと比較して、分離膜モジュールユニットを分離膜モジュール群5cおよび分離膜モジュール群5dに分けることにより、凝縮・冷却に必要な低温冷媒量を少なくしたことで消費エネルギーを削減できる。しかしながら、凝縮器5eおよび凝縮器5gで凝縮・冷却されることにより、分離膜モジュール群5c及び、第2の分離膜モジュール群5dの透過側流体のエネルギーが熱回収されないため、図2に示したプロセスよりも、水溶性有機化合物の精製量当たりの必要エネルギーが高い結果となってしまう。 In the specific embodiment shown in FIG. 4, it was necessary to condense and cool the entire permeate-side fluid that permeated the separation membrane module unit with a low-temperature refrigerant, but in the specific embodiment shown in FIG. By dividing the module units into the separation membrane module group 5c and the separation membrane module group 5d, energy consumption can be reduced by reducing the amount of low-temperature refrigerant required for condensation and cooling. However, due to the condensation and cooling in the condensers 5e and 5g, the energy of the permeation-side fluid in the separation membrane module group 5c and the second separation membrane module group 5d is not recovered as heat. This results in a higher energy requirement per purified amount of water-soluble organic compounds than the process.
 また、前述の実施態様では、蒸留塔は第1の蒸留塔、第2の蒸留塔及び第3の蒸留塔の3つとしたが、第1の蒸留塔と第2の蒸留塔のみとしてもよく、蒸留塔を4つ以上備えていてもよい。 Further, in the above-described embodiment, there are three distillation columns, the first distillation column, the second distillation column, and the third distillation column, but only the first distillation column and the second distillation column may be used, Four or more distillation columns may be provided.
 以下に実施例に基づいて本発明を具体的に説明するが、本発明は何らこれに限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these.
[基本的な条件]
 原料組成は、EtOH:H2O=3.35:96.65(wt/wt)、製品濃度はEtOH:H2O=99.7:0.3(wt/wt)とした。原料流量は20,750kg/h、製品流量は693kg/hとした。
 PSAの入口温度は、分離膜ユニット入口温度と等しく設定した。
[Basic conditions]
The raw material composition was EtOH:H2O=3.35:96.65 (wt/wt), and the product concentration was EtOH:H2O=99.7:0.3 (wt/wt). The raw material flow rate was 20,750 kg/h and the product flow rate was 693 kg/h.
The PSA inlet temperature was set equal to the separation membrane unit inlet temperature.
 第1の蒸留塔はもろみ塔とし、運転圧力は8kPaA、供給液、塔頂,塔底のEtOH濃度は、それぞれ、3.35wt%、26.82wt%、100ppmとした。 The first distillation column was a moromi column, the operating pressure was 8 kPaA, and the EtOH concentrations in the feed liquid, column top, and column bottom were 3.35 wt%, 26.82 wt%, and 100 ppm, respectively.
 第2の蒸留塔は高圧蒸留塔とし、運転圧力は448kPaA、供給液、塔頂,塔底のEtOH濃度は、それぞれ、26.82wt%、91.3wt%、100ppmとした。 The second distillation column was a high-pressure distillation column, the operating pressure was 448 kPaA, and the EtOH concentrations in the feed liquid, column top, and column bottom were 26.82 wt%, 91.3 wt%, and 100 ppm, respectively.
 第3の蒸留塔は中圧蒸留塔とし、運転圧力は82.8kPaA、供給液、塔頂,塔底のEtOH濃度は、それぞれ、26.82wt%、91.3wt%、100ppmとした。 The third distillation column was a medium-pressure distillation column, the operating pressure was 82.8 kPaA, and the EtOH concentrations in the feed liquid, column top, and column bottom were 26.82 wt%, 91.3 wt%, and 100 ppm, respectively.
 ユーティリティとして使用する、スチームのCO換算係数を2.71tCO/kLとし、電気および冷却水、低温冷媒を作り出す電力のCO換算係数を0.00047tCO/kWhとして評価した。 The CO 2 conversion factor for steam used as a utility was set at 2.71 tCO 2 /kL, and the CO 2 conversion factor for electricity used to produce electricity, cooling water, and low-temperature refrigerant was set at 0.00047 tCO 2 /kWh.
 PSAの供給液、濃縮液、脱着液のEtOH濃度は、それぞれ、91.3wt%、99.7wt%、68.7wt%とした。 The EtOH concentrations of the PSA supply liquid, concentrated liquid, and desorbed liquid were 91.3 wt%, 99.7 wt%, and 68.7 wt%, respectively.
 膜分離モジュール群が1つで、膜分離モジュール群に含まれる膜分離モジュールの数が1つの場合、被濃縮流体(供給液)、濃縮流体(濃縮液)、透過側流体(透過液)のEtOH濃度は、それぞれ、91.3wt%、99.7wt%、4wt%とした。 When there is one membrane separation module group and the number of membrane separation modules included in the membrane separation module group is one, EtOH of the fluid to be concentrated (supply liquid), the concentrated fluid (concentrated liquid), and the permeate side fluid (permeate liquid) The concentrations were 91.3 wt %, 99.7 wt %, and 4 wt %, respectively.
 膜分離モジュール群が第1の分離膜モジュール群と第2の分離膜モジュール群の2つで、膜分離モジュール群に含まれる膜分離モジュールの数がそれぞれ1つの場合、第1分離膜モジュール群の被濃縮流体(供給液)、濃縮流体(濃縮液),透過側流体(透過液)のEtOH濃度は、それぞれ、91.3wt%、98.0wt%、2wt%とし、第2の分離膜モジュール群の被濃縮流体(供給液)、濃縮流体(濃縮液),透過側流体(透過液)のEtOH濃度は、それぞれ、98.0wt%、99.7wt%、11.7wt%とした。 When there are two membrane separation module groups, a first separation membrane module group and a second separation membrane module group, and the number of membrane separation modules included in each membrane separation module group is one, the first separation membrane module group The EtOH concentrations of the fluid to be concentrated (supply liquid), concentrated fluid (concentrated liquid), and permeate-side fluid (permeated liquid) were set to 91.3 wt%, 98.0 wt%, and 2 wt%, respectively. The EtOH concentrations of the to-be-concentrated fluid (supply fluid), concentrated fluid (concentrated fluid), and permeate-side fluid (permeated fluid) were 98.0 wt %, 99.7 wt %, and 11.7 wt %, respectively.
[実施例1]
 水-エタノール混合液を第1の蒸留塔2aに導入し、塔頂蒸気を第2の蒸留塔2bおよび第3の蒸留塔2fに供給する。第2の蒸留塔2bおよび第3の蒸留塔2fで粗アルコールを得た後、該粗アルコールの全量を第1の分離膜モジュール群2cに導入した後、第1の分離膜モジュール群2cの濃縮側出口から出た第1の濃縮流体を、第2の分離膜モジュール群2dに導入する。第2の分離膜モジュール群の透過側出口から出た第2の透過側流体をスチームエジェクタ2eに導入し、スチームエジェクタ2eの出口から出た流体は、第1の分離膜モジュール群2cの透過側出口から出た第1の透過側流体と合わせて、第1の蒸留塔2aに導入される。
[Example 1]
A water-ethanol mixture is introduced into the first distillation column 2a, and overhead vapor is supplied to the second distillation column 2b and the third distillation column 2f. After obtaining crude alcohol in the second distillation column 2b and the third distillation column 2f, the entire amount of the crude alcohol is introduced into the first separation membrane module group 2c, and then concentrated in the first separation membrane module group 2c. The first concentrated fluid coming out of the side outlet is introduced into the second separation membrane module group 2d. The second permeate-side fluid coming out of the permeate-side outlet of the second separation membrane module group is introduced into the steam ejector 2e, and the fluid coming out of the outlet of the steam ejector 2e is introduced into the permeate-side of the first separation membrane module group 2c. It is introduced into the first distillation column 2a together with the first permeate side fluid coming out of the outlet.
 図2の脱水システムを用いたプロセスにつき評価したところ、全ユーティリティに対する製品流量当たりのCO排出量は、3.38×10-4tCO/kg-アルコールとなった。 An evaluation of the process using the dehydration system of FIG. 2 resulted in CO 2 emissions per product flow rate for all utilities of 3.38×10 −4 tCO 2 /kg-alcohol.
[比較例1]
 水-エタノール混合液を第1の蒸留塔3aに導入し、塔頂蒸気を第2の蒸留塔3bおよび第3の蒸留塔3fに供給する。第2の蒸留塔3bおよび第3の蒸留塔3fで粗アルコールを得た後、該粗アルコールの全量をPSA3cに供給する図3の脱水システムを用いたプロセスにつき評価したところ、全ユーティリティに対する製品流量当たりのCO排出量は、3.66×10-4tCO/kg-アルコールとなった。
[Comparative Example 1]
A water-ethanol mixture is introduced into the first distillation column 3a, and overhead vapor is supplied to the second distillation column 3b and the third distillation column 3f. After obtaining the crude alcohol in the second distillation column 3b and the third distillation column 3f, the process using the dehydration system of FIG. CO 2 emissions per unit amounted to 3.66×10 −4 tCO 2 /kg-alcohol.
[比較例2]
 水-エタノール混合液を第1の蒸留塔5aに導入し、塔頂蒸気を第2の蒸留塔5bおよび第3の蒸留塔5fに供給する。第2の蒸留塔5bおよび第3の蒸留塔5fで粗アルコールを得た後、該粗アルコールの全量を第1の分離膜モジュール群5cに導入した後、第1の分離膜モジュール群5cの透過側出口から出た第1の透過側流体を、凝縮器5eを経て第1の凝縮液とする。第1の分離膜モジュール群5cの濃縮側出口から出た第1の濃縮流体を、第2の分離膜モジュール群5dに導入する。第2の分離膜モジュール群5dの透過側出口から出た第2の透過側流体を、凝縮器5gを経て、第2の凝縮液とする。第1の凝縮液と第2の凝縮液と合わせて、第1の蒸留塔5aに導入する図5の脱水システムを用いたプロセスにつき評価したところ、全ユーティリティに対する製品流量当たりのCO排出量は、3.45×10-4tCO/kg-アルコールとなった。
[Comparative Example 2]
A water-ethanol mixture is introduced into the first distillation column 5a, and overhead vapor is supplied to the second distillation column 5b and the third distillation column 5f. After obtaining crude alcohol in the second distillation column 5b and the third distillation column 5f, the entire amount of the crude alcohol is introduced into the first separation membrane module group 5c, and then permeated through the first separation membrane module group 5c. The first permeate-side fluid coming out of the side outlet is passed through the condenser 5e to be the first condensate. The first concentrated fluid coming out of the concentration-side outlet of the first separation membrane module group 5c is introduced into the second separation membrane module group 5d. The second permeate-side fluid coming out of the permeate-side outlet of the second separation membrane module group 5d passes through the condenser 5g and is used as the second condensate. Evaluated for a process using the dehydration system of FIG . , 3.45×10 −4 tCO 2 /kg-alcohol.
 実施例1に示す、本発明の脱水システムを用いたプロセスでは、比較例1のPSAを用いたプロセス、及び比較例2の圧縮機を用いないプロセスと比較して、製品流量当たりのCO排出量が小さくなった。 The process using the dewatering system of the present invention, shown in Example 1, compared to the process using PSA of Comparative Example 1 and the process without compressor of Comparative Example 2, CO2 emissions per product flow rate quantity has decreased.
 本発明は、例えば、エタノール等の水溶性有機化合物と水との混合物から高濃度の水溶性有機化合物を脱水・濃縮するための手段として有利に利用することができ、産業上の利用可能性は極めて高い。 INDUSTRIAL APPLICABILITY The present invention can be advantageously used, for example, as a means for dehydrating and concentrating a high-concentration water-soluble organic compound from a mixture of a water-soluble organic compound such as ethanol and water. Extremely high.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年3月11日付で出願された日本特許出願2021-39347に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2021-39347 filed on March 11, 2021, which is incorporated by reference in its entirety.
 1a、2a、3a、4a、5a 第1の蒸留塔
 1b、2b、3b、4b、5b 第2の蒸留塔
 1f、2f、3f、4f、5f 第3の蒸留塔
 1c、2c、4c、5c 第1の分離モジュール群
 2d、5d 第2の分離モジュール群
 1d、2e、12 スチームエジェクタ
 3c PSA
 4d、5e、5f 凝縮器
 6 分離膜ユニット
 7 第1の分離膜モジュール群
 8 第2の分離膜モジュール群
 9 分離膜モジュール
 10 第1の集合配管
 11 第2の集合配管

 
1a, 2a, 3a, 4a, 5a First distillation column 1b, 2b, 3b, 4b, 5b Second distillation column 1f, 2f, 3f, 4f, 5f Third distillation column 1c, 2c, 4c, 5c 1 separation module group 2d, 5d second separation module group 1d, 2e, 12 steam ejector 3c PSA
4d, 5e, 5f condenser 6 separation membrane unit 7 first separation membrane module group 8 second separation membrane module group 9 separation membrane module 10 first collection pipe 11 second collection pipe

Claims (13)

  1.  水と水溶性有機化合物を含む被処理流体から水を分離する脱水システムであって、
     第1の蒸留塔と第2の蒸留塔を含む複数の蒸留塔と、
     1以上の分離膜ユニットと、
     1以上の圧縮機ユニット、とを有し、
     該分離膜ユニットは、1以上の分離膜モジュール群を有し、
     該分離膜モジュール群は、水を選択的に透過する、1以上の分離膜を備える分離膜モジュールを有し、
     該圧縮機ユニットは、1以上の圧縮機を備え、
     該第1の蒸留塔と、該第2の蒸留塔と、該分離膜モジュール群のうち1以上と、前記圧縮機ユニットのうち1以上が順に配置され、且つ、該圧縮機ユニットのうち1以上の出口側と、該第1の蒸留塔とが接続されている、
     脱水システム。
    A dehydration system for separating water from a fluid to be treated containing water and water-soluble organic compounds,
    a plurality of distillation columns including a first distillation column and a second distillation column;
    one or more separation membrane units;
    one or more compressor units;
    The separation membrane unit has one or more separation membrane module groups,
    The separation membrane module group has a separation membrane module comprising one or more separation membranes that selectively permeate water,
    The compressor unit comprises one or more compressors;
    The first distillation column, the second distillation column, one or more of the separation membrane module groups, and one or more of the compressor units are arranged in order, and one or more of the compressor units is connected to the outlet side of the first distillation column,
    dehydration system.
  2.  前記分離膜モジュールユニットに含まれる全ての分離膜モジュールの透過側が、前記圧縮機ユニットの入口側に接続している、
    請求項1に記載の脱水システム。
    the permeate sides of all the separation membrane modules included in the separation membrane module unit are connected to the inlet side of the compressor unit;
    A dewatering system according to claim 1 .
  3.  前記分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含み、
     該第1の分離膜モジュール群または該第2の分離膜モジュール群のいずれか一方の透過側が、前記圧縮機ユニットの入口側に接続している、
    請求項1に記載の脱水システム。
    the separation membrane unit includes a first separation membrane module group and a second separation membrane module group,
    the permeate side of either the first separation membrane module group or the second separation membrane module group is connected to the inlet side of the compressor unit;
    A dehydration system according to claim 1 .
  4.  前記分離膜モジュール群のうち、前記圧縮機ユニットに接続していない分離膜モジュール群の透過側が、凝縮器と接続されている、
    請求項3に記載の脱水システム。
    Of the separation membrane module group, the permeation side of the separation membrane module group that is not connected to the compressor unit is connected to a condenser.
    The dehydration system according to claim 3.
  5.  前記分離膜モジュールのうち、前記圧縮機ユニットに接続していない分離膜モジュール群の透過側が、前記第1の蒸留塔と接続されている、
    請求項3に記載の脱水システム。
    Among the separation membrane modules, the permeation side of the separation membrane module group that is not connected to the compressor unit is connected to the first distillation column.
    The dehydration system according to claim 3.
  6.  前記分離膜ユニットが、第1の分離膜モジュール群と第2の分離膜モジュール群を含み、
     前記圧縮機ユニットとして、第1の圧縮機ユニットと第2の圧縮機ユニットを有し、
     前記第1の分離膜モジュール群の透過側が、前記第1の圧縮機ユニットの入口側に接続し、
     前記第2の分離膜モジュール群の透過側が、前記第2の圧縮機ユニットの入口側に接続している、
    請求項1に記載の脱水システム。
    the separation membrane unit includes a first separation membrane module group and a second separation membrane module group,
    The compressor unit includes a first compressor unit and a second compressor unit,
    the permeate side of the first separation membrane module group is connected to the inlet side of the first compressor unit;
    the permeate side of the second separation membrane module group is connected to the inlet side of the second compressor unit;
    A dewatering system according to claim 1 .
  7.  前記第1の圧縮機ユニットの出口側が前記第2の蒸留塔に接続しており、
     前記第2の圧縮機ユニットの出口側が前記第1の蒸留塔に接続している、
    請求項6に記載の脱水システム。
    the outlet side of the first compressor unit is connected to the second distillation column;
    the outlet side of the second compressor unit is connected to the first distillation column;
    A dehydration system according to claim 6 .
  8.  前記第1の圧縮機ユニットの出口側、及び前記第2の圧縮機ユニットの出口側が、前記第1の蒸留塔に接続している、
    請求項6に記載の脱水システム。
    the outlet side of the first compressor unit and the outlet side of the second compressor unit are connected to the first distillation column;
    A dehydration system according to claim 6.
  9.  さらに第3の圧縮機ユニットを有し、
     前記第1の圧縮機ユニット、及び前記第2の圧縮機ユニットのそれぞれの出口側が第3の圧縮機ユニットの入口側に接続しており、
     前記第3の圧縮機ユニットの出口側が、前記第1の蒸留塔に接続している、
    請求項6に記載の脱水システム。
    further comprising a third compressor unit;
    each outlet side of the first compressor unit and the second compressor unit is connected to an inlet side of a third compressor unit;
    the outlet side of the third compressor unit is connected to the first distillation column;
    A dehydration system according to claim 6.
  10.  前記圧縮機ユニットが、1以上の直列で接続されている圧縮機及び/または並列に配置された1以上の圧縮機を含む
    請求項1~9のいずれか1項に記載の脱水システム。
    A dehydration system according to any one of the preceding claims, wherein the compressor unit comprises one or more compressors connected in series and/or one or more compressors arranged in parallel.
  11.  前記第1の蒸留塔の運転圧力が、前記第2の蒸留塔の運転圧力よりも小さい、請求項1~10のいずれか1項に記載の脱水システム。 The dehydration system according to any one of claims 1 to 10, wherein the operating pressure of the first distillation column is lower than the operating pressure of the second distillation column.
  12. 前記第1の蒸留塔が減圧蒸留塔であり、前記第2の蒸留塔が高圧蒸留塔である、請求項1~11のいずれか1項に記載の脱水システム。 The dehydration system according to any one of claims 1 to 11, wherein the first distillation column is a vacuum distillation column and the second distillation column is a high pressure distillation column.
  13.  水と水溶性有機化合物を含む被処理流体から水を分離する脱水方法であって、
     前記第1の蒸留塔の運転圧力が、前記圧縮機ユニットの出口側圧力以下である、
    請求項1~12のいずれか1項に記載の脱水システムを用いた、脱水方法。
     

     
    A dehydration method for separating water from a fluid to be treated containing water and water-soluble organic compounds,
    The operating pressure of the first distillation column is equal to or lower than the outlet pressure of the compressor unit.
    A dehydration method using the dehydration system according to any one of claims 1 to 12.


PCT/JP2022/010232 2021-03-11 2022-03-09 Dehydration system and dehydration method WO2022191228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021039347 2021-03-11
JP2021-039347 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022191228A1 true WO2022191228A1 (en) 2022-09-15

Family

ID=83226764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010232 WO2022191228A1 (en) 2021-03-11 2022-03-09 Dehydration system and dehydration method

Country Status (1)

Country Link
WO (1) WO2022191228A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155928A (en) * 1987-12-10 1989-06-19 Hitachi Zosen Corp Concentration and dehydration device for organic substance-water mixed solution
JPH07227517A (en) * 1994-02-17 1995-08-29 Nisso Eng Kk Separation of liquid mixture
WO2003035222A1 (en) * 2001-10-19 2003-05-01 Bio Nanotec Research Institute Inc. Water-soluble organic material condensation apparatus
US20090004713A1 (en) * 2007-03-06 2009-01-01 Membrane Technology And Research, Inc. Membrane-augmented distillation with pressure change to separate solvents from water
WO2014185269A1 (en) * 2013-05-17 2014-11-20 学校法人早稲田大学 Method for condensing water-soluble organic matter and device for condensing water-soluble organic matter
WO2016067677A1 (en) * 2014-10-30 2016-05-06 三菱化学株式会社 Method for producing high-concentration alcohol
WO2020085432A1 (en) * 2018-10-25 2020-04-30 木村化工機株式会社 Solvent recovery system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155928A (en) * 1987-12-10 1989-06-19 Hitachi Zosen Corp Concentration and dehydration device for organic substance-water mixed solution
JPH07227517A (en) * 1994-02-17 1995-08-29 Nisso Eng Kk Separation of liquid mixture
WO2003035222A1 (en) * 2001-10-19 2003-05-01 Bio Nanotec Research Institute Inc. Water-soluble organic material condensation apparatus
US20090004713A1 (en) * 2007-03-06 2009-01-01 Membrane Technology And Research, Inc. Membrane-augmented distillation with pressure change to separate solvents from water
WO2014185269A1 (en) * 2013-05-17 2014-11-20 学校法人早稲田大学 Method for condensing water-soluble organic matter and device for condensing water-soluble organic matter
WO2016067677A1 (en) * 2014-10-30 2016-05-06 三菱化学株式会社 Method for producing high-concentration alcohol
WO2020085432A1 (en) * 2018-10-25 2020-04-30 木村化工機株式会社 Solvent recovery system

Similar Documents

Publication Publication Date Title
CA2733039C (en) Process for separating liquid mixtures by pervaporation
CA2375252C (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
US4900402A (en) Pervaporation process of separating a liquid mixture
WO2018168651A1 (en) Method for producing alcohol
WO2009005897A1 (en) Membrane-based hybrid process for separation of mixtures of organics, solids, and water
CN110523279B (en) Device and method for separating water from mixture
JP2012045462A (en) Voc recovery apparatus
US10836694B2 (en) Method for producing high concentration alcohol
JP6196807B2 (en) Water-soluble organic substance concentration method and water-soluble organic substance concentration apparatus
Liu et al. Preparation and characterization of ZSM-5/PDMS hybrid pervaporation membranes: Laboratory results and pilot-scale performance
US10870084B2 (en) Water-alcohol separation system and water-alcohol separation method for producing alcohol
WO2022191228A1 (en) Dehydration system and dehydration method
JP2017165671A (en) Method for producing high-concentration alcohol
CN111848348A (en) Isopropyl alcohol dehydration refining method
CN111909120B (en) Energy-saving separation process of water-containing ternary azeotropic system
WO2018169037A1 (en) Separation membrane unit for producing alcohol
JP2018020985A (en) Process for producing alcohol
CN214361095U (en) Energy-saving separation device of water-containing ternary azeotropic system
CN220609725U (en) Device for recycling and refining organic solvent by low-water-solubility VOCs gas
JP7238567B2 (en) MEMBRANE SEPARATION SYSTEM AND METHOD FOR SEPARATION OF ORGANIC COMPOUND/WATER MIXTURE
CN212881891U (en) Isopropanol pervaporation dehydration device
CN117138517A (en) Process for recycling and refining organic solvent by using low-water-solubility VOCs gas
JP2020055753A (en) Manufacturing method of high concentration alcohol
JP2018154602A (en) Manufacturing method of alcohol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767182

Country of ref document: EP

Kind code of ref document: A1