JP2016131929A - Membrane distillation and fractionation unit - Google Patents

Membrane distillation and fractionation unit Download PDF

Info

Publication number
JP2016131929A
JP2016131929A JP2015008146A JP2015008146A JP2016131929A JP 2016131929 A JP2016131929 A JP 2016131929A JP 2015008146 A JP2015008146 A JP 2015008146A JP 2015008146 A JP2015008146 A JP 2015008146A JP 2016131929 A JP2016131929 A JP 2016131929A
Authority
JP
Japan
Prior art keywords
liquid
distillation apparatus
membrane distillation
membrane
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015008146A
Other languages
Japanese (ja)
Other versions
JP6511823B2 (en
Inventor
聡志 三輪
Satoshi Miwa
聡志 三輪
岩崎 守
Mamoru Iwasaki
守 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015008146A priority Critical patent/JP6511823B2/en
Publication of JP2016131929A publication Critical patent/JP2016131929A/en
Application granted granted Critical
Publication of JP6511823B2 publication Critical patent/JP6511823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fractionation unit which has a favorable fractionation efficiency using a membrane distillation apparatus and is capable of efficiently fractionating a treatment objective liquid component simply and inexpensively.SOLUTION: A fractionation system 1 for a treatment objective liquid W is configured by connecting three stages of membrane distillation apparatuses in series. A first membrane distillation apparatus 2 is equipped with a hydrophobic porous membrane 5 to form a first raw water chamber 6 and a first condensation chamber 7 through which the treatment objective liquid W circulates by sandwiching this hydrophobic porous membrane 5. A second membrane distillation apparatus 3 is equipped with a hydrophobic porous membrane 8 to form a second raw water chamber 9 and a second condensation chamber 10 through which a primary distillation liquid W1 circulates by sandwiching this hydrophobic porous membrane 8. A third membrane distillation apparatus 4 is equipped with a hydrophobic porous membrane 11 to form a third raw water chamber 12 and a third condensation chamber 13 through which a secondary distillation liquid W2 circulates by sandwiching this hydrophobic porous membrane 11.SELECTED DRAWING: Figure 1

Description

本発明は、分留効率が良く、簡単に低コストで被処理液成分を効率よく分留できる分留ユニットに関し、特に真空式膜蒸留装置を用いた膜蒸留分留ユニットに関する。   The present invention relates to a fractionation unit that has good fractionation efficiency and can efficiently fractionate a liquid component to be treated easily and at low cost, and more particularly to a membrane distillation fractionation unit that uses a vacuum membrane distillation apparatus.

従来、分留技術として、石油精製の蒸留塔、例えば、棚段式多段蒸留塔がよく知られている。棚段式多段蒸留塔は、塔内に水平な棚板(トレイ)をいくつも設置して区切ったタイプのものであり、棚板は、蒸気が上下方向に通過できるように、スノコのように多数の穴があいている。このような棚段式多段蒸留塔において、被処理液は、塔中央部付近の棚段に供給される。各棚段においては、気液平衡が成立しており、より揮発性の高い成分は気相で上の段へ移動し、より揮発性の低い成分は、棚板の切り欠き部分(液の流通口)から液相で下の段へ流れ落ち、そこでまた気液平衡が成立する。このようにして、塔上部の段ほど揮発性の高い成分に富む一方、下部の段ほど揮発性の低い成分に富むことになり、各段において揮発性に従って成分が分離される。   Conventionally, an oil refining distillation column, for example, a multistage distillation column, is well known as a fractionation technique. A multi-stage distillation column is a type in which a number of horizontal shelves (tray) are installed in the tower and separated, and the shelves are like a stool to allow steam to pass vertically. There are many holes. In such a shelf-type multistage distillation column, the liquid to be treated is supplied to a shelf near the center of the tower. Vapor-liquid equilibrium is established in each shelf, and the more volatile components move to the upper stage in the gas phase, and the less volatile components are notched parts of the shelf (liquid flow From the mouth) to the lower stage in the liquid phase, where gas-liquid equilibrium is again established. In this way, the upper tier is rich in highly volatile components, while the lower tier is rich in less volatile components, and the components are separated according to volatility in each stage.

上述したような棚段式多段蒸留塔による分留において留意すべきは段効率である。段効率低下の主原因は、棚段上における飛沫同伴である。飛沫同伴による液滴は棚段上で発生する蒸気に比較して、より高沸点成分に富むために効率を低下させるだけでなく、不揮発性成分を同伴するため、塔内および留出物を汚染する原因ともなる。飛沫同伴量は、蒸気及び液流量の影響が大きく、特に減圧蒸留塔では多い。これらの理由により蒸留塔を用いた分留技術では、飛沫同伴による各棚段での分留効率の低下は程度の差はあれ避けられなかった。   In the fractional distillation using the above-described multistage distillation column, it is the stage efficiency that should be noted. The main cause of the drop in stage efficiency is entrainment on the shelf. Droplets due to entrainment not only reduce efficiency because they are richer in higher boiling components than vapor generated on the shelf, but also entrain non-volatile components, thus polluting the tower and distillate. It can also be a cause. The amount of entrained droplets is greatly affected by steam and liquid flow rates, and is particularly large in a vacuum distillation column. For these reasons, in the fractionation technique using a distillation column, a reduction in fractionation efficiency in each shelf due to entrainment of droplets is unavoidable to some extent.

一方、海水淡水化、溶媒や油からの脱水などの他、食品プロセスでの濃縮を想定した用途で、省エネルギー、省スペースの技術として、膜蒸留技術に期待が寄せられている。特に、最近真空式膜蒸留装置への関心が高まっている。   On the other hand, in addition to desalination from seawater and dehydration from solvents and oils, membrane distillation technology is expected as an energy-saving and space-saving technology for applications that assume concentration in food processes. In particular, interest in vacuum membrane distillation equipment has recently increased.

この真空式膜蒸留装置は、水を弾く疎水性多孔質膜(水蒸気のみを透過する)を介して、片側に60℃から80℃程度の被処理液を通液する流路(原水室)と、疎水性膜を透過した水蒸気を被処理液と反対側にある凝縮部へ導き凝縮させて蒸留液を得る凝縮室とが配置された構造を単位構造体とし、この単位構造体を複数段、直列に配置してなる。これにより単位構造体の1段目で濃縮された被濃縮液は、直列配置された2段目で更に濃縮され、2段目で濃縮された被処理液は、さらに3段目で濃縮され、というように次々と濃縮され、最終段で所望とする濃度にまで濃縮された後回収される。一方、凝縮室は疎水性膜を透過した水蒸気を凝縮させて蒸留液を得るため、被処理液側よりも数度以上低温である。この凝縮室で水蒸気は凝縮して蒸留液となり、濃縮液とは別に回収される。このような真空式膜蒸留装置としては、特許文献1、2に示すような技術が公知であり、疎水性多孔質膜には、撥水性の高いテフロン(登録商標)樹脂膜が汎用されている。   This vacuum membrane distillation apparatus has a flow path (raw water chamber) for passing a liquid to be treated at about 60 ° C. to 80 ° C. on one side through a hydrophobic porous membrane (permeating only water vapor) that repels water. The structure in which the water vapor that has passed through the hydrophobic membrane is arranged in a condensing chamber that leads to the condensing part on the opposite side of the liquid to be treated to condense and obtain a distillate is a unit structure, and this unit structure is composed of multiple stages. It is arranged in series. As a result, the concentrated liquid concentrated in the first stage of the unit structure is further concentrated in the second stage arranged in series, and the processed liquid concentrated in the second stage is further concentrated in the third stage, In this way, it is concentrated one after another, and is collected after being concentrated to a desired concentration in the final stage. On the other hand, in the condensing chamber, the water vapor that has passed through the hydrophobic membrane is condensed to obtain a distillate, and therefore, the condensing chamber is at a temperature that is several degrees lower than the liquid to be treated. In this condensing chamber, the water vapor is condensed into a distillate, which is collected separately from the concentrate. As such a vacuum membrane distillation apparatus, techniques as shown in Patent Documents 1 and 2 are known, and a highly porous Teflon (registered trademark) resin film is widely used as the hydrophobic porous film. .

図3に示すようにこのような膜蒸留装置41は、疎水性多孔質膜42を備えており、この疎水性多孔質膜42により区画されることで原水室43と凝縮室44とが形成されている。原水室43は被処理液wを導入する原水部の一例であり、凝縮室44は疎水性多孔質膜42を通過した蒸気Sを凝縮する凝縮部の一例である。   As shown in FIG. 3, such a membrane distillation apparatus 41 includes a hydrophobic porous membrane 42, and a raw water chamber 43 and a condensing chamber 44 are formed by being partitioned by the hydrophobic porous membrane 42. ing. The raw water chamber 43 is an example of a raw water part that introduces the liquid to be treated w, and the condensing chamber 44 is an example of a condensing part that condenses the vapor S that has passed through the hydrophobic porous membrane 42.

疎水性多孔質膜42は、原水室43に導入された被処理液wの蒸気のみを選択的に通過させる手段の一例である。この疎水性多孔質膜42としては、耐熱性に優れていることからフッ素樹脂製多孔質膜を好適に用いることができる。この疎水性多孔質膜42においては、被処理液wの蒸気Sのみを透過させ、膜透過蒸気量に対する被処理液wの浸透圧や粘度の影響を受けにくく、蒸気透過性が高いので、被処理液wの懸濁成分などの濃縮を効率的に行うことができる。   The hydrophobic porous membrane 42 is an example of means for selectively allowing only the vapor of the liquid to be treated w introduced into the raw water chamber 43 to pass through. As the hydrophobic porous membrane 42, a fluororesin porous membrane can be suitably used because of its excellent heat resistance. This hydrophobic porous membrane 42 allows only the vapor S of the liquid to be treated w to pass through, is hardly affected by the osmotic pressure and viscosity of the liquid to be treated w with respect to the amount of vapor passing through the membrane, and has high vapor permeability. Concentration of suspended components of the treatment liquid w can be performed efficiently.

原水室43には、被処理液wを導入する原水ライン45が接続している。一方、凝縮室44には真空ポンプ46が接続され、凝縮室44の壁面には冷却部47が備えられている。そして、凝縮室44とともに原水室43が真空ポンプ46により減圧されて減圧状態に維持され、冷却部47は接触する蒸気Sを凝縮する程度の温度に冷却手段(図示せず)により冷却されている。なお、48は原水室43から濃縮液w1を回収する濃縮液回収ラインであり、49は凝縮室44から蒸留液w2を回収する蒸留液排出ラインである。   A raw water line 45 for introducing the liquid to be treated w is connected to the raw water chamber 43. On the other hand, a vacuum pump 46 is connected to the condensation chamber 44, and a cooling unit 47 is provided on the wall surface of the condensation chamber 44. Then, the raw water chamber 43 is decompressed by the vacuum pump 46 together with the condensing chamber 44 and maintained in a decompressed state, and the cooling unit 47 is cooled by a cooling means (not shown) to a temperature that condenses the vapor S in contact therewith. . Reference numeral 48 denotes a concentrate recovery line for recovering the concentrate w1 from the raw water chamber 43, and 49 denotes a distillate discharge line for recovering the distillate w2 from the condensation chamber 44.

上述したような膜蒸留装置41において、まず被処理液wは、図示しない熱交換器により所定の温度、例えば100℃未満、好ましくは40℃〜90℃、特に50℃〜80℃程度になるように温度調整され、原水ライン45から供給される。ここで、各真空式膜蒸留装置41内は一台の真空ポンプ46により減圧されている。このため被処理液wは、膜蒸留装置41の原水室43内へと吸いこまれる。   In the membrane distillation apparatus 41 as described above, first, the liquid w to be treated is brought to a predetermined temperature, for example, less than 100 ° C., preferably 40 ° C. to 90 ° C., particularly about 50 ° C. to 80 ° C. by a heat exchanger (not shown). The temperature is adjusted to be supplied from the raw water line 45. Here, each vacuum membrane distillation apparatus 41 is depressurized by a single vacuum pump 46. For this reason, the liquid to be treated w is sucked into the raw water chamber 43 of the membrane distillation apparatus 41.

この場合、凝縮室44が減圧状態に維持されるので、蒸気Sを引き込む機能だけでなく、被処理液wの沸点をより降下させる機能を有する。これにより、被処理液wから生じる蒸気Sが顕著となり、疎水性多孔質膜42を透過する蒸気量が増大する。この結果、原水室43で濃縮液w1が得られる。つまり、被処理液wから多くの蒸気Sが凝縮除去されて濃縮液w1に変換されるので、原水室43の被処理液wが効率的に濃縮される。したがって、原水室43から多くの濃縮液w1が生成され、濃縮液回収ライン48から回収される。一方、蒸気Sは凝縮室44の冷却部47に触れ凝縮して水滴Lが生じる。これにより、冷却部47では蒸気Sが結露して蒸留液w2が蒸留液排出ライン49から排出される。   In this case, since the condensing chamber 44 is maintained in a reduced pressure state, it has not only a function of drawing the steam S but also a function of lowering the boiling point of the liquid to be processed w. Thereby, the vapor | steam S which arises from the to-be-processed liquid w becomes remarkable, and the vapor | steam amount which permeate | transmits the hydrophobic porous membrane 42 increases. As a result, the concentrate w1 is obtained in the raw water chamber 43. That is, since much steam S is condensed and removed from the liquid to be processed w and converted into the concentrated liquid w1, the liquid w to be processed in the raw water chamber 43 is efficiently concentrated. Accordingly, a large amount of concentrated liquid w1 is generated from the raw water chamber 43 and recovered from the concentrated liquid recovery line 48. On the other hand, the steam S touches the cooling part 47 of the condensing chamber 44 and condenses to form water droplets L. Thereby, in the cooling part 47, the vapor | steam S condenses and the distillate w2 is discharged | emitted from the distillate discharge line 49. FIG.

特開2011−173097号公報JP 2011-173097 A 特開2013−212464号公報JP 2013-212464 A

上述したような真空式膜蒸留装置は、被処理液wが流通する原水室43と、凝縮室44とが気体のみを通す疎水性多孔質膜42を介して完全に分画されているため、被処理液wの飛沫が、凝縮室44に同伴されることがないため、各蒸留段における分留効率が高い技術であると考えられるが、本来、膜蒸留装置は、被処理液wを濃縮するためのものであり、分留による各成分の回収を効果的に行うのは困難である。このため、膜蒸留装置を分留技術として活用する技術は提案されていなかった。   In the vacuum membrane distillation apparatus as described above, the raw water chamber 43 through which the liquid to be treated w circulates and the condensing chamber 44 are completely fractionated via the hydrophobic porous membrane 42 through which only gas passes. Since the droplets of the liquid to be treated w are not entrained in the condensing chamber 44, it is considered to be a technique with high fractional distillation efficiency in each distillation stage, but the membrane distillation apparatus originally concentrates the liquid to be treated w. Therefore, it is difficult to effectively recover each component by fractional distillation. For this reason, the technique of utilizing a membrane distillation apparatus as a fractionation technique has not been proposed.

本発明は、上記課題に鑑みてなされたものであり、分留効率が良く簡単で低コストに被処理液成分を効率よく分留できる膜蒸留装置を用いた分留ユニットを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fractionation unit using a membrane distillation apparatus capable of fractionating a liquid component to be treated efficiently and easily at low cost with good fractionation efficiency. And

上記課題を解決するために、本発明は、疎水性多孔質膜により区画された原水部及び凝縮部と、前記凝縮部を減圧状態に維持する減圧手段と、前記凝縮部を冷却する冷却手段とを備え、加熱された被処理液を前記原水部に導入し、前記被処理液の蒸気を前記疎水性多孔質膜に透過させることで、該被処理液を濃縮して濃縮液を生成するとともに前記凝縮部で蒸留液を生成する膜蒸留装置を2段以上備える分留システムであって、前記前段の膜蒸留装置の蒸留液を次段の膜蒸留装置の原水部に導入する流路と、前記膜蒸留装置の濃縮液の一部を回収する一方、残部を該膜蒸留装置前記原水部側に還流する分流機構を有することを特徴とする分留システムを提供する(発明1)。ここで前記膜蒸留装置は3段以上備えるのが好ましい(発明2)。   In order to solve the above problems, the present invention provides a raw water section and a condensation section partitioned by a hydrophobic porous membrane, a decompression means for maintaining the condensation section in a decompressed state, and a cooling means for cooling the condensation section. The heated liquid to be treated is introduced into the raw water part, and the vapor of the liquid to be treated is permeated through the hydrophobic porous membrane, thereby concentrating the liquid to be treated to produce a concentrated liquid. A fractionation system comprising two or more membrane distillation apparatuses for producing a distillate in the condensing unit, the flow path for introducing the distillate of the previous stage membrane distillation apparatus into the raw water part of the subsequent stage membrane distillation apparatus; Provided is a fractionation system characterized by having a diversion mechanism for collecting a part of the concentrate of the membrane distillation apparatus and refluxing the remainder to the raw water part side of the membrane distillation apparatus (Invention 1). Here, the membrane distillation apparatus preferably includes three or more stages (Invention 2).

かかる発明(発明1、2)によれば、被処理液は揮発温度が異なる複数の成分を有するが、初段の膜蒸留装置により加熱された被処理液を蒸留すると、当該被処理液の温度で揮発する全ての成分が揮発して蒸留液となる一方、揮発しない成分と揮発回収しきれなかった成分が濃縮液となるので、濃縮液の一部を回収し残部を循環して原水部に再度導入して揮発回収を繰り返すことで揮発回収しきれなかった成分の回収率を所望のものとすることができる。そして、疎水性多孔質膜を透過した揮発性の内、揮発温度の高い揮発成分は、凝縮部で液化するので一部は蒸留液として回収し、残りの液体と凝縮しなかった気体は次段の膜蒸留装置の原水部へ供給される。そして、次段の膜蒸留装置では、被処理液の温度が前段よりも低下しているので、前段より低い温度で揮発する成分が揮発して蒸留液となる一方、揮発しない揮発温度の高い成分と揮発回収しきれなかった成分が濃縮液となるので、濃縮液の一部を回収し残部を循環して原水部に再度導入して揮発回収を繰り返すことで揮発回収しきれなかった揮発温度の高い揮発成分の回収率を所望のものとすることができる。そして、疎水性多孔質膜を透過した揮発性の内、揮発温度のやや低い揮発成分が、凝縮部で液化するので一部は蒸留液として回収し、残りの液体と凝縮しなかった気体は次段の膜蒸留装置の原水部へ供給される。このような操作を複数段、特に三段以上繰り返すことにより、揮発温度の異なる3種類以上の成分を効率良く分留して回収することができる。   According to such inventions (Inventions 1 and 2), the liquid to be treated has a plurality of components having different volatilization temperatures, but when the liquid to be treated heated by the first-stage membrane distillation apparatus is distilled, the temperature of the liquid to be treated is reduced. While all the components that volatilize volatilize to form a distillate, the components that do not volatilize and the components that cannot be volatilized and recovered become the concentrate, so a part of the concentrate is recovered and the remainder is circulated to the raw water part again. By introducing and repeating the volatilization recovery, the recovery rate of the components that could not be volatilized and recovered can be made desired. Of the volatile components that have permeated through the hydrophobic porous membrane, the volatile components having a high volatilization temperature are liquefied in the condensing part, so a part is recovered as a distillate, and the remaining liquid and the uncondensed gas are the next stage. Supplied to the raw water section of the membrane distillation apparatus. And in the membrane distillation apparatus of the next stage, the temperature of the liquid to be treated is lower than that of the previous stage. The component that could not be volatilized and recovered becomes a concentrated liquid, so that a part of the concentrated liquid is recovered, the remaining part is circulated and reintroduced into the raw water part, and the volatilization recovery is repeated. A high volatile component recovery can be achieved. Of the volatile components that have permeated through the hydrophobic porous membrane, the volatile components with a slightly lower volatilization temperature are liquefied in the condensing part, so some are recovered as distillate, and the remaining liquid and uncondensed gas are the next. Supplied to the raw water section of the stage membrane distillation apparatus. By repeating such an operation in a plurality of stages, particularly three or more stages, it is possible to efficiently fractionate and collect three or more components having different volatilization temperatures.

上記発明(発明1、2)においては、前記濃縮液の回収及び循環の割合を調整可能な調整機構を備えるのが好ましい(発明3)。   In the said invention (invention 1 and 2), it is preferable to provide the adjustment mechanism which can adjust the collection | recovery and circulation ratio of the said concentrate (invention 3).

かかる発明(発明3)によれば、被処理液を構成する揮発温度の異なる成分の分留効率を所望のものに調整することができる。   According to this invention (invention 3), the fractional distillation efficiency of components having different volatilization temperatures constituting the liquid to be treated can be adjusted to a desired one.

上記発明(発明1〜3)においては、前記被処理液が、果汁、液糖あるいは蜂蜜の食品関連溶液であるのが好ましい(発明4)。   In the said invention (invention 1-3), it is preferable that the said to-be-processed liquid is a food related solution of fruit juice, liquid sugar, or a honey (invention 4).

かかる発明(発明4)によれば、これらの食品関連溶液には、揮発温度の低い成分に限らず、揮発温度の高い成分も含まれており。それぞれ分留して所望の成分を濃縮液に再度添加するのが望ましいが、本発明の方法を適用することにより、これら揮発温度の異なる成分を効率よく分別回収することができ、所望の成分を濃縮液に添加することができる。   According to this invention (invention 4), these food-related solutions include not only components having a low volatilization temperature but also components having a high volatilization temperature. It is desirable to perform fractional distillation and add the desired components to the concentrate again. However, by applying the method of the present invention, these components having different volatilization temperatures can be efficiently separated and recovered. It can be added to the concentrate.

本発明の分留システムによれば、膜蒸留装置を2段以上備え、前段の膜蒸留装置の蒸留液が次段の膜蒸留装置の原水部に導入する導入一方、濃縮液の一部を回収し、残部を循環して原水部に再度導入する操作を各膜蒸留装置で繰り返すものであるので、被処理液は温度により揮発成分が異なるが、初段の膜蒸留装置により加熱された被処理液を蒸留すると、当該被処理液の温度で揮発する全ての成分が揮発して蒸留液となる一方、沸騰しない揮発性のない成分と揮発回収しきれなかった成分が濃縮液となるので、濃縮液の一部を回収し残部を循環して原水部に導入して揮発回収を繰り返すことで揮発回収しきれなかった成分の回収率を所望のものとすることができる。これを繰り返すことで揮発温度の異なる2種類以上の成分を効率良く分留して回収することができる。   According to the fractionation system of the present invention, two or more membrane distillation apparatuses are provided, and the distillation liquid of the previous stage film distillation apparatus is introduced into the raw water part of the subsequent stage membrane distillation apparatus, while a part of the concentrated liquid is recovered. However, since the operation of circulating the remainder and reintroducing it into the raw water portion is repeated in each membrane distillation apparatus, the liquid to be treated has different volatile components depending on the temperature, but the liquid to be treated heated by the membrane distillation apparatus in the first stage When the liquid is distilled, all the components that volatilize at the temperature of the liquid to be treated are volatilized to become a distillate, while the non-volatile components that do not boil and the components that cannot be volatilized and recovered become the concentrate. By recovering a part of the water, circulating the remainder and introducing it into the raw water part and repeating the volatilization recovery, the recovery rate of the components that could not be volatilized and recovered can be made desired. By repeating this, two or more types of components having different volatilization temperatures can be efficiently fractionated and recovered.

本発明の一実施形態に係る分留システムを示す概略図である。It is the schematic which shows the fractionation system which concerns on one Embodiment of this invention. 比較例1の分留システムを示す概略図である。It is the schematic which shows the fractionation system of the comparative example 1. 膜蒸留装置を示す概略図である。It is the schematic which shows a membrane distillation apparatus.

以下、本発明の一実施形態について添付図面を参照して詳細に説明する。
図1は、本実施形態に係る分留システムを示す概略図である。図1において、被処理液Wの分留システム1は、図3に示す膜蒸留装置を3段直列に接続、すなわち一段目の第一の膜蒸留装置2と二段目の第二の膜蒸留装置3と三段目の第三の膜蒸留装置4とを連続的に接続してなる。そして、第一の膜蒸留装置2の上流側には熱交換器などの図示しない加熱手段が配置されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic view showing a fractionation system according to this embodiment. In FIG. 1, the fractionation system 1 of the liquid W to be treated is connected in series with three stages of the membrane distillation apparatus shown in FIG. 3, that is, the first membrane distillation apparatus 2 at the first stage and the second membrane distillation at the second stage. The apparatus 3 is continuously connected to the third membrane distillation apparatus 4 in the third stage. A heating means (not shown) such as a heat exchanger is disposed on the upstream side of the first membrane distillation apparatus 2.

上記第一の膜蒸留装置2には、疎水性多孔質膜5が備えられており、この疎水性多孔質膜5を挟んで被処理液Wが流通する第一の原水室6と第一の凝縮室7とが形成されている。これにより第一の膜蒸留装置2において、被処理液Wの懸濁成分や不揮発成分を濃縮するとともに、一次蒸留液W1を排出可能となっている。また、第二の膜蒸留装置3には、疎水性多孔質膜8が備えられており、この疎水性多孔質膜8を挟んで一次蒸留液W1が流通する第二の原水室9と第二の凝縮室10とが形成されている。これにより第二の膜蒸留装置3において、一次蒸留液W1中の揮発成分を濃縮するとともに、二次蒸留液W2を排出可能となっている。さらに、第三の膜蒸留装置4には、疎水性多孔質膜11が備えられており、この疎水性多孔質膜11を挟んで二次蒸留液W2が流通する第三の原水室12と第三の凝縮室13とが形成されている。これにより第三の膜蒸留装置4において、二次蒸留液W2中の揮発成分を濃縮するとともに、三次蒸留液W3を排出可能となっている。   The first membrane distillation apparatus 2 includes a hydrophobic porous membrane 5, and a first raw water chamber 6 and a first raw water chamber 6 through which the liquid W to be treated flows with the hydrophobic porous membrane 5 interposed therebetween. A condensation chamber 7 is formed. Thereby, in the 1st film | membrane distillation apparatus 2, while suspending the suspension component and non-volatile component of the to-be-processed liquid W, the primary distillation liquid W1 can be discharged | emitted. Further, the second membrane distillation apparatus 3 is provided with a hydrophobic porous membrane 8, and the second raw water chamber 9 and the second raw water chamber 9 in which the primary distilled liquid W1 flows through the hydrophobic porous membrane 8. The condensing chamber 10 is formed. Thereby, in the 2nd film | membrane distillation apparatus 3, while condensing the volatile component in the primary distillate W1, the secondary distillate W2 can be discharged | emitted. Further, the third membrane distillation apparatus 4 is provided with a hydrophobic porous membrane 11, and the third raw water chamber 12 and the second raw water chamber 12 through which the secondary distilled liquid W2 flows are sandwiched between the hydrophobic porous membrane 11. Three condensing chambers 13 are formed. Thereby, in the 3rd membrane distillation apparatus 4, while condensing the volatile component in the secondary distillation liquid W2, the tertiary distillation liquid W3 can be discharged | emitted.

上述したような分留システム1において、第一の膜蒸留装置2の第一の原水室6には、被処理液Wの流入路14と排出路15とが接続しており、これら流入路14及び排出路15は連通していて、これにより被処理液Wが循環可能な循環路16が形成されていて、この循環路16には回収路17が接続している。そして、この循環路16と回収路17とは分流機構として機能し、それぞれ調整機構としての開閉バルブ18、19が設けられていて、これらの開度をそれぞれ調整することにより、一次濃縮液W4の回収量と循環量とが調整可能となっている。   In the fractionation system 1 as described above, the inflow path 14 and the discharge path 15 for the liquid W to be treated are connected to the first raw water chamber 6 of the first membrane distillation apparatus 2. And the discharge path 15 is connected, and thereby, a circulation path 16 through which the liquid W to be treated can be circulated is formed, and a recovery path 17 is connected to the circulation path 16. The circulation path 16 and the recovery path 17 function as a diversion mechanism, and are provided with opening / closing valves 18 and 19 as adjustment mechanisms, respectively. The recovered amount and the circulating amount can be adjusted.

一方、第一の凝縮室7には、排出路20が接続されていて、この排出路20は第二の膜蒸留装置3の第二の原水室9に流入路22として連通しているとともに、回収バルブ21が設けられていて、この開度を調整することにより、一次蒸留液W1の回収量と、二次蒸留量とを調整可能となっている。   On the other hand, a discharge path 20 is connected to the first condensing chamber 7, and this discharge path 20 communicates with the second raw water chamber 9 of the second membrane distillation apparatus 3 as an inflow path 22. A recovery valve 21 is provided, and by adjusting the opening, the recovery amount of the primary distillate W1 and the secondary distillation amount can be adjusted.

同様に第二の膜蒸留装置3の第二の原水室9には、一次蒸留液W1の流入路22と排出路23とが接続しており、これら流入路22及び排出路23が連通することで一次蒸留液W1が循環可能な循環路24が形成されていて、この循環路24に回収路25が接続している。そして、この循環路24と回収路25には、それぞれ調整機構としての開閉バルブ26、27が設けられていて、これらの開度をそれぞれ調整することにより、二次濃縮液W5の回収量と循環量とが調整可能となっている。   Similarly, the second raw water chamber 9 of the second membrane distillation apparatus 3 is connected to the inflow path 22 and the discharge path 23 of the primary distilled liquid W1, and the inflow path 22 and the discharge path 23 communicate with each other. Thus, a circulation path 24 through which the primary distillate W1 can be circulated is formed, and a recovery path 25 is connected to the circulation path 24. The circulation path 24 and the recovery path 25 are provided with opening / closing valves 26 and 27 as adjusting mechanisms, respectively, and the amount of the secondary concentrated liquid W5 recovered and circulated by adjusting the respective opening degrees. The amount is adjustable.

一方、第二の凝縮室10には、排出路28が接続されていて、この排出路28は第三の膜蒸留装置4の第三の原水室12の流入路30として連通しているとともに、回収バルブ29が設けられていて、この開度を調整することにより、二次蒸留液W2の回収量と、三次蒸留量とを調整可能となっている。   On the other hand, a discharge path 28 is connected to the second condensing chamber 10, and this discharge path 28 communicates as the inflow path 30 of the third raw water chamber 12 of the third membrane distillation apparatus 4. A recovery valve 29 is provided, and by adjusting the opening, the recovery amount of the secondary distillate W2 and the tertiary distillation amount can be adjusted.

さらに、同様に第三の膜蒸留装置4の第三の原水室12には、二次蒸留液W2の流入路30と排出路31とが接続しており、これら流入路30及び排出路31が連通することで二次蒸留液W2が循環可能な循環路32が形成されていて、この循環路32に回収路33が接続している。そして、この循環路32と回収路33には、それぞれ調整機構としての開閉バルブ34、35が設けられていて、これらの開度をそれぞれ調整することにより、三次濃縮液W6の回収量と循環量とが調整可能となっている。   Further, similarly, the third raw water chamber 12 of the third membrane distillation apparatus 4 is connected to the inflow path 30 and the discharge path 31 of the secondary distilled liquid W2, and the inflow path 30 and the discharge path 31 are connected to the third raw water chamber 12. A circulation path 32 through which the secondary distilled liquid W2 can be circulated is formed by communication, and a recovery path 33 is connected to the circulation path 32. The circulation path 32 and the recovery path 33 are provided with open / close valves 34 and 35 as adjusting mechanisms, respectively, and by adjusting their opening degrees, the recovered amount and the circulating amount of the tertiary concentrate W6 are adjusted. And can be adjusted.

そして、第三の凝縮室13には、排出路36が接続されていて、三次蒸留液W3を排出可能となっている。   A discharge path 36 is connected to the third condensing chamber 13 so that the tertiary distillate W3 can be discharged.

次に上述したような3台の膜蒸留装置2、3及び4を直列に接続してなる本実施形態の分留システム1の作用について、揮発温度の異なるA、B、C成分(揮発温度の高い順で、いずれも後述する熱交換器による加熱温度以下の揮発温度を有する)を含有する被処理液Wを分留する場合について説明する。   Next, regarding the action of the fractionation system 1 of this embodiment formed by connecting the three membrane distillation apparatuses 2, 3 and 4 in series as described above, components A, B and C having different volatilization temperatures (of the volatilization temperature). The case of fractionating the liquid W to be processed which contains the higher volatilization temperature below the heating temperature of the heat exchanger described later will be described in the descending order.

まず、被処理液Wは図示しない熱交換器により所定の温度、例えば100℃未満、好ましくは50℃〜90℃程度になるように温度調整され、流入路14から第一の膜蒸留装置2の第一の原水室6に供給される。ここで、第一の膜蒸留装置2の第一の凝縮室7は図示しない真空ポンプにより減圧されている。このため蒸気を引き込む機能だけでなく、被処理液Wの沸点をより降下させる機能を発揮する。これにより被処理液Wの揮発成分A、B、Cは蒸発した水分とともに疎水性多孔質膜5を透過する。この結果、被処理液Wから揮発成分A、B、Cが所定の割合で除去された一次濃縮液W4が得られる。なお、この際熱交換器による加熱温度を超える揮発温度の成分は除去されずに一次濃縮液W4に残留する。   First, the temperature of the liquid W to be treated is adjusted to a predetermined temperature, for example, less than 100 ° C., preferably about 50 ° C. to 90 ° C. by a heat exchanger (not shown). It is supplied to the first raw water chamber 6. Here, the first condensation chamber 7 of the first membrane distillation apparatus 2 is decompressed by a vacuum pump (not shown). For this reason, not only the function of drawing steam but also the function of lowering the boiling point of the liquid W to be processed are exhibited. As a result, the volatile components A, B, and C of the liquid W to be processed pass through the hydrophobic porous membrane 5 together with the evaporated water. As a result, a primary concentrated liquid W4 from which the volatile components A, B, and C have been removed from the liquid W to be processed at a predetermined ratio is obtained. At this time, a component having a volatilization temperature exceeding the heating temperature by the heat exchanger remains in the primary concentrated liquid W4 without being removed.

このとき揮発性成分A、B、Cは全部が揮発せず、揮発し損ねた一部が一次濃縮液W4に残存する。しかしながら、本実施形態においては、流入路14と排出路15とを接続して循環路16を形成しているので、一次濃縮液W4は循環することになる。そこで、開閉バルブ18、19の開度を調整することにより、揮発性成分A、B、Cの含有率が所望の比率にまで低下するように回収路17からの一次濃縮液W4の回収量と循環量とを調整することが可能となっている。   At this time, all of the volatile components A, B, and C are not volatilized, and a part of the volatilization failure remains in the primary concentrated liquid W4. However, in this embodiment, since the circulation path 16 is formed by connecting the inflow path 14 and the discharge path 15, the primary concentrated liquid W4 is circulated. Therefore, by adjusting the opening degree of the open / close valves 18 and 19, the recovery amount of the primary concentrated liquid W4 from the recovery path 17 so that the content of the volatile components A, B and C is reduced to a desired ratio. It is possible to adjust the amount of circulation.

一方、揮発成分A、B、Cとともに蒸発した水分は第一の凝縮室7の冷却部に触れ凝縮して最も揮発温度の高い揮発成分Aを多く含む水滴が生じる。この水滴は一次蒸留液W1として、排出路15(流入路22)の回収バルブ21から一部が回収される。また、残りの一次蒸留液W1と、揮発成分B、Cを多く含む気体とが次段の第二の膜蒸留装置3の第二の原水室9に供給される。   On the other hand, the water evaporated together with the volatile components A, B, and C comes into contact with the cooling part of the first condensing chamber 7 and condenses to form water droplets containing a large amount of the volatile component A having the highest volatilization temperature. A part of this water droplet is recovered as a primary distillate W1 from the recovery valve 21 of the discharge path 15 (inflow path 22). The remaining primary distillate W1 and a gas containing a large amount of volatile components B and C are supplied to the second raw water chamber 9 of the second membrane distillation apparatus 3 at the next stage.

第二の膜蒸留装置3では、第二の凝縮室10は図示しない真空ポンプにより減圧されている。このとき一次蒸留液W1は、第一の膜蒸留装置2での処理により、揮発成分Aの揮発温度以下で揮発成分B、Cの揮発温度より高い温度にまでその温度が低下している。したがって、揮発成分Aは、疎水性多孔質膜8を透過しないが、揮発成分B、Cは蒸発した水分とともに疎水性多孔質膜8を透過する。この結果、一次蒸留液W1から揮発成分B、Cが所定の割合で除去されて揮発成分Aを豊富に含む二次濃縮液W5が得られる。一方、第二の凝縮室10の冷却部に触れ凝縮して揮発成分B、Cを含む水滴が生じる。これにより、この水滴が二次蒸留液W2として、排出路28から排出される。   In the second membrane distillation apparatus 3, the second condensation chamber 10 is decompressed by a vacuum pump (not shown). At this time, the temperature of the primary distillate W1 is lowered to a temperature lower than the volatilization temperature of the volatile component A and higher than the volatilization temperatures of the volatile components B and C by the treatment in the first membrane distillation apparatus 2. Accordingly, the volatile component A does not pass through the hydrophobic porous membrane 8, but the volatile components B and C pass through the hydrophobic porous membrane 8 together with the evaporated water. As a result, the volatile components B and C are removed from the primary distillate W1 at a predetermined ratio, and a secondary concentrated solution W5 containing abundant volatile components A is obtained. On the other hand, water droplets containing the volatile components B and C are generated by condensing by touching the cooling part of the second condensing chamber 10. Thereby, this water droplet is discharged | emitted from the discharge path 28 as the secondary distilled liquid W2.

このとき揮発性成分B、Cは、全部が揮発せず、揮発し損ねた一部が二次濃縮液W5に残存する。しかしながら、本実施形態においては、流入路22と排出路23とを接続して循環路24を形成しているので、二次濃縮液W5は循環することになる。そこで、揮発性成分B、Cの含有率が所望の割合に低下するまで循環するように開閉バルブ26、27の開度を調整して、回収路25からの二次濃縮液W5の回収量と循環量とを調整することができる。これらにより揮発成分Aの回収率を向上することが可能となっている。   At this time, all of the volatile components B and C do not volatilize, and a part of the volatile components B and C that have failed to volatilize remains in the secondary concentrated liquid W5. However, in this embodiment, since the inflow path 22 and the discharge path 23 are connected to form the circulation path 24, the secondary concentrated solution W5 is circulated. Therefore, the opening amounts of the on-off valves 26 and 27 are adjusted so as to circulate until the content ratios of the volatile components B and C are reduced to a desired ratio, The amount of circulation can be adjusted. As a result, the recovery rate of the volatile component A can be improved.

一方、揮発成分B、Cとともに蒸発した水分は第二の凝縮室10の冷却部に触れ凝縮して次に揮発温度の高い揮発成分Bを多く含む水滴が生じる。この水滴は二次蒸留液W2として、排出路28(流入路30)の回収バルブ29から回収される。また、残りの二次蒸留液W2と、揮発成分Cを多く含む気体とが次段の第三の膜蒸留装置4の第三の原水室12に供給される。   On the other hand, the water evaporated together with the volatile components B and C comes into contact with the cooling part of the second condensing chamber 10 and condenses, resulting in water droplets containing a large amount of the volatile component B having the next highest volatilization temperature. This water droplet is recovered as a secondary distillate W2 from the recovery valve 29 of the discharge path 28 (inflow path 30). Further, the remaining secondary distillate W2 and a gas containing a large amount of volatile component C are supplied to the third raw water chamber 12 of the third membrane distillation apparatus 4 at the next stage.

第三の膜蒸留装置3では、第三の凝縮室13は図示しない真空ポンプにより減圧されている。このとき二次蒸留液W2は、第二の膜蒸留装置3での処理により、揮発成分Bの揮発温度以下で揮発成分Cの揮発温度より高い温度にまでその温度が低下している。したがって、揮発成分Bは、疎水性多孔質膜11を透過しないが、揮発成分Cは蒸発した水分とともに疎水性多孔質膜11を透過する。この結果、二次蒸留液W2から揮発成分Cが所定の割合で除去された揮発成分Bを豊富に含む三次濃縮液W6として、排出路28から排出されるのでこれを回収することができる。   In the third membrane distillation apparatus 3, the third condensing chamber 13 is decompressed by a vacuum pump (not shown). At this time, the temperature of the secondary distillate W2 is lowered to a temperature lower than the volatilization temperature of the volatile component B and higher than the volatilization temperature of the volatile component C by the treatment in the second membrane distillation apparatus 3. Therefore, the volatile component B does not pass through the hydrophobic porous membrane 11, but the volatile component C passes through the hydrophobic porous membrane 11 together with the evaporated water. As a result, since it is discharged | emitted from the discharge path 28 as the tertiary concentrated liquid W6 containing abundant volatile component B from which the volatile component C was removed from the secondary distilled liquid W2 by the predetermined | prescribed ratio, this can be collect | recovered.

このとき揮発性成分Cは、全部が揮発せず、揮発し損ねた一部が三次濃縮液W6に残存する。しかしながら、本実施形態においては、流入路30と排出路31とを接続して循環路32を形成しているので、三次濃縮液W6は循環することになる。そこで、揮発性成分Cの含有率が所望の割合に低下するまで循環するように開閉バルブ34、35の開度を調整して、回収路33からの三次濃縮液W6の回収量と循環量とを調整することができる。これらにより揮発成分Bの回収率を向上することが可能となっている。   At this time, the volatile component C is not completely volatilized, and a part of the volatilized component C remains in the tertiary concentrated liquid W6. However, in this embodiment, since the circulation path 32 is formed by connecting the inflow path 30 and the discharge path 31, the tertiary concentrated liquid W6 is circulated. Therefore, the opening and closing valves 34 and 35 are adjusted so as to circulate until the content of the volatile component C decreases to a desired ratio, and the recovered amount and the circulating amount of the tertiary concentrated liquid W6 from the recovery path 33 Can be adjusted. As a result, the recovery rate of the volatile component B can be improved.

一方、揮発成分Cとともに蒸発した水分は第三の凝縮室13の冷却部に触れ凝縮して最も揮発温度の低い揮発成分Cを多く含む水滴が生じる。これにより、揮発成分Cを豊富に含む水滴が三次蒸留液W3として、排出路36から排出されるのでこれを回収することができる。   On the other hand, the water evaporated together with the volatile component C comes into contact with the cooling part of the third condensing chamber 13 and condenses to produce water droplets containing a large amount of the volatile component C having the lowest volatilization temperature. Thereby, the water droplets rich in the volatile component C are discharged from the discharge path 36 as the tertiary distillation liquid W3 and can be collected.

なお、上記濃縮対象となる被処理液Wとしては、果汁、液糖、蜂蜜などの糖分を含む食品関連溶液が好適である。ここで、被処理液Wは、糖分などの目的とする濃縮成分の初期濃度が10%以下、特に2〜7%程度である。また、海水淡水化、溶媒や油からの脱水などの工業プロセスでのプロセス排出にも好適に適用することができる。   In addition, as the to-be-processed liquid W used as the said concentration object, the food related solution containing sugars, such as fruit juice, liquid sugar, and honey, is suitable. Here, in the liquid W to be treated, the initial concentration of the target concentrated component such as sugar is 10% or less, particularly about 2 to 7%. It can also be suitably applied to process discharge in industrial processes such as seawater desalination and dehydration from solvents and oils.

以上、本発明について説明してきたが、本発明は前記実施形態に限らず種々の変形実施が可能である。例えば、分留システム1の構成としては、3段に限らず、分留回収したい成分の数に応じて4段以上の構成としてもよい。また、この分留システム1において、被処理液Wは食品プロセス水に限らず、医薬やその他の産業分野のプロセス水を濃縮するのに適用することができる。   Although the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the configuration of the fractionation system 1 is not limited to three stages, and may be composed of four or more stages according to the number of components to be fractionally collected. Moreover, in this fractionation system 1, the to-be-processed liquid W is applicable not only to food process water but to concentrating the process water of a pharmaceutical or another industrial field.

<実施例1>
図1に示す構成を有する分留システムを用い、果汁(被処理液W)を分留したところ、同伴飛沫を伴うことなく3種類の揮発成分を効率よく分留することができた。
<Example 1>
When the fruit juice (liquid W to be treated) was fractionated using the fractionation system having the configuration shown in FIG. 1, three types of volatile components could be efficiently fractionated without accompanying entrained droplets.

<比較例1>
比較例1においては、図2に示す構成を有する分留システムを用いた。
<Comparative Example 1>
In Comparative Example 1, a fractionation system having the configuration shown in FIG. 2 was used.

図2において、被処理液Wの分留システム1は、図1に示す分留システム1における膜蒸留装置2、3、4と同じ幕蒸留装置を用いたものであり、実施例1と同一の構成には同一の符号を付しその詳細な説明を省略する。なお、第一の膜蒸留装置2の上流側には熱交換器などの図示しない加熱手段が配置されている。   In FIG. 2, the fractionation system 1 of the liquid W to be treated uses the same curtain distillation apparatus as the membrane distillation apparatuses 2, 3, and 4 in the fractionation system 1 shown in FIG. The same reference numerals are given to the components, and detailed description thereof is omitted. A heating means (not shown) such as a heat exchanger is disposed on the upstream side of the first membrane distillation apparatus 2.

上記第一の膜蒸留装置2には、疎水性多孔質膜5が備えられており、この疎水性多孔質膜5を挟んで被処理液Wが流通する第一の原水室6と第一の凝縮室7とが形成されている。これにより第一の膜蒸留装置2において、被処理液Wの懸濁成分や不揮発成分を濃縮するとともに、一次蒸留液W1を排出可能となっている。また、第二の膜蒸留装置3には、疎水性多孔質膜8が備えられており、この疎水性多孔質膜8を挟んで一次蒸留液W1が流通する第二の原水室9と第二の凝縮室10とが形成されている。これにより第二の膜蒸留装置3において、一次蒸留液W1の低揮発成分を濃縮するとともに、二次蒸留液W2を排出可能となっている。さらに、第三の膜蒸留装置4には、疎水性多孔質膜11が備えられており、この疎水性多孔質膜11を挟んで二次蒸留液W2が流通する第三の原水室12と第三の凝縮室13とが形成されている。これにより第三の膜蒸留装置4において、二次蒸留液W2の中揮発成分を濃縮するとともに、三次蒸留液W3を排出可能となっている。   The first membrane distillation apparatus 2 includes a hydrophobic porous membrane 5, and a first raw water chamber 6 and a first raw water chamber 6 through which the liquid W to be treated flows with the hydrophobic porous membrane 5 interposed therebetween. A condensation chamber 7 is formed. Thereby, in the 1st film | membrane distillation apparatus 2, while suspending the suspension component and non-volatile component of the to-be-processed liquid W, the primary distillation liquid W1 can be discharged | emitted. Further, the second membrane distillation apparatus 3 is provided with a hydrophobic porous membrane 8, and the second raw water chamber 9 and the second raw water chamber 9 in which the primary distilled liquid W1 flows through the hydrophobic porous membrane 8. The condensing chamber 10 is formed. Thereby, in the 2nd film | membrane distillation apparatus 3, while being able to concentrate the low volatile component of the primary distillate W1, the secondary distillate W2 can be discharged | emitted. Further, the third membrane distillation apparatus 4 is provided with a hydrophobic porous membrane 11, and the third raw water chamber 12 and the second raw water chamber 12 through which the secondary distilled liquid W2 flows are sandwiched between the hydrophobic porous membrane 11. Three condensing chambers 13 are formed. Thereby, in the 3rd membrane distillation apparatus 4, while concentrating the volatile component in secondary distillation liquid W2, it is possible to discharge | emit tertiary distillation liquid W3.

上述したような分留システム1において、第一の膜蒸留装置2の第一の原水室6には、被処理液Wの流入路14と一次濃縮液W4の排出路15とが接続しており、この排出路15は後段の第二の膜蒸留装置3の流入路22に連通している。一方、第一の凝縮室7には、一次蒸留液W1の排出路20が接続されている。   In the fractionation system 1 as described above, the first raw water chamber 6 of the first membrane distillation apparatus 2 is connected to the inflow path 14 of the liquid W to be treated and the discharge path 15 of the primary concentrated liquid W4. The discharge path 15 communicates with the inflow path 22 of the second membrane distillation apparatus 3 at the subsequent stage. On the other hand, the first condensing chamber 7 is connected with a discharge path 20 for the primary distillate W1.

同様に第二の膜蒸留装置3の第二の原水室9には、一次濃縮液W4の流入路22と二次濃縮液W2の排出路23とが接続しており、この排出路23は後段の第三の膜蒸留装置4の流入路30に連通している。一方、第二の凝縮室10には、二次蒸留液W2の排出路28が接続されている。   Similarly, the second raw water chamber 9 of the second membrane distillation apparatus 3 is connected to the inflow path 22 of the primary concentrate W4 and the discharge path 23 of the secondary concentrate W2, and this discharge path 23 is connected to the latter stage. The third membrane distillation apparatus 4 communicates with the inflow path 30. On the other hand, the second condensing chamber 10 is connected with a discharge path 28 for the secondary distillate W2.

さらに、同様に第三の膜蒸留装置4の第三の原水室12には、二次濃縮液W2の流入路30と三次濃縮液W3の排出路31とが接続している。一方、第三の凝縮室13には、排出路36が接続されている。   Further, similarly, the third raw water chamber 12 of the third membrane distillation apparatus 4 is connected to the inflow path 30 for the secondary concentrated liquid W2 and the discharge path 31 for the tertiary concentrated liquid W3. On the other hand, a discharge path 36 is connected to the third condensing chamber 13.

上述したような3台の膜蒸留装置2、3及び4を直列に接続してなる比較例1の分留システム1においては、第一の膜蒸留装置2で濃縮された一次濃縮液W4を第二の膜蒸留装置3でさらに濃縮し、この濃縮された二次濃縮液W5をさらに第三の膜蒸留装置4でさらに濃縮して、最終的に三次濃縮液W6を得るとともに、膜蒸留装置2、3及び4の凝縮室7、10、13で蒸留液W1、W2、W3を回収する分留システムとなっている。   In the fractionation system 1 of Comparative Example 1 in which the three membrane distillation apparatuses 2, 3 and 4 as described above are connected in series, the primary concentrated solution W4 concentrated by the first membrane distillation apparatus 2 is used as the first concentrated liquid W4. Further concentration is performed by the second membrane distillation apparatus 3, and the concentrated secondary concentrated solution W5 is further concentrated by the third membrane distillation apparatus 4. Finally, a tertiary concentrated solution W6 is obtained, and the membrane distillation apparatus 2 This is a fractionation system that collects the distillates W1, W2, and W3 in the condensing chambers 7, 10, and 13.

このような比較例1の分留システムにより、実施例1と同じ果汁(被処理液W)を分留したところ、果汁の濃縮はできたが、各成分を十分な精度で分留することができなかった。そこで、この対策として、凝縮室7、10、13に同様な膜蒸留装置をさらに設置することにより、分留精度を向上させることが考えられるが、装置が大きくなり設備コストも非常に高くなるため実用的でない。   When the same fruit juice (processed liquid W) as in Example 1 was fractionated by such a fractionation system of Comparative Example 1, the fruit juice was concentrated, but each component could be fractionated with sufficient accuracy. could not. Therefore, as a countermeasure, it may be possible to improve the fractionation accuracy by further installing a similar membrane distillation apparatus in the condensation chambers 7, 10 and 13, but the apparatus becomes large and the equipment cost becomes very high. Not practical.

1…分留システム
2…第一の膜蒸留装置
3…第二の膜蒸留装置
4…第三の膜蒸留装置
5…疎水性多孔質膜
6…第一の原水室
7…第一の凝縮室
8…疎水性多孔質膜
9…第二の原水室
10…第二の凝縮室
11…疎水性多孔質膜
12…第三の原水室
13…第三の凝縮室
14…流入路
15…排出路
16…循環路
17…回収路
18…開閉バルブ
19…開閉バルブ
20…排出路
21…回収バルブ
22…流入路
23…排出路
24…循環路
25…回収路
26…開閉バルブ
27…開閉バルブ
28…排出路
29…回収バルブ
30…流入路
31…排出路
32…循環路
33…回収路
34…開閉バルブ
35…開閉バルブ
36…排出路
W…被処理液
W1…一次蒸留液
W2…二次蒸留液
W3…三次蒸留液
W4…一次濃縮液
W5…二次濃縮液
W6…三次濃縮液
S…蒸気
DESCRIPTION OF SYMBOLS 1 ... Fractionation system 2 ... 1st membrane distillation apparatus 3 ... 2nd membrane distillation apparatus 4 ... 3rd membrane distillation apparatus 5 ... Hydrophobic porous membrane 6 ... 1st raw | natural water chamber 7 ... 1st condensation chamber 8 ... hydrophobic porous membrane 9 ... second raw water chamber 10 ... second condensing chamber 11 ... hydrophobic porous membrane 12 ... third raw water chamber 13 ... third condensing chamber 14 ... inflow passage 15 ... discharge passage 16 ... Circulation path 17 ... Recovery path 18 ... Open / close valve 19 ... Open / close valve 20 ... Discharge path 21 ... Recovery valve 22 ... Inlet path 23 ... Discharge path 24 ... Circulation path 25 ... Recovery path 26 ... Open / close valve 27 ... Open / close valve 28 ... Discharge path 29 ... Recovery valve 30 ... Inlet path 31 ... Discharge path 32 ... Circulation path 33 ... Recovery path 34 ... Open / close valve 35 ... Open / close valve 36 ... Discharge path W ... Liquid to be treated W1 ... Primary distillate W2 ... Secondary distillate W3 ... Tertiary distillate W4 ... Primary concentrate W5 ... Secondary concentrate W6 ... Tertiary concentrate S ... Steam

Claims (4)

疎水性多孔質膜により区画された原水部及び凝縮部と、
前記凝縮部を減圧状態に維持する減圧手段と、
前記凝縮部を冷却する冷却手段とを備え、
加熱された被処理液を前記原水部に導入し、前記被処理液の蒸気を前記疎水性多孔質膜に透過させることで、該被処理液を濃縮して濃縮液を生成するとともに前記凝縮部で蒸留液を生成する膜蒸留装置を2段以上備える分留システムであって、
前記前段の膜蒸留装置の蒸留液を次段の膜蒸留装置の原水部に導入する流路と、前記膜蒸留装置の濃縮液の一部を回収する一方、残部を該膜蒸留装置前記原水部側に還流する分流機構とを有することを特徴とする分留システム。
Raw water section and condensation section partitioned by a hydrophobic porous membrane;
Pressure reducing means for maintaining the condensing part in a reduced pressure state;
Cooling means for cooling the condensing part,
The heated liquid to be treated is introduced into the raw water part, and the vapor of the liquid to be treated is permeated through the hydrophobic porous membrane, thereby concentrating the liquid to be treated to produce a concentrated liquid and the condensing part. A fractional distillation system comprising two or more membrane distillation devices for producing a distillate at
A flow path for introducing the distillate of the previous stage membrane distillation apparatus into the raw water part of the subsequent stage film distillation apparatus, and recovering a part of the concentrated liquid of the membrane distillation apparatus, while the remainder is the raw water part of the membrane distillation apparatus And a diversion mechanism for refluxing to the side.
前記膜蒸留装置を3段以上備えることを特徴とする請求項1に記載の分留システム。   The fractionation system according to claim 1, wherein the membrane distillation apparatus includes three or more stages. 前記濃縮液の回収及び循環の割合を調整可能な調整機構を備えることを特徴とする請求項1又は2に記載の分留システム。   The fractionation system according to claim 1, further comprising an adjustment mechanism capable of adjusting a rate of recovery and circulation of the concentrate. 前記被処理液が、果汁、液糖あるいは蜂蜜の食品関連溶液であることを特徴とする請求項1乃至3のいずれかに記載の濃縮システム。   The concentration system according to any one of claims 1 to 3, wherein the liquid to be treated is a food-related solution of fruit juice, liquid sugar, or honey.
JP2015008146A 2015-01-19 2015-01-19 Membrane distillation fractionation unit Active JP6511823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008146A JP6511823B2 (en) 2015-01-19 2015-01-19 Membrane distillation fractionation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008146A JP6511823B2 (en) 2015-01-19 2015-01-19 Membrane distillation fractionation unit

Publications (2)

Publication Number Publication Date
JP2016131929A true JP2016131929A (en) 2016-07-25
JP6511823B2 JP6511823B2 (en) 2019-05-15

Family

ID=56434963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008146A Active JP6511823B2 (en) 2015-01-19 2015-01-19 Membrane distillation fractionation unit

Country Status (1)

Country Link
JP (1) JP6511823B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231305B2 (en) * 1974-11-16 1977-08-13
JPS58180204A (en) * 1982-04-19 1983-10-21 Kuri Kagaku Sochi Kk Separation using osmotic evaporation membrane
JPS58216704A (en) * 1982-05-14 1983-12-16 アクゾ・エヌ・ヴエ− Method and apparatus for at least partially separating one kind of liquid component of solution
JPS63294902A (en) * 1987-05-27 1988-12-01 Hisaka Works Ltd Perfume extractor
JPH0924249A (en) * 1995-07-14 1997-01-28 Hitachi Ltd Membrane evaporator and membrane distillation method
CN102491577A (en) * 2011-06-21 2012-06-13 天津科技大学 Multi-stage series membrane distillation strong brine desalting method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231305B2 (en) * 1974-11-16 1977-08-13
JPS58180204A (en) * 1982-04-19 1983-10-21 Kuri Kagaku Sochi Kk Separation using osmotic evaporation membrane
JPS58216704A (en) * 1982-05-14 1983-12-16 アクゾ・エヌ・ヴエ− Method and apparatus for at least partially separating one kind of liquid component of solution
JPS63294902A (en) * 1987-05-27 1988-12-01 Hisaka Works Ltd Perfume extractor
JPH0924249A (en) * 1995-07-14 1997-01-28 Hitachi Ltd Membrane evaporator and membrane distillation method
CN102491577A (en) * 2011-06-21 2012-06-13 天津科技大学 Multi-stage series membrane distillation strong brine desalting method and device

Also Published As

Publication number Publication date
JP6511823B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
AU2012292161B2 (en) Membrane distillation device
US6436242B1 (en) Device and method for distilling water
EP2427264B1 (en) Membrane distillation device and process using the same
US20100078306A1 (en) Multi-stage flash desalination plant with feed cooler
CN106458792B (en) Absorption/distillation in a single column design
JP3178115U (en) Equipment for dehydrating a mixture of ethanol and water
JP6822984B2 (en) A distillation apparatus having a columnar portion having three or more chambers through which a liquid continuously flows and a method for distillation or extraction distillation by using the distillation apparatus.
JP6196807B2 (en) Water-soluble organic substance concentration method and water-soluble organic substance concentration apparatus
KR102308392B1 (en) Distillation apparatus including distillation column
JPWO2003035222A1 (en) Water-soluble organic substance concentrator
SE530856C2 (en) Method of low water consumption by means of membrane distillation with low energy consumption
JP6934655B2 (en) Concentration methods and equipment that combine membrane separation and distillation
JP6280170B2 (en) Concentrator
KR20130080421A (en) Pure liquid production device
US10427066B2 (en) Multi-stage distillation system, method for the operation thereof
JP6511823B2 (en) Membrane distillation fractionation unit
NL2009613C2 (en) Membrane distillation system, method of starting such a system and use thereof.
JP6476715B2 (en) Concentration system
JP6277845B2 (en) Distillation equipment
US3360442A (en) Multi-stage flash evaporator
JP6417826B2 (en) Concentration system and concentration method
CN104399372A (en) Multistage membrane distillation device
JP6595855B2 (en) Distillation equipment with distillation tower
JPH04135627A (en) Method for recovering valuable substance in dilute aqueous solution
KR20220120461A (en) Distillation apparatus including distillation column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6511823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250