JP6934655B2 - Concentration methods and equipment that combine membrane separation and distillation - Google Patents
Concentration methods and equipment that combine membrane separation and distillation Download PDFInfo
- Publication number
- JP6934655B2 JP6934655B2 JP2017053175A JP2017053175A JP6934655B2 JP 6934655 B2 JP6934655 B2 JP 6934655B2 JP 2017053175 A JP2017053175 A JP 2017053175A JP 2017053175 A JP2017053175 A JP 2017053175A JP 6934655 B2 JP6934655 B2 JP 6934655B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- separation device
- membrane separation
- mixture
- supply path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims description 147
- 238000000926 separation method Methods 0.000 title claims description 119
- 238000004821 distillation Methods 0.000 title claims description 89
- 238000000034 method Methods 0.000 title claims description 29
- 239000000203 mixture Substances 0.000 claims description 98
- 239000002994 raw material Substances 0.000 claims description 57
- 150000001336 alkenes Chemical class 0.000 claims description 39
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 24
- 238000011084 recovery Methods 0.000 claims description 24
- 239000012466 permeate Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 40
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 40
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 34
- 238000009835 boiling Methods 0.000 description 24
- 238000004088 simulation Methods 0.000 description 21
- 238000005265 energy consumption Methods 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 18
- 239000001294 propane Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229910021536 Zeolite Inorganic materials 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 239000010457 zeolite Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000009795 derivation Methods 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004231 fluid catalytic cracking Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000012920 MOF membrane Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- LGPMBEHDKBYMNU-UHFFFAOYSA-N ethane;ethene Chemical compound CC.C=C LGPMBEHDKBYMNU-UHFFFAOYSA-N 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- WHFQAROQMWLMEY-UHFFFAOYSA-N propylene dimer Chemical compound CC=C.CC=C WHFQAROQMWLMEY-UHFFFAOYSA-N 0.000 description 1
- -1 propylene, ethylene Chemical group 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、膜分離と蒸留を組み合わせ、同炭素数のアルケンとアルカンを含む混合物からそれらの少なくとも一方を濃縮する濃縮方法や濃縮装置に関するものである。 The present invention relates to a concentration method or a concentrator that combines membrane separation and distillation to concentrate at least one of a mixture containing alkenes and alkanes having the same carbon number.
従来、プロピレンやエチレンなどは、ナフサや液化石油ガスのスチームクラッキング、製油所での流動接触分解(FCC: Fluid Catalytic Cracking)、天然ガス中のプロパンの脱水素法、メタノールを原料としたMTO(Methanol To Olefin)法やMTP(Methanol To Propylene)法等により生産されている。
そのような生産過程では、プロピレンはプロパンと分離して濃縮する必要があり、また、エチレンはエタンと分離して濃縮する必要がある。そのような同炭素数のアルケン(プロピレン、エチレン等)とアルカン(プロパン、エタン等)を含む混合物からアルケンを分離、濃縮するには、従来、蒸留塔が用いられているが、その際、多量のエネルギーが消費されることが知られている。
Conventionally, propylene and ethylene have been used for steam cracking of naphtha and liquefied petroleum gas, fluid catalytic cracking (FCC) at refineries, dehydrogenation of propane in natural gas, and MTO (Methanol) using methanol as a raw material. It is produced by the To Olefin) method, the MTP (Methanol To Propylene) method, and the like.
In such a production process, propylene needs to be separated from propane and concentrated, and ethylene needs to be separated from ethane and concentrated. Conventionally, a distillation column is used to separate and concentrate an alkene from a mixture containing such an alkene (propylene, ethylene, etc.) and an alkane (propane, ethane, etc.) having the same carbon number. Is known to consume energy.
そのような多量のエネルギーが必要とされる濃縮工程については、省エネルギー化が検討されてきており、プロピレンとプロパンの混合物からプロピレンを分離、濃縮する際に膜分離装置を利用することも検討されている。 Energy saving has been studied for the concentration process that requires such a large amount of energy, and the use of a membrane separation device for separating and concentrating propylene from a mixture of propylene and propane has also been considered. There is.
プロピレンの濃縮における膜分離装置の利用形態としては、蒸留塔を用いず、膜分離装置を1段、又は、2段で使用するもの、1段又は2段の膜分離装置と蒸留塔とをハイブリット化したものが検討されている(非特許文献1参照)。 As a form of use of the membrane separation device for propylene concentration, the membrane separation device is used in one or two stages without using a distillation column, and the one-stage or two-stage membrane separation device and the distillation column are hybridized. (See Non-Patent Document 1).
上述のようなプロピレンの濃縮において、蒸留塔を使用せず、膜分離装置を1段又は2段で使用するものは、原料ガス中のプロピレン濃度が高い場合に有効で、省エネルギー性に優れているとされている。
一方、1段又は2段の膜分離装置と蒸留塔とをハイブリッド化したものは、原料ガス中のプロピレン濃度が高い場合だけでなく比較的低き場合でも省エネルギー化が可能であるとされている。
In the above-mentioned concentration of propylene, those using a membrane separation device in one or two stages without using a distillation column are effective when the propylene concentration in the raw material gas is high, and are excellent in energy saving. It is said that.
On the other hand, a hybrid of a one-stage or two-stage membrane separation device and a distillation column is said to be able to save energy not only when the propylene concentration in the raw material gas is high but also when it is relatively low. ..
膜分離装置と蒸留塔とのハイブリッド化の形態としては、膜分離装置の膜透過物を蒸留塔の上段側へ、膜未透過混合物を同蒸留塔の下段側へ供給し、蒸留塔の塔頂からプロピレンを塔底からプロパンを、それぞれ回収することが検討されている。 As a form of hybridization of the membrane separation device and the distillation column, the membrane permeate of the membrane separation device is supplied to the upper side of the distillation column, and the impermeable mixture of the membrane is supplied to the lower side of the distillation column, and the top of the distillation column is supplied. It is being considered to recover propylene from the column and propane from the bottom of the column.
本発明は、上述のような従来技術を背景とするものであり、膜分離装置と蒸留塔を組み合わせ、炭素数が2〜4の範囲内であり同炭素数のアルケンとアルカンを含む混合物から少なくとも一方を濃縮する新規な濃縮方法や濃縮装置を提供することを課題とする。 The present invention is based on the above-mentioned prior art, and combines a membrane separation device and a distillation column, and at least from a mixture containing an alkene and an alkane having the same carbon number in the range of 2 to 4. An object of the present invention is to provide a new concentration method and a concentration device for concentrating one of them.
本発明者は、膜分離装置と蒸留塔とをハイブリッド化した濃縮について、原料の種類や濃度等の適用範囲が広く、また、既存のプラントの改修利用が可能である等の利点を有することを認識した。
そのような認識の下、本発明者は、上述以外のハイブリッド化の態様の可能性について鋭意検討した。そのような検討過程において、本発明者は、ハイブリッド化の有用な態様を見出し、本発明を完成するに至った。
The present inventor has advantages in that the concentration obtained by hybridizing the membrane separation device and the distillation column has a wide range of applications such as the type and concentration of raw materials, and that the existing plant can be refurbished and used. Recognized.
Based on such recognition, the present inventor has diligently examined the possibility of hybridization modes other than those described above. In such a study process, the present inventor has found a useful aspect of hybridization and has completed the present invention.
本件では、以下のような発明が提供される。
<1>膜分離装置と蒸留塔を組み合わせ、炭素数が2〜4の範囲内でかつ同炭素数のアルケンとアルカンとを含む原料混合物からアルケン及び/又はアルカンを濃縮する濃縮方法であって、前記原料混合物を膜分離装置に供給しアルケンを膜透過させて回収するとともに、膜未透過混合物を蒸留塔に供給し、塔頂からの導出物を前記原料混合物の供給路に循環供給し、塔底からアルカンを回収する濃縮方法。
<2><1>に記載の濃縮方法において、膜分離装置を2段に設け、前記原料混合物を1段目膜分離装置に供給し、その膜透過物を2段目膜分離装置に供給しアルケンを膜透過させて回収するとともに、1段目膜分離装置の膜未透過混合物を蒸留塔に供給し、2段目膜分離装置の膜未透過混合物を前記原料混合物の供給路に循環供給する濃縮方法。
<3>前記膜分離装置の理想分離係数が90以上である<1>又は<2>に記載の濃縮方法。
<4>炭素数が2〜4の範囲内でかつ同炭素数のアルケンとアルカンとを含む原料混合物の供給路と、前記原料混合物の供給路に接続され、アルケンを膜透過させる膜分離装置と、前記膜分離装置に接続され、その膜透過アルケンを回収するアルケン回収路と、蒸留塔と、前記膜分離装置に接続され、その膜未透過混合物を前記蒸留塔に供給する膜未透過混合物供給路と、前記蒸留塔の塔頂からの蒸気を前記原料混合物の供給路に循環供給する蒸気循環供給路と、前記蒸留塔の塔底からのアルカンを回収するアルカン回収路を具備する濃縮装置。
<5>炭素数が2〜4の範囲内でかつ同炭素数のアルケンとアルカンとを含む原料混合物の供給路と、前記原料混合物の供給路に接続される1段目膜分離装置と、前記1段目膜分離装置に接続され、その膜透過物を2段目膜分離装置に供給する膜透過物供給路と、前記2段目膜分離装置に接続され、その膜透過アルケンを回収するアルケン回収路と、蒸留塔と、前記1段目膜分離装置に接続され、その膜未透過混合物を前記蒸留塔に供給する膜未透過混合物供給路と、前記2段目膜分離装置に接続され、その膜未透過混合物を前記原料混合物供給路に循環供給する膜未透過混合物循環供給路と、前記蒸留塔の塔頂からの蒸気を前記原料混合物供給路に循環供給する蒸気循環供給路と、前記蒸留塔の塔底からのアルカンを回収するアルカン回収路を具備する濃縮装置。
<6>前記膜分離装置は、理想分離係数が90以上である<4>又は<5>に記載の濃縮装置。
In this case, the following inventions are provided.
<1> A concentration method in which a membrane separation device and a distillation tower are combined to concentrate alkene and / or alkane from a raw material mixture containing alkene and alkane having the same carbon number in the range of 2 to 4. The raw material mixture is supplied to a membrane separation device to permeate and recover the alkene, the membrane impermeable mixture is supplied to a distillation tower, and the derivative from the top of the column is circulated and supplied to the supply path of the raw material mixture. Concentration method for recovering alcan from the bottom.
<2> In the concentration method according to <1>, a membrane separation device is provided in two stages, the raw material mixture is supplied to the first stage membrane separation device, and the membrane permeate is supplied to the second stage membrane separation device. The alkene is permeated and recovered, and the membrane impermeable mixture of the first-stage membrane separation device is supplied to the distillation tower, and the membrane impermeable mixture of the second-stage membrane separation device is circulated and supplied to the supply path of the raw material mixture. Concentration method.
<3> The concentration method according to <1> or <2>, wherein the ideal separation coefficient of the membrane separation device is 90 or more.
<4> A membrane separation device having a carbon number in the range of 2 to 4 and connected to a supply path of a raw material mixture containing alken and alkane having the same carbon number and being connected to the supply path of the raw material mixture to permeate the arcene through a membrane. , An alkene recovery path connected to the membrane separation device and recovering the membrane permeable alkene, a distillation tower, and a membrane opaque mixture supply connected to the membrane separation device and supplying the membrane opaque mixture to the distillation tower. A concentrator including a passage, a steam circulation supply passage for circulating and supplying steam from the top of the distillation tower to the supply passage for the raw material mixture, and an alcan recovery passage for recovering alcan from the bottom of the distillation tower.
<5> A supply path of a raw material mixture having an number of carbon atoms in the range of 2 to 4 and containing the same carbon number of alkene and alcan, a first-stage membrane separator connected to the supply path of the raw material mixture, and the above. An arcene that is connected to the first-stage membrane separator and supplies the film-permeated material to the second-stage membrane separator, and an arcene that is connected to the second-stage membrane separator and collects the film-permeable alcohol. The recovery path, the distillation tower, and the first-stage membrane separator are connected, and the membrane-impermeable mixture supply path for supplying the membrane-impermeable mixture to the distillation tower is connected to the second-stage membrane separator. A membrane impermeable mixture circulation supply path that circulates and supplies the film impermeable mixture to the raw material mixture supply path, a steam circulation supply path that circulates and supplies steam from the top of the distillation tower to the raw material mixture supply path, and the above. A concentrator provided with an alcan recovery path for recovering alcan from the bottom of the distillation tower.
<6> The concentrator according to <4> or <5>, wherein the membrane separation device has an ideal separation coefficient of 90 or more.
本発明は、次のような態様を含むことができる。
<7>前記塔底から導出されるアルカン液の一部を加熱して前記蒸留塔の最下段の棚段に還流する<1>〜<3>のいずれか1項に記載の濃縮方法。
<8>前記蒸留塔の塔頂から導出するアルケン蒸気の一部を凝縮して最上部の棚段に還流する<1>〜<3>、<7>のいずれか1項に記載の濃縮方法。
<9>アルケンとしてプロピレンを、アルカンとしてプロパンを、それぞれ用いる<1>〜<3>、<7>、<8>のいずれか1項に記載の濃縮方法。
<10><4>〜<6>のいずれか1項に記載の濃縮装置において、前記塔頂からのアルケン蒸気の一部を最上段の棚段に還流する塔頂側還流路と、該塔頂側還流路に設けたコンデンサと、前記塔底からのアルカン液の一部を最下段の棚段に還流する塔底側還流路とをさらに具備する濃縮装置。
<11>アルケンとしてプロピレンを、アルカンとしてプロパンを、それぞれ用いる<4>〜<6>、<10>のいずれか1項に記載の濃縮装置。
The present invention can include the following aspects.
<7> The concentration method according to any one of <1> to <3>, wherein a part of the alkane liquid derived from the bottom of the column is heated and refluxed to the lowermost shelf of the distillation column.
<8> The concentration method according to any one of <1> to <3> and <7>, wherein a part of the alkene vapor derived from the top of the distillation column is condensed and refluxed to the uppermost shelf. ..
<9> The concentration method according to any one of <1> to <3>, <7>, and <8>, which uses propylene as an alkene and propane as an alkane, respectively.
<10> In the concentrator according to any one of <4> to <6>, a column top-side reflux path for refluxing a part of the arcen steam from the column top to the uppermost shelf, and the column. A concentrator further provided with a condenser provided in the top return path and a column bottom return path for refluxing a part of the alcan solution from the bottom of the column to the lowermost shelf.
<11> The concentrator according to any one of <4> to <6> and <10>, which uses propylene as an alkene and propane as an alkane, respectively.
本発明の濃縮方法や濃縮装置によれば、炭素数が2〜4の範囲内でかつ同炭素数のアルケンとアルカンとを含む混合物からアルケンとアルカンの少なくとも一方を比較的少ないエネルギーで効果的に濃縮することができる。 According to the concentration method and the concentrator of the present invention, at least one of an alkene and an alkane can be effectively obtained with a relatively small amount of energy from a mixture containing an alkene and an alkane having the same carbon number and having a carbon number in the range of 2 to 4. Can be concentrated.
本発明の実施例1の濃縮方法、濃縮装置を示す概略図である図1に基づき、原料として同炭素数のアルケン(低沸点成分)とアルカン(高沸点成分)とを含む混合物を用い、アルケンとアルカンの少なくとも一方を濃縮する場合について説明する。
本発明の実施例1の濃縮装置は、アルケンとアルカンとを含む原料混合物の供給路と、前記原料混合物の供給路に接続される膜分離装置と、前記膜分離装置に接続され、その膜透過物を低沸点成分(アルケン)として回収する低沸点成分回収路と、蒸留塔と、前記膜分離装置に接続され、その膜未透過混合物を前記蒸留塔に供給する膜未透過混合物供給路と、前記蒸留塔の塔頂からの導出物(蒸気)を前記原料混合物の供給路に循環供給する塔頂導出物循環供給路と、前記蒸留塔の塔底からの導出物を高沸点成分(アルカン)として回収する高沸点成分回収路を具備する。
Based on FIG. 1, which is a schematic diagram showing the concentration method and the concentrator of Example 1 of the present invention, an alkene containing an alkene (low boiling point component) and an alkane (high boiling point component) having the same carbon number as a raw material is used. And the case of concentrating at least one of alkanes will be described.
The concentrator of Example 1 of the present invention is connected to a supply path of a raw material mixture containing alken and alcan, a membrane separation device connected to the supply path of the raw material mixture, and the membrane separation device, and the membrane permeates the same. A low boiling point component recovery path for recovering a substance as a low boiling point component (alkene), a distillation tower, and a membrane impermeable mixture supply path connected to the membrane separation device and supplying the membrane impermeable mixture to the distillation column. A high boiling point component (alcan) is used to circulate and supply the derivative (steam) from the top of the distillation tower to the supply path of the raw material mixture, and the derivative from the bottom of the distillation column. It is provided with a high boiling point component recovery path for recovery.
膜分離装置の分離膜は、理想分離係数が30以上、好ましくは50以上、より好ましくは90以上のものである。分離膜の理想分離係数は高い方が濃縮装置の省エネルギー効果が高くなるが、90を境として省エネルギー効果が特に顕著に表れる。分離膜の理想分離係数の上限は限定する必要がなく、実現可能な範囲(現状では、100程度まで)のものであれば利用できる。膜分離装置の分離膜としては、FAU型ゼオライト分離膜、BEA型ゼオライト膜(非特許文献1第10頁参照)、MOF膜、シリカ膜等が挙げられるが、理想分離係数が90程度以上の可能なFAU型ゼオライト分離膜、BEA型ゼオライト膜が好ましい。
膜分離装置の形式としては、十字流式、向流式、並流式などの形式が存在するが、いずれの形式も採用することができる。
膜分離装置では、アルケンとアルカンは気体状態で膜分離されるので、原料混合物が液体を含むなどの状態に応じて、原料混合物の供給路に原料混合物を加熱する、加熱器を設けることもできる。
The separation membrane of the membrane separation device has an ideal separation coefficient of 30 or more, preferably 50 or more, and more preferably 90 or more. The higher the ideal separation coefficient of the separation membrane, the higher the energy saving effect of the concentrator, but the energy saving effect becomes particularly remarkable after 90. It is not necessary to limit the upper limit of the ideal separation coefficient of the separation membrane, and it can be used as long as it is within a feasible range (currently, up to about 100). Examples of the separation membrane of the membrane separation device include a FAU type zeolite separation membrane, a BEA type zeolite membrane (see page 10 of Non-Patent Document 1), a MOF membrane, a silica membrane, etc., and an ideal separation coefficient of about 90 or more is possible. FAU type zeolite separation membrane and BEA type zeolite membrane are preferable.
As the type of the membrane separation device, there are types such as a cross flow type, a countercurrent type, and a parallel flow type, and any type can be adopted.
In the membrane separation device, since the alkene and the alkane are membrane-separated in a gaseous state, a heater for heating the raw material mixture can be provided in the supply path of the raw material mixture depending on the state such as the raw material mixture containing a liquid. ..
膜分離装置での膜透過アルケンは、膜分離装置に接続されたアルケン回収路を通じて回収される。膜分離装置の膜透過側の圧力を膜未透過側より低くするため、図1の実施例1では、アルケン回収路に圧縮機や冷却器を設けている。 The membrane-permeating alkene in the membrane separation device is recovered through the alkene recovery path connected to the membrane separation device. In the first embodiment of FIG. 1, a compressor and a cooler are provided in the alkene recovery path in order to make the pressure on the membrane permeation side of the membrane separation device lower than that on the non-membrane permeation side.
膜分離装置の分離膜を透過しなかった膜未透過混合物は、膜未透過混合物供給路を通じて蒸留塔に供給される。その際、膜未透過混合物は、そのアルケン濃度と棚段上のアルケン濃度との差異が最も小さくなる棚段に供給される。
供給される膜未透過混合物は、その温度が供給される棚段内と大差がないように、原料混合物供給路の加熱器を調整することが望ましい。蒸留塔の棚段に供給される膜未透過混合物の温度を該棚段内の温度に近づけるように、膜未透過混合物供給路に膜未透過混合物の温度を調整する加熱器及び/又は冷却器などの温度調節器を設けることも必要に応じて可能である。
The membrane impermeable mixture that has not penetrated the separation membrane of the membrane separation device is supplied to the distillation column through the membrane impermeable mixture supply channel. At that time, the membrane impermeable mixture is supplied to the shelf where the difference between the alkene concentration and the alkene concentration on the shelf is the smallest.
It is desirable to adjust the heater of the raw material mixture supply path so that the temperature of the supplied membrane opaque mixture is not much different from that in the shelf where the temperature is supplied. A heater and / or cooler that adjusts the temperature of the membrane opaque mixture in the membrane opaque mixture supply path so that the temperature of the membrane opaque mixture supplied to the shelf of the distillation column approaches the temperature inside the shelf. It is also possible to provide a temperature controller such as, if necessary.
蒸留塔としては、公知の棚段塔や充填塔のいずれのものも使用可能である。蒸留塔の棚段数は、限定するものではないが、10〜300段とすることができる。後述の実施例1のシミュレーション解析例にみられるように、参考例1、参考例2では、蒸留塔の棚段数が100程度以下より少なくなると、エネルギー消費量が急激に増大するのに対し、本発明の濃縮方法や濃縮装置では、蒸留塔の棚段数が100程度以下より少なくなってもエネルギー消費量はほとんど増加しないという利点を有している。 As the distillation column, any known shelf column or packed column can be used. The number of shelves in the distillation column is not limited, but can be 10 to 300. As can be seen in the simulation analysis example of Example 1 described later, in Reference Example 1 and Reference Example 2, when the number of shelves in the distillation column is less than about 100, the energy consumption increases sharply, whereas in the present The concentration method and the concentration device of the present invention have an advantage that the energy consumption hardly increases even if the number of shelves in the distillation column is less than about 100 or less.
蒸留塔の塔底からの導出物は、リボイラーで加熱された後、その一部は塔底側還流路を通じて最下段の棚段に還流され、残部は、アルカン回収路を通じてアルカンとして回収される。アルカンを気体として回収する場合には、アルカン回収路のリボイラー下流側に加熱器を設けることができる。アルカンを液体として回収する場合には、アルカン回収路のリボイラー下流側に冷却器を設けることもできる。 After being heated by the reboiler, a part of the derivative from the bottom of the distillation column is returned to the lowermost shelf through the bottom return passage, and the rest is recovered as alcan through the alcan recovery passage. When recovering alkane as a gas, a heater can be provided on the downstream side of the reboiler in the alkane recovery path. When recovering alkanes as a liquid, a cooler may be provided on the downstream side of the reboiler in the alkane recovery path.
蒸留塔の塔頂からの導出物は、その一部は、塔頂側還流路に設けたコンデンサで冷却された後、蒸留塔の最上段の棚段に還流され、残部は、蒸気循環供給路を通じて前記原料混合物供給路に循環供給され、原料混合物とともに膜分離装置に供給される。 A part of the derivative from the top of the distillation column is cooled by a capacitor provided in the return path on the top side of the distillation column, and then returned to the uppermost shelf of the distillation column, and the rest is a steam circulation supply path. It is circulated and supplied to the raw material mixture supply path through the raw material mixture, and is supplied to the membrane separation device together with the raw material mixture.
図1の実施例1では、膜分離装置が1段の例であるが、複数段とすることもできる。例えば、膜分離装置を2段とする場合には、図7の実施例2のように構成することができる。その場合、原料混合物は1段目の膜分離装置Aに供給され、その膜透過物は、2段目の膜分離装置Bに供給され、そこで膜透過したアルケンは回収されるとともに、1段目膜分離装置Aの膜未透過混合物は、蒸留塔に供給され、2段目膜分離装置Bの膜未透過混合物は、前記原料混合物の原料混合物供給路に循環供給される。 In Example 1 of FIG. 1, the membrane separation device is an example of one stage, but it may be a plurality of stages. For example, when the membrane separation device has two stages, it can be configured as in the second embodiment of FIG. In that case, the raw material mixture is supplied to the first-stage membrane separation device A, the membrane permeate is supplied to the second-stage membrane separation device B, where the membrane-permeated arcen is recovered and the first-stage membrane separation device B is recovered. The membrane impermeable mixture of the membrane separation device A is supplied to the distillation tower, and the membrane impermeable mixture of the second stage membrane separation device B is circulated and supplied to the raw material mixture supply path of the raw material mixture.
本発明における濃縮対象は、炭素数がプロピレン(プロペン)とプロパンを含む混合物だけでなく、炭素数が2〜4の範囲内で同炭素数であるアルケン(低沸点成分)とアルカン(高沸点成分)を含む混合物、すなわち、エチレン(エテン)とエタンを含む混合物、1−ブチレン(1−ブテン)とn−ブタンを含む混合物にも適用することができる。 The objects to be concentrated in the present invention are not only a mixture containing propylene (propene) and propane, but also alkenes (low boiling point components) and alkanes (high boiling point components) having the same number of carbon atoms in the range of 2 to 4 carbon atoms. ), That is, a mixture containing ethylene (ethane) and ethane, and a mixture containing 1-butylene (1-butene) and n-butene.
原料混合物におけるアルケンの濃度としては、限定するものではないが、60〜90モル%の範囲内である場合に、比較的低エネルギーでの濃縮が可能となる。
アルケンとアルカンを含む原料混合物は、それ以外の成分や不純物などを含有しないことが望ましいが、濃縮に支障がない程度であれば、それ以外の成分や不純物を所定量以下(例えば、10モル%以下、好ましくは5モル%以下、より好ましくは1モル%以下)含有することも許容される。
The concentration of the alkene in the raw material mixture is not limited, but can be concentrated at a relatively low energy when it is in the range of 60 to 90 mol%.
It is desirable that the raw material mixture containing alkenes and alkanes does not contain other components or impurities, but if it does not interfere with concentration, the other components and impurities should be contained in a predetermined amount or less (for example, 10 mol%). Hereinafter, it is also permissible to contain (preferably 5 mol% or less, more preferably 1 mol% or less).
<参考例1、参考例2、先行例、及び、実施例1のシミュレーション解析例1>
指標として用いた参考例1と参考例2の濃縮装置、及び、上記の実施例1の濃縮装置について、濃縮に必要なエネルギー消費量の比較をシミュレーションにより行う。
<Reference Example 1, Reference Example 2, Prior Example, and Simulation Analysis Example 1 of Example 1>
The energy consumption required for concentration is compared by simulation with respect to the concentrators of Reference Example 1 and Reference Example 2 used as indexes and the concentrator of Example 1 described above.
(参考例1の濃縮装置)
参考例1の濃縮装置の構成を図2に示す。この濃縮装置は、1台の膜分離装置と、1台の蒸留塔、リボイラー、3台の加熱器、コンデンサ、圧縮機、冷却器を備える。原料混合物は蒸留塔に供給され、蒸留塔の塔頂からの導出物は、蒸留塔に還流される一部を除いて膜分離装置に供給され、その膜透過物は、低沸点成分として回収され、膜未透過混合物は蒸留塔に循環供給され、蒸留塔の塔底からの導出物は、蒸留塔に還流される一部を除いて、高沸点成分として回収される。
(Concentrator of Reference Example 1)
The configuration of the concentrator of Reference Example 1 is shown in FIG. This concentrator includes one membrane separation device, one distillation column, a reboiler, three heaters, a condenser, a compressor, and a cooler. The raw material mixture is supplied to the distillation column, and the derivative from the top of the distillation column is supplied to the membrane separator except for a part that is returned to the distillation column, and the membrane permeate is recovered as a low boiling point component. The impermeable mixture is circulated and supplied to the distillation column, and the derivative from the bottom of the distillation column is recovered as a high boiling point component except for a part that is returned to the distillation column.
(参考例2の濃縮装置)
参考例2の濃縮装置の構成を図3に示す。この濃縮装置は、1台の膜分離装置と、1台の蒸留塔、リボイラー、2台の加熱器、コンデンサ、圧縮機、冷却器を備える。原料混合物は原料混合物供給路を通じて膜分離装置に供給され、その膜透過物は、低沸点成分(アルケン)として低沸点成分回収路Aを通じて回収され、膜分離装置の膜未透過混合物は、膜未透過混合物供給路を通じて蒸留塔に供給され、蒸留塔の塔頂からの導出物は、蒸留塔に還流される一部を除いて低沸点成分(アルケン)として低沸点成分回収路Bを通じて回収され、蒸留塔の塔底からの導出物は、蒸留塔に還流される一部を除いて、高沸点成分(アルカン)として高沸点成分回収路を通じて回収される。
(Concentrator of Reference Example 2)
The configuration of the concentrator of Reference Example 2 is shown in FIG. This concentrator includes one membrane separation device, one distillation column, a reboiler, two heaters, a condenser, a compressor, and a cooler. The raw material mixture is supplied to the membrane separator through the raw material mixture supply channel, the membrane permeate is recovered as a low boiling point component (alkene) through the low boiling point component recovery channel A, and the film impermeable mixture of the film separator is unfilmed. The product supplied to the distillation column through the permeation mixture supply channel and derived from the top of the distillation column is recovered as a low boiling point component (alkene) through the low boiling point component recovery path B except for a part that is returned to the distillation column. The derivation product from the bottom of the distillation column is recovered as a high boiling point component (alcan) through the high boiling point component recovery path, except for a part that is returned to the distillation column.
(先行例の濃縮装置)
先行例(非特許文献1の8頁参照)の濃縮装置の構成を図4に示す。この濃縮装置は、1台の膜分離装置と、1台の蒸留塔、リボイラー、2台の加熱器、コンデンサ、圧縮機、2台の冷却器を備える。原料混合物は原料混合物供給路を通じて膜分離装置に供給され、その膜透過物は、圧縮機とその下流の冷却器とを有する膜透過物供給路を通じて蒸留塔の上段側へ供給され、前記膜分離装置の膜未透過物は蒸留塔の下段側に供給され、蒸留塔の塔頂からの導出物は、蒸留塔に還流される一部を除いて低沸点成分(アルケン)として低沸点成分回収路を通じて回収され、蒸留塔の塔底からの導出物は、蒸留塔に還流される一部を除いて、高沸点成分(アルカン)として高沸点成分回収路を通じて回収される。
(Preceding example concentrator)
FIG. 4 shows the configuration of the concentrator of the preceding example (see page 8 of Non-Patent Document 1). This concentrator includes one membrane separation device, one distillation column, a reboiler, two heaters, a condenser, a compressor, and two coolers. The raw material mixture is supplied to the film separator through the raw material mixture supply path, and the film permeate is supplied to the upper side of the distillation column through the film permeate supply path having a compressor and a cooler downstream thereof, and the film separation is performed. The unpermeated material of the membrane of the apparatus is supplied to the lower side of the distillation column, and the derivation product from the top of the distillation column is a low boiling point component recovery path as a low boiling point component (alkene) except for a part that is returned to the distillation column. The derivation product from the bottom of the distillation column is recovered as a high boiling point component (alcan) through the high boiling point component recovery path, except for a part that is returned to the distillation column.
(シミュレーション解析の設定条件)
エネルギー消費量を確認するために、図2の参考例1、図3に示した参考例2、又は、図1に示した実施例1の濃縮装置を用いて、プロピレンとプロパンからなる混合物を原料とし、入力時におけるプロピレンの濃度を90モル%、プロパンの濃度10モル%として、毎時1592キロモルを供給するとして、膜分離装置の透過側の最終出口(参考例2の場合には、膜分離装置の透過側の最終出口と蒸留塔の塔頂側の最終出口を合わせたもの)におけるプロピレンの濃度が高濃度(99.5モル%以上)、プロピレンの回収率(最終出口のプロピレンの流量と入力されたプロピレンの流量の比)が99.5%となるようにプロピレンの分離操作を行った場合における、分離に必要なエネルギー消費量(加熱器、リボイラー、圧縮機への投入エネルギー量)を、プロセスシミュレーションソフトウェアによりシミュレーション解析を行った。なお、冷却の熱源としては河川水や地下水などがそのまま利用できるため、冷却器やコンデンサで使用されるエネルギーは考慮していない。
シミュレーションで用いた蒸留塔と膜分離装置の主な仕様、及び、シミュレーションモデルは、下記のとおりである。
(Simulation analysis setting conditions)
In order to confirm the energy consumption, a mixture consisting of propylene and propane is used as a raw material by using the concentrator of Reference Example 1 of FIG. 2, Reference Example 2 shown of FIG. 3, or Example 1 shown of FIG. Assuming that the concentration of propylene at the time of input is 90 mol% and the concentration of propane is 10 mol%, and 1592 kilomoles per hour is supplied, the final outlet on the permeation side of the membrane separation device (in the case of Reference Example 2, the membrane separation device). The concentration of propylene at the final outlet on the permeation side and the final outlet on the top side of the distillation column) was high (99.5 mol% or more), and the recovery rate of propylene (flow rate of propylene at the final outlet) was entered. Process simulation software is used to determine the energy consumption (the amount of energy input to the heater, reboiler, and compressor) required for separation when the propylene separation operation is performed so that the propylene flow rate ratio) is 99.5%. Simulation analysis was performed. Since river water and groundwater can be used as they are as the heat source for cooling, the energy used in the cooler and condenser is not taken into consideration.
The main specifications of the distillation column and membrane separation device used in the simulation, and the simulation model are as follows.
(蒸留塔と膜分離装置の仕様)
蒸留塔:棚段、段数230段。蒸留塔の塔頂の圧力2040kPa。
膜分離装置:FAU型ゼオライト分離膜。操作温度120℃、混合物の供給圧力2040kPa、透
過側の操作圧力600kPa、プロピレンとプロパンの理想選択性100(酒井求、佐々木康人、
松方正彦、加圧条件下におけるFAU型ゼオライト膜のプロピレン/プロパン分離特性、
石油学会第59年会講演要旨集、A03、2016)。膜分離装置のステージカット(膜分離装
置の透過側の流量と膜分離装置に入力する流量の比)は、参考例1が0.8で、参考例2と
実施例1は、0.9。
(Specifications of distillation column and membrane separation device)
Distillation tower: Shelf, 230 stages. The pressure at the top of the distillation column is 2040 kPa.
Membrane separation device: FAU type zeolite separation membrane.
Masahiko Matsukata, Propylene / Propane Separation Characteristics of FAU-Type Zeolite Membranes under Pressurized Conditions,
Proceedings of the 59th Annual Meeting of the Petroleum Society, A03, 2016). The stage cut of the membrane separation device (ratio of the flow rate on the permeation side of the membrane separation device to the flow rate input to the membrane separation device) is 0.8 in Reference Example 1 and 0.9 in Reference Example 2 and Example 1.
(シミュレーションモデル)
プロセスシミュレーションにより、分離に必要なエネルギー消費量の解析を行うため、蒸留塔の解析には平衡段モデルを、膜分離装置の解析には十字流プラグフローモデルを用いた。計算を行う上での仮定として、膜分離装置の操作温度は一定、膜分離装置内での圧力損失はなし、膜分離装置の理想分離係数の混合物の濃度依存はなしとした。
(Simulation model)
In order to analyze the energy consumption required for separation by process simulation, an equilibrium stage model was used for the analysis of the distillation column, and a cross current plug flow model was used for the analysis of the membrane separation device. As assumptions for the calculation, the operating temperature of the membrane separation device was constant, there was no pressure loss in the membrane separation device, and the ideal separation coefficient of the membrane separation device was not dependent on the concentration of the mixture.
(シミュレーション解析結果)
参考例1、参考例2、先行例、及び、実施例1についてのシミュレーション解析結果を表1に示す。
表1から明らかなように、参考例2の濃縮装置は、先行例とほぼ同程度であるが、参考例1と比べると、エネルギー消費量の合計値が大幅に小さく、省エネルギー効果が大きい。
本発明の実施例1の濃縮装置は、エネルギー消費量の合計値が参考例1に較べ大幅に小さく、参考例2や先行例に比べてさらに小さくなっており、省エネルギー効果が最も優れている。
( Simulation analysis result)
Table 1 shows the simulation analysis results for Reference Example 1, Reference Example 2, Prior Example, and Example 1.
As is clear from Table 1, the concentrator of Reference Example 2 is almost the same as that of the preceding example, but the total value of energy consumption is significantly smaller than that of Reference Example 1, and the energy saving effect is large.
In the concentrator of Example 1 of the present invention, the total value of energy consumption is significantly smaller than that of Reference Example 1, and further smaller than that of Reference Example 2 and the preceding example, and the energy saving effect is the best.
<蒸留塔の棚段数を変化させた場合のシミュレーション解析例2>
図1に示した実施例1、図2に示した参考例1、図3に示した参考例2、及び、図4に示した先行例のそれぞれの濃縮装置を用いて、プロピレンとプロパンからなる混合物を原料とし、入力時におけるプロピレンの濃度を90モル%、プロパンの濃度10モル%として、毎時1592キロモルを供給するとして、膜分離装置の透過側の最終出口(参考例2の場合は、膜分離装置の透過側の最終出口と蒸留塔の塔頂側の最終出口を合わせたもの)におけるプロピレンの濃度が高純度(99.5モル%以上)、プロピレンの回収率(最終出口のプロピレンの流量と入力されたプロピレンの流量の比)が99.5%となるようにプロピレンの分離操作を行う場合において、蒸留塔の棚段数を減らした場合における、濃縮に必要なエネルギー消費量を上記シミュレーション解析例1と同様にしてシミュレーション解析を行った。
<Simulation analysis example 2 when the number of shelves in the distillation column is changed>
It is composed of propylene and propane using the concentrators of Example 1 shown in FIG. 1, Reference Example 1 shown in FIG. 2, Reference Example 2 shown in FIG. 3, and the prior example shown in FIG. Assuming that the mixture is used as a raw material, the concentration of propylene at the time of input is 90 mol%, the concentration of propane is 10 mol%, and 1592 kilomoles per hour is supplied, the final outlet on the permeation side of the membrane separation device (in the case of Reference Example 2, the membrane). The concentration of propylene at the final outlet on the permeation side of the separation device and the final outlet on the top side of the distillation column) is high purity (99.5 mol% or more), and the recovery rate of propylene (flow rate and input of propylene at the final outlet). When the separation operation of propylene is performed so that the ratio of the flow rate of propylene produced is 99.5%, the energy consumption required for concentration when the number of shelf stages of the distillation column is reduced is the same as in the above simulation analysis example 1. And simulated analysis was performed.
シミュレーション解析結果を図5に示す。図5は、実施例1、参考例1、参考例2、先行例のそれぞれの濃縮装置について、蒸留塔の棚段数に対するエネルギー消費量の関係を示している。図1に示した実施例1の濃縮装置を用い、蒸留塔の塔頂の混合物の一部を膜分離装置の原料混合物供給路に循環供給することで、蒸留塔の棚段数が少ない条件でも、エネルギー消費量はほぼ同等であることが確認できた。参考例1や、参考例2の濃縮装置についての結果と比較して、実施例1の濃縮装置を用いることで、蒸留塔の棚段数の削減と、エネルギー消費量の削減ができることが確認できた。 The simulation analysis results shown in FIG. FIG. 5 shows the relationship of energy consumption with respect to the number of shelves in the distillation column for each of the concentrators of Example 1, Reference Example 1, Reference Example 2, and the preceding example. By using the concentrating device of Example 1 shown in FIG. 1 and circulating and supplying a part of the mixture at the top of the distillation column to the raw material mixture supply path of the membrane separation device, even under the condition that the number of shelf stages of the distillation column is small. It was confirmed that the energy consumption was almost the same. Compared with the results of the concentrators of Reference Example 1 and Reference Example 2, it was confirmed that the number of shelves in the distillation column can be reduced and the energy consumption can be reduced by using the concentrator of Example 1. ..
<原料混合物中のプロピレン濃度を変化させた場合のシミュレーション解析例3>
図7に示した実施例2、図2に示した参考例1、及び、図3に示した参考例2、及び、図4に示した先行例のそれぞれの濃縮装置を用いて、原料混合物に含まれるプロピレン濃度を変化させた場合のシミュレーションを行った。
<Simulation analysis example 3 when the propylene concentration in the raw material mixture is changed>
Using the concentrators of Example 2 shown in FIG. 7, Reference Example 1 shown in FIG. 2, Reference Example 2 shown in FIG. 3, and the preceding example shown in FIG. 4, the raw material mixture was prepared. A simulation was performed when the concentration of propylene contained was changed.
(実施例2の濃縮装置)
実施例2の濃縮装置の構成を図7に示す。この濃縮装置は、2台の膜分離装置と、1台の蒸留塔、リボイラー、2台の加熱器、コンデンサ、2台の圧縮機、2台の冷却器を備える。原料混合物は原料混合物供給路を通じて1段目膜分離装置Aに供給され、その膜透過物は、膜透過物供給路を通じて2段目膜分離装置Bに供給され、その膜透過物は、低沸点成分(アルケン)として低沸点成分回収路を通じて回収され、2段目膜分離装置Bの膜未透過混合物は、膜未透過混合物循環供給路を通じて原料混合物供給路に循環供給され、1段目膜分離装置の膜未透過混合物は、膜未透過混合物供給路を通じて蒸留塔に供給され、蒸留塔の塔頂からの導出物は、蒸留塔に還流される一部を除いて塔頂導出物循環供給路を通じて原料混合物供給路に循環供給され、蒸留塔の塔底からの導出物は、蒸留塔に還流される一部を除いて、高沸点成分(アルカン)として高沸点成分回収路を通じて回収される。
(Concentrator of Example 2)
The configuration of the concentrator of Example 2 is shown in FIG. This concentrator includes two membrane separation devices, one distillation column, a reboiler, two heaters, a condenser, two compressors, and two coolers. The raw material mixture is supplied to the first-stage film separator A through the raw material mixture supply path, the film permeate is supplied to the second-stage film separator B through the film permeate supply path, and the film permeate has a low boiling point. It is recovered as a component (alkene) through a low boiling point component recovery path, and the film impermeable mixture of the second stage film separation device B is circulated and supplied to the raw material mixture supply path through the film impermeable mixture circulation supply path to separate the first stage film. The membrane opaque mixture of the apparatus is supplied to the distillation tower through the membrane opaque mixture supply path, and the derivation product from the top of the distillation tower is the top derivative circulation supply path except for a part that is returned to the distillation tower. The product is circulated and supplied to the raw material mixture supply channel through the raw material mixture supply path, and the derived product from the bottom of the distillation tower is recovered as a high boiling point component (alcan) through the high boiling point component recovery path, except for a part that is returned to the distillation tower.
原料混合物をプロピレンとプロパンとからなるものとし、その入力時におけるプロピレンの濃度を60モル%、プロパンの濃度を40モル%として、その時の流量は2388kmol/hとして、膜分離装置の透過側の最終出口におけるプロピレンの濃度が高純度(99.5モル%以上)、プロピレンの回収率(最終出口のプロピレンの流量と入力されたプロピレンの流量の比)が99.5%となるようにプロピレンの分離操作を行う場合において、蒸留塔の棚段数を230段として、分離に必要なエネルギー消費量(2台の加熱器、リボイラー、2台の圧縮機への投入エネルギー量の合計値)を、プロセスシミュレーションソフトウェアによりシミュレーション解析を行った。 The raw material mixture is composed of propylene and propane, the concentration of propylene at the time of input is 60 mol%, the concentration of propane is 40 mol%, the flow rate at that time is 2388 kmol / h, and the final on the permeation side of the membrane separation device. When the propylene separation operation is performed so that the concentration of propylene at the outlet is high purity (99.5 mol% or more) and the recovery rate of propylene (ratio of the flow rate of propylene at the final outlet to the flow rate of input propylene) is 99.5%. In, the number of shelf stages of the distillation tower is set to 230, and the energy consumption required for separation (total value of the amount of energy input to the two heaters, reboiler, and two compressors) is simulated and analyzed by process simulation software. Was done.
その解析結果を表2に示す。参考例2の濃縮装置の場合では、原料混合物のプロピレン濃度が60モル%のように低い値である場合、エネルギー消費量の合計は増大する。一方、実施例2の濃縮装置では、原料混合物のプロピレン濃度が60モル%のように低い値である場合でも、エネルギー消費量の合計は参考例1や先行例に較べ小さいことから、省エネルギー効果が高いといえる。 The analysis results are shown in Table 2. In the case of the concentrator of Reference Example 2, when the propylene concentration of the raw material mixture is as low as 60 mol%, the total energy consumption increases. On the other hand, in the concentrator of Example 2, even when the propylene concentration of the raw material mixture is as low as 60 mol%, the total energy consumption is smaller than that of Reference Example 1 and the preceding example, so that the energy saving effect can be obtained. It can be said that it is expensive.
<膜分離装置の理想分離係数を変化させた場合のシミュレーション解析例4>
実施例1の濃縮装置について、膜分離装置の理想分離係数を変化させた以外は上記シミュレーション解析例1と同様にしてシミュレーション解析を行った。その解析結果を図6に示す。
膜分離装置の理想分離係数が90程度まで増加するにつれ、実施例1の濃縮装置のエネルギー消費量合計は急激に減少した。膜分離装置の理想分離係数が90以上では、エネルギー消費量の減少は緩やかである。膜分離装置の理想分離係数が90〜100程度のものは、FAU型ゼオライト分離膜、BEA型ゼオライト膜などによって実現されているので、本発明を実際の濃縮装置に応用した場合でも同様の省エネルギー効果が得られると考えられる。
<Simulation analysis example 4 when the ideal separation coefficient of the membrane separation device is changed>
A simulation analysis was performed on the concentrator of Example 1 in the same manner as in the above simulation analysis example 1 except that the ideal separation coefficient of the membrane separation device was changed. The analysis result is shown in FIG.
As the ideal separation coefficient of the membrane separation device increased to about 90, the total energy consumption of the concentrator of Example 1 decreased sharply. When the ideal separation coefficient of the membrane separation device is 90 or more, the decrease in energy consumption is gradual. Membrane separation devices with an ideal separation coefficient of about 90 to 100 are realized by FAU-type zeolite separation membranes, BEA-type zeolite membranes, etc., and therefore, the same energy-saving effect is obtained even when the present invention is applied to an actual concentrating device. Is considered to be obtained.
本発明は、例えば、プロピレンとプロパン等の同炭素数のアルケンとアルカンとを含む混合物からそれらの少なくとも一方を高濃度に分離、濃縮するための手段として有利に利用することができ、産業上の利用可能性は極めて高い。
本発明は、既設の蒸留塔に膜分離装置を導入する手段としても利用可能であり、また、新設の膜分離と蒸留を組み合わせた装置を設計する手段としても利用可能であり、産業上の利用可能性は極めて高い。
INDUSTRIAL APPLICABILITY The present invention can be advantageously used as a means for separating and concentrating at least one of alkenes and alkanes having the same carbon number, such as propylene and propane, at a high concentration, and is industrially applicable. The availability is extremely high.
The present invention can be used as a means for introducing a membrane separation device into an existing distillation column, and can also be used as a means for designing a new device that combines membrane separation and distillation, and is used industrially. The possibility is extremely high.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053175A JP6934655B2 (en) | 2017-03-17 | 2017-03-17 | Concentration methods and equipment that combine membrane separation and distillation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053175A JP6934655B2 (en) | 2017-03-17 | 2017-03-17 | Concentration methods and equipment that combine membrane separation and distillation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018154591A JP2018154591A (en) | 2018-10-04 |
JP6934655B2 true JP6934655B2 (en) | 2021-09-15 |
Family
ID=63716080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017053175A Active JP6934655B2 (en) | 2017-03-17 | 2017-03-17 | Concentration methods and equipment that combine membrane separation and distillation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6934655B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6682053B1 (en) * | 2018-10-25 | 2020-04-15 | 木村化工機株式会社 | Solvent recovery system |
WO2020084803A1 (en) * | 2018-10-25 | 2020-04-30 | 木村化工機株式会社 | Solvent recovery system |
WO2020085432A1 (en) * | 2018-10-25 | 2020-04-30 | 木村化工機株式会社 | Solvent recovery system |
JP2021138646A (en) * | 2020-03-04 | 2021-09-16 | 国立研究開発法人産業技術総合研究所 | Method and apparatus for concentrating alkene and/or alkane |
-
2017
- 2017-03-17 JP JP2017053175A patent/JP6934655B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018154591A (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6934655B2 (en) | Concentration methods and equipment that combine membrane separation and distillation | |
CN105339062B (en) | Separation process using divided column | |
TWI630948B (en) | Method for concentrating water-soluble organic matter and device for concentrating water-soluble organic matter | |
CA2850604C (en) | Methods and systems for olefin production | |
CN204589029U (en) | Separation of olefins thermal-pump unit | |
JP2024506789A (en) | Energy-efficient method for removing butenes from C4-hydrocarbon streams | |
US20150052940A1 (en) | Fractionation system and method including depropanizer column and bottoms stripping column | |
CN104704308B (en) | CO is removed from sour gas2Method | |
RU2662809C1 (en) | Nafta fractional separation tower heat recovery | |
EP3036023B1 (en) | Fractionation system having rectifying and stripping columns in a single vessel with a uniform diameter | |
JP2009275019A (en) | Method for refining water-alcohol composition | |
JP2021138646A (en) | Method and apparatus for concentrating alkene and/or alkane | |
JP2015205248A (en) | Distillation device | |
US8283509B2 (en) | Thermal-separation process with absorption heat pump | |
RU2472564C1 (en) | Plant to extract carbon dioxide from light hydrocarbon ethane-bearing long distillate | |
US9643901B2 (en) | Method and device for generating an alkene | |
CN106187664B (en) | The method for preparing isobutene | |
JP2015196122A (en) | Operation method of rectification apparatus | |
KR101686277B1 (en) | Manufacturing device for alkanol | |
CN208717196U (en) | The equipment for separating sec-butyl alcohol and methyl ethyl ketone | |
KR101569240B1 (en) | Manufacturing device for alkanol | |
KR20230133846A (en) | Method for separating butenes from C4 hydrocarbon streams and subsequent oligomerization | |
JPH04118002A (en) | Method and device for separating azeotropic solution mixture | |
KR101569239B1 (en) | Menufacturing device for alkanol | |
Isopescu et al. | Hybrid Systems for the Separation of Light Hydrocarbon Mixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201111 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210304 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6934655 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |