JPS58180014A - Thin film forming method - Google Patents

Thin film forming method

Info

Publication number
JPS58180014A
JPS58180014A JP57063381A JP6338182A JPS58180014A JP S58180014 A JPS58180014 A JP S58180014A JP 57063381 A JP57063381 A JP 57063381A JP 6338182 A JP6338182 A JP 6338182A JP S58180014 A JPS58180014 A JP S58180014A
Authority
JP
Japan
Prior art keywords
film
thin film
heat treatment
forming method
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57063381A
Other languages
Japanese (ja)
Other versions
JPH0470762B2 (en
Inventor
隆 加藤
豊蔵 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57063381A priority Critical patent/JPS58180014A/en
Publication of JPS58180014A publication Critical patent/JPS58180014A/en
Publication of JPH0470762B2 publication Critical patent/JPH0470762B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明は薄膜の形成方法に関し、更に秤しくに、キャパ
シタその他の誘電体として用いられる薄膜を劣化させる
こと、すく安に化できる薄膜の形成方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for forming a thin film, and more particularly, to a method for forming a thin film that can be used as a dielectric material such as a capacitor, and which can be made cheap. It is about the method.

(2)従来技術と問題点 薄膜コンデンサ、ダイナミックメモリ用キャパシター、
光導波路の作成にわたっては、金属音熱酸化して誘電体
全形成している。
(2) Conventional technology and problems Thin film capacitors, dynamic memory capacitors,
To create the optical waveguide, the entire dielectric material is formed by sonic thermal oxidation of the metal.

3a、 4a、 5a元素は50光1度以下の温度で酸
化され化学的に安定な酸化物を形成できる。ところがこ
れらはアモルファスであったp1不安定な結晶状態ある
いは密度の低い状態であったりするため、後の熱処理に
より相転移や緻密化が起きんこのために安定化熱処理を
行なわない上記酸化物薄膜上に新友なat影形成た後熱
工、1it−経る場合、上記酸化物薄膜が相転移、数置
化される通柵で新たに上vC句けた膜が酸化物薄膜中に
入りこんだりして酸化物薄膜の特性全署しく劣化させる
欠点があった。そこで新たな膜を形成する前に酸化物薄
B1At熱処理安定化させる方法が考えられるが、この
方法だとm晶化が急激に進み過ぎるなどの欠点かめる。
The 3a, 4a, and 5a elements can be oxidized at temperatures below 50 degrees Celsius to form chemically stable oxides. However, since these are in an amorphous p1 unstable crystalline state or in a low-density state, phase transition and densification may occur during subsequent heat treatment. After forming a new AT shadow, heat treatment is carried out for 1 time, and the above oxide thin film undergoes a phase transition, and a new oxide film enters into the oxide thin film at the pass through which the oxide thin film undergoes a phase transition. There was a drawback that the characteristics of the oxide thin film were completely deteriorated. Therefore, a method of stabilizing the thin oxide B1At by heat treatment before forming a new film can be considered, but this method has drawbacks such as m-crystallization progressing too rapidly.

(3)発明の目的 本発明は上記の問題点に鑑み、基板上の薄膜の熱処理安
定化を行なう場合、薄膜の結晶化を抑えることにより、
薄膜の特性を劣化させることのないR膜の形成法を提供
せんとするものである。
(3) Purpose of the Invention In view of the above-mentioned problems, the present invention provides a method for stabilizing a thin film on a substrate by suppressing crystallization of the thin film by heat treatment.
The present invention aims to provide a method for forming an R film that does not deteriorate the properties of the thin film.

(4)発明の構成 上記の目的は、本発明によれば、支持基板上に、3a、
4a、5a族元素より選択した金属の酸化物薄gを形成
し、該薄膜のt!面を耐酸化膜で覆った状態で安定化の
熱処理を行なう工程が含まれることを特像とrる薄膜形
成方法とすることにより達成される。
(4) Structure of the Invention According to the present invention, the above object is achieved by disposing 3a,
A thin g of oxide of a metal selected from group 4a and group 5a elements is formed, and the t! This is achieved by using a thin film forming method that has the special feature of including a step of performing stabilizing heat treatment while the surface is covered with an oxidation-resistant film.

本発明を概説するならば基板上く形成された薄膜がアモ
ルファスや、密度が低い不安定な状態にある場合、熱処
理により安定化を行なうが、本発明はこの工程を当初の
特性が悪化しない様に行なうものである。基板上に50
0°C程度以下の酸化で形成され几#膜の後熱処理安定
化を行なうと、薄膜、ノ;相転移するここが矧ら几てい
る。たとえば第1図に示した様に、基板上に形成したタ
ンタル酸化膜を熱処理すると700°C近辺で結晶化が
始−=V、特に(100)面での結晶成長が激しいこと
を我々は確かめた0絡1図の横軸は熱処理理屈で、縦軸
はXmスペクトルの積分強度であって、結晶粒径を示t
ものである。さらKこの結晶粒径も大きく、膜質はこ几
に伴なって劣化することも嬉認した。
To summarize the present invention, when the thin film formed on the substrate is amorphous or in an unstable state with low density, it is stabilized by heat treatment. It is something that is done. 50 on the board
When a thin film formed by oxidation at temperatures below about 0° C. is stabilized by heat treatment, it becomes a thin film, which undergoes a phase transition. For example, as shown in Figure 1, we have confirmed that when a tantalum oxide film formed on a substrate is heat-treated, crystallization begins at around 700°C, and crystal growth is particularly intense on the (100) plane. The horizontal axis of the diagram is the heat treatment theory, and the vertical axis is the integrated intensity of the Xm spectrum, which indicates the crystal grain size.
It is something. Furthermore, we also found that the crystal grain size was large, and that the film quality deteriorated with aging.

これに対しTa5k、の後熱処理前に耐酸化膜であるシ
リコン窒化膜で表面を橿った倣に熱処理tして結晶化状
態を調べたところ、IP、2図に示すごとく結晶化が抑
えられることを我々は発見した。82図は、家累雰囲気
中での熱処理の場合であり、第3図は除重d囲気中での
熱処理の結果である。
On the other hand, when the crystallization state of Ta5k was investigated by heat-treating the surface with a silicon nitride film, which is an oxidation-resistant film, before post-heat treatment, the crystallization of IP was suppressed as shown in Figure 2. That's what we discovered. Figure 82 shows the results of heat treatment in a house atmosphere, and Figure 3 shows the results of heat treatment in an unloaded atmosphere.

この現象としては、結晶化が表面から主に起るためと考
えられ、核は版化雰囲気における熱処理C多く発生−r
ると思わrしる。この7ヒめ1酸化性の膜を被覆すれば
 核つ発生が抑えられ、結晶化が進まない。4パ、結晶
粒径も犬きくならないことを観測しCいる。
This phenomenon is thought to be because crystallization mainly occurs from the surface, and the nuclei are generated in large amounts during the heat treatment in the printing atmosphere.
I think so. If this oxidizing film is coated, the generation of nuclei will be suppressed and crystallization will not proceed. 4. It was observed that the crystal grain size did not become too large.

なお、酸化膜(0表面原子が主Vこ横方向に移動し、核
となる場所を中心として結晶が成長してhくモデル全身
えるならば、シリコン窒化膜はその表面での原子・))
移動全署しく阻害していることが考λらnる。1J:、
トじの現象ば3a、4a、5aの酸化物に共通のものぴ
ありタンタル酸化膜以外でもチタン。
In addition, if the oxide film (0 surface atoms move horizontally in the main V direction and the crystal grows around the nucleus) and the entire model is formed, then the silicon nitride film is a silicon nitride film with atoms on the surface.
It is considered that all movement is obstructed. 1J:,
The same phenomenon is common to oxides 3a, 4a, and 5a, and it also applies to titanium other than tantalum oxide films.

イ5・トリウム、ハレニウムなどの金ls酸化物に対し
ても耐酸化性膜で覆うことにより同様の効果を持つこと
も確かめている。
It has also been confirmed that a similar effect can be obtained for gold ls oxides such as thorium and halenium by covering them with an oxidation-resistant film.

(5)発明の実施例 シリコン基板上に、スパッタリング、化学気相成長、陽
極酸化などの手段によt) Ta!O@膜、TlO,膜
を形成し、スパッタリング、好ましくはアルゴンと窒素
の混合ガスによるリアクティブスパッタリングを行ない
、30nm程度以下(表面が粗い場合はそれを覆う程度
の厚さとする)の薄1[k付着させる。
(5) Embodiments of the Invention Ta! Form an O@ film, a TlO film, and perform sputtering, preferably reactive sputtering using a mixed gas of argon and nitrogen, to form a thin film of about 30 nm or less (if the surface is rough, the thickness should be enough to cover it). k to be attached.

この後、本発明によりTa、0.膜、 Tie、膜の各
々にlO〜20nmシリコン窒化膜を付着させ、この後
熱処理安定化を行なうが、上記の構造のI!l[はこの
場合の雰囲気、処理温度によらず1il[質の安定化が
行なえる。之とえば雰囲気は酸系、窒素でりり、温fは
900°C−1100’C程度の範囲である。この安定
化の後シリコン窒化膜をホットリン酸、リアクティブイ
オンエツチングなどによりエツチング除去し、この上に
導体層を付着させるなどしてキャパシタ、トランジスタ
などのデバイスを形成することができる。また、シリコ
ン窒化膜をエツチングしないで、そのままデバイスに含
めることもできる。
After this, according to the present invention, Ta, 0. A silicon nitride film of 10 to 20 nm is deposited on each of the film, tie, and film, and then heat treatment is performed for stabilization. The quality can be stabilized by 1il regardless of the atmosphere and processing temperature in this case. For example, the atmosphere is acidic and nitrogen, and the temperature f is in the range of about 900°C to 1100'C. After this stabilization, the silicon nitride film is etched away using hot phosphoric acid, reactive ion etching, etc., and a conductive layer is deposited thereon to form devices such as capacitors and transistors. Further, the silicon nitride film can be included in the device as it is without being etched.

上記実施例では耐酸化膜としてシリコン窒化膜を用す友
が、これは他の耐酸化膜でも同様に実施できるし、熱処
理安定化は、電気炉ばかりでなくレーザー、電子線アニ
ール、赤外線アニールなどでもより0 (6)発明の効果 本発明によれば、薄膜の熱処理が窒化におりて、薄膜の
結晶化を抑えることにより、膜質の劣化?防げるので、
肪電体:/)膜厚を非常に薄くcきる。
In the above example, a silicon nitride film is used as the oxidation-resistant film, but this can be similarly performed with other oxidation-resistant films, and the stabilizing heat treatment can be performed not only in an electric furnace but also in laser, electron beam annealing, infrared annealing, etc. (6) Effects of the Invention According to the present invention, the heat treatment of the thin film leads to nitridation, which suppresses crystallization of the thin film, resulting in deterioration of film quality. Because it can be prevented,
Fatty electrolyte:/) The film thickness is very thin.

これVこより高温熱処理に耐え、容量の高いキャパシタ
などが実現できる。
This makes it possible to realize capacitors that can withstand high-temperature heat treatment and have a higher capacity than V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はに末法によりタンタル酸化膜を熱処理し7たと
きの温度にする結晶粒径変化を示す図、第2図と第3図
は本発明により耐酸化膜で被覆して熱処理するときの温
yvこ対する結晶粒径変化金示す図でめる。
Figure 1 is a diagram showing the change in crystal grain size when a tantalum oxide film is heat treated using the oxidation method, and Figures 2 and 3 are diagrams showing the change in crystal grain size when the tantalum oxide film is heat treated after being coated with an oxidation-resistant film according to the present invention. A diagram showing the change in crystal grain size with respect to temperature yv is shown.

Claims (1)

【特許請求の範囲】[Claims] 支持基板丘に、3a+ 4m、 5a族元素より選択し
几金属の酸化物薄膜を形成し、核薄1[、/)表面を耐
酸化膜で覆った状憾で安定化の熱処理を行なう工程が含
まれること;i−特徴とする薄膜形成方法。
A process of forming a thin oxide film of a dielectric metal selected from 3a+4m and 5a group elements on the support substrate, and performing stabilizing heat treatment with the core thin 1[,/) surface covered with an oxidation-resistant film. Included: i- Characteristic thin film forming method.
JP57063381A 1982-04-16 1982-04-16 Thin film forming method Granted JPS58180014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57063381A JPS58180014A (en) 1982-04-16 1982-04-16 Thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57063381A JPS58180014A (en) 1982-04-16 1982-04-16 Thin film forming method

Publications (2)

Publication Number Publication Date
JPS58180014A true JPS58180014A (en) 1983-10-21
JPH0470762B2 JPH0470762B2 (en) 1992-11-11

Family

ID=13227657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57063381A Granted JPS58180014A (en) 1982-04-16 1982-04-16 Thin film forming method

Country Status (1)

Country Link
JP (1) JPS58180014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284544A (en) * 1985-10-08 1987-04-18 Nec Corp Manufacture of capacitance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988075A (en) * 1972-12-27 1974-08-22
JPS5080477A (en) * 1973-11-22 1975-06-30
JPS53123862A (en) * 1977-04-04 1978-10-28 Nippon Electric Co Method of making thin film capacitor
JPS53135449A (en) * 1977-04-28 1978-11-27 Nippon Electric Co Method of making thin film capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988075A (en) * 1972-12-27 1974-08-22
JPS5080477A (en) * 1973-11-22 1975-06-30
JPS53123862A (en) * 1977-04-04 1978-10-28 Nippon Electric Co Method of making thin film capacitor
JPS53135449A (en) * 1977-04-28 1978-11-27 Nippon Electric Co Method of making thin film capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284544A (en) * 1985-10-08 1987-04-18 Nec Corp Manufacture of capacitance
JPH0584672B2 (en) * 1985-10-08 1993-12-02 Nippon Electric Co

Also Published As

Publication number Publication date
JPH0470762B2 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
US5973911A (en) Ferroelectric thin-film capacitor
US6897513B2 (en) Perovskite-type material forming methods, capacitor dielectric forming methods, and capacitor constructions
EP0096773B1 (en) Method of making high dielectric constant insulators and capacitors using same
CA1297764C (en) Fabrication of devices having thin dielectric layers
EP0489519A2 (en) Sol-gel processing of piezoelectric and ferroelectric films
JP2002026319A (en) Gate forming method for semiconductor element
JP3355236B2 (en) Method for manufacturing capacitor of semiconductor memory device
JPS6120336A (en) Method of growing oxide layer on silicon surface
JPS62136035A (en) Manufacture of semiconductor device
JPS58180014A (en) Thin film forming method
JP2000208440A (en) Forming method of platinum film for capacitor electrode of semiconductor device
JPH10214889A (en) Method for forming thin film of crystalline material silicon nitride covering in shallow trench isolation structure and shallow trench isolation structure for integrated circuit device of sub micron, and crystalline material silicon nitride covering
JP2000504882A (en) High dielectric constant barium strontium niobium oxide applied to integrated circuits
US6797645B2 (en) Method of fabricating gate dielectric for use in semiconductor device having nitridation by ion implantation
JP2001077309A (en) Capacitor and its manufacturing method
JPS6012737A (en) Manufature of silicon nitride film
JPS62140450A (en) Manufacture of semiconductor device
JPS62128167A (en) Capacitor
JPH0462171B2 (en)
JPH05347229A (en) Treatment of ferroelectric
JPH0455526B2 (en)
JP2004186647A (en) Method for manufacturing piezoelectric thin film element
JPH06252346A (en) Manufacture of semiconductor storage device
JP2002110969A (en) Semiconductor device and its manufacturing method
TWM359790U (en) Manufacturing of dielectric thin film by laser annealing