JPS58179330A - Leak detecting device - Google Patents

Leak detecting device

Info

Publication number
JPS58179330A
JPS58179330A JP6276982A JP6276982A JPS58179330A JP S58179330 A JPS58179330 A JP S58179330A JP 6276982 A JP6276982 A JP 6276982A JP 6276982 A JP6276982 A JP 6276982A JP S58179330 A JPS58179330 A JP S58179330A
Authority
JP
Japan
Prior art keywords
gas leakage
leakage quantity
gas
amount
ineffective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6276982A
Other languages
Japanese (ja)
Other versions
JPH0456251B2 (en
Inventor
Shinzo Inoue
井上 新造
Morie Hayakawa
早川 盛衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP6276982A priority Critical patent/JPS58179330A/en
Publication of JPS58179330A publication Critical patent/JPS58179330A/en
Publication of JPH0456251B2 publication Critical patent/JPH0456251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To obtain a net gas leakage quantity easily and exactly, by automatically subtracting an ineffective gas leakage quantity from a measured gas leakage quantity, in a leakage detecting device for detecting whether a minute hole exists or not on a vessel wall, and its size, etc. by a gas leakage quantity. CONSTITUTION:For instance, when helium gas is blown from the outside of a vessel whose inside is kept in a vacuum, if a minute hole exists on the vessel wall, helium gas goes into the vessel through its minute hole. A measuring part 1 measures gas passing through the minute hole, namely, quantity of leakage gas. In this measuring part 1, an apparent gas leakage quantity which adds a gas leakage quantity (ineffective gas leakage quantity) existing from before starting a measuring test, in the vessel and the measuring part, to a gas leakage quantity (net gas leakage quantity) passing through the vessel wall as soon as the measuring test is started is measured. Subsequently, the ineffective gas leakage quantity is subtracted from the apparent gas leakage quantity by calculating parts 2, 3, so that the net gas leakage quantity can be obtained automatically. Subsequently, an exhaust characteristic is measured as to the gas leakage quantity, and the leakage quantity in each time is stored as Q=Qt by making the passing time corresponding to a leakage quantity Q. When an apparent gas leakage quantity in case when some measuring test ends is Q' at time t1, an ineffective gas leakage quantity after that time t1 is derived from the relational expression.

Description

【発明の詳細な説明】 本発明は、容器壁における微小孔の有無およびその大き
さ等をガスリーク量により検出するリーク検出装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a leak detection device that detects the presence or absence of micropores in a container wall, their size, etc. based on the amount of gas leakage.

微小孔の存在が許されない密閉容器壁において、その微
小孔の有無やその大きさを検出するのに一般にリーク検
出装置(リークディテクタ)が利用される。ところで、
従来技術のリーク検出装置では、前回のガスリーク量測
定テスト後における残存ガスによりガスリーク量測定メ
ータの指示値が1ゼロ」にならないのをなくすため、測
定テスト毎ニソの指示値が「ゼロ」になるように手動で
補正操作している。即ち、従来技術でのガスリーク量測
定テストでは、指示値を「ゼロ」に補正することにより
無効ガスリーク量が測定データに含まれないようにする
一方、指示値がそのまま正味のガスリーク量をあられす
ようにしている。ところが、測定テスト毎に指示値を「
ゼロ」に手動で補正操作することは非常に煩しい上、正
確さに欠けるところがある。
In a closed container wall where the presence of micropores is not allowed, a leak detector is generally used to detect the presence or absence and size of micropores. by the way,
In conventional leak detection devices, in order to prevent the indication value of the gas leak amount measurement meter from becoming 1 zero due to residual gas after the previous gas leak amount measurement test, the indication value of the gas leak amount measurement meter is set to ``zero'' every measurement test. The correction is performed manually. In other words, in conventional gas leakage measurement tests, the indicated value is corrected to "zero" to prevent the invalid gas leakage amount from being included in the measurement data, while at the same time the indicated value is corrected to "zero" so that the net gas leakage amount is not included. I have to. However, for each measurement test, the indicated value is
Manually correcting to zero is extremely troublesome and lacks accuracy.

本発明の目的は、上述に鑑み、測定ガスリーク量から無
効ガスリーク量を自動的に減算することにより簡易かつ
正確に正味のガスリーク量を得ることができるリーク検
出装置を提供することである。
In view of the above, an object of the present invention is to provide a leak detection device that can easily and accurately obtain a net gas leak amount by automatically subtracting an ineffective gas leak amount from a measured gas leak amount.

本発明は、上記目的を達成するため、容器壁における微
小孔の有無およびその大きさ等をガスリーク量により検
出する装置において、ガスリーク量を測定する第1の手
段と、測定開始前の前記第1の手段からの測定データか
ら無効ガスリーク量を記憶あるいは計、算する第2の手
段と、測定開始後は前記第1の手段からの見掛は上のガ
スリーク量から前記第2の手段からの無効ガス量−り量
を減算して正味のガスリーク量を得る第3の手段とを含
むリーク検出装置で構成される。
In order to achieve the above object, the present invention provides an apparatus for detecting the presence or absence of micropores in a container wall, their size, etc. based on the amount of gas leakage, which includes a first means for measuring the amount of gas leakage, and a first means for measuring the amount of gas leakage; a second means for storing or calculating the amount of invalid gas leak from the measurement data from the means; and a third means for subtracting the amount of gas and the amount of leakage to obtain the net amount of gas leakage.

以下、本発明を図示の実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は、本発明の一実施例のブロック回路図である。FIG. 1 is a block circuit diagram of one embodiment of the present invention.

測定部(1)は、容器壁における微小孔の有無および大
きさ等に応じてリーク(漏れ)するガス量を測定する。
The measurement unit (1) measures the amount of gas leaking depending on the presence or absence and size of micropores in the container wall.

この測定方法について簡単に説明する。例えば、ヘリウ
ム(He )ガスを、内部が真空に保たれる容器の外側
から吹き付ける。容器壁に微小孔があれば、ヘリウムガ
スが、その微小孔を通って容器内にはいる。測定部(1
)は、微小孔を通ったガス、即ち、リークガスの量を測
定する。
This measurement method will be briefly explained. For example, helium (He 2 ) gas is blown from the outside of a container whose interior is kept in vacuum. If there are micro holes in the container wall, helium gas will enter the container through the micro holes. Measuring part (1
) measures the amount of gas passing through the micropores, that is, the amount of leak gas.

第2図は、測定部(1)において測定されたガスリーク
量を時間軸主にあられすものである。第2図において、
Q+ 、 Q2およびQ3は、それぞれ第1.第2およ
び第3回目のガスリーク量測定テストによるガスリーク
量曲線をあられす。ところで、前記測定部(1)では、
測定テスト開始と同時に容器壁を通過したガスリーク量
(正味ガスリーク量)に、容器内や測定部内に測定テス
ト開始前から存在していたガスリーク量(無効ガスリー
ク量)を加算した見掛は上のガスリーク量が測定される
。本実施例では、次に述べる第1.第2の計算部(2)
 (3)により見掛は上のガスリーク量から無効ガスリ
ーク量を減算して、自動的に正味のガスリーク量が得ら
れるようにしている。
FIG. 2 mainly shows the amount of gas leak measured in the measuring section (1) along the time axis. In Figure 2,
Q+, Q2 and Q3 are the first . Here are the gas leakage curves from the second and third gas leakage measurement tests. By the way, in the measuring section (1),
The apparent gas leak is the sum of the amount of gas leak that passed through the container wall at the same time as the measurement test started (net gas leak amount) and the amount of gas leak that existed in the container or measurement part before the start of the measurement test (ineffective gas leak amount). quantity is measured. In this embodiment, the following 1. Second calculation part (2)
According to (3), the ineffective gas leak amount is subtracted from the apparent gas leak amount to automatically obtain the net gas leak amount.

即ち、容器内あるいは測定部内に残存するガスを新たな
測定テストのために排気する場合、ガスは、第3図に示
す排気特性曲線にしたがって排気される。
That is, when the gas remaining in the container or the measuring section is to be evacuated for a new measurement test, the gas is evacuated according to the exhaust characteristic curve shown in FIG.

この排気特性曲線は指数関数的に変化するので、任意の
無効ガスリーク量を算出する方法として、次の2つの方
法がある。まず、第1の方法について説明する。即ち、
第1の方法では、ガスリーク量について第3図に示され
るような排気特性を測定し、各時刻におけるリ−り量を
経過時間(1)とリーク量(2)とを対応させて、Q 
= Q(t)のように記憶しておく。今、第4図に示す
ように、ある測定テスト終了時における見掛は上のガス
リーク量が時刻(tl)において、Q′であったとき、
その時刻(t、)より以降の無効ガスリーク量は次の関
係式から求めることができる。
Since this exhaust characteristic curve changes exponentially, there are two methods for calculating an arbitrary amount of ineffective gas leakage. First, the first method will be explained. That is,
In the first method, the exhaust characteristics as shown in Fig. 3 are measured for the amount of gas leakage, and the amount of leakage at each time is correlated with the elapsed time (1) and the amount of leakage (2).
= Q(t). Now, as shown in Fig. 4, the apparent gas leak amount at the end of a certain measurement test is Q' at time (tl).
The amount of ineffective gas leak after that time (t,) can be determined from the following relational expression.

特性を長時間測定して得られる飽和リーク量である。This is the saturated leakage amount obtained by measuring the characteristics over a long period of time.

次に、第2の方法について説明する。第2の方法では、
第5図に示すように、テスト終了時から、次に新たにテ
ストを開始するまでの間で、テスト終了時からの経過時
間(tn)とそのときのリーク量(Qn)とを記憶し、
その(tn)、(Qn)を用いての回帰分析計算を行っ
て、任意の時間における無効ガスリーク量を推定する。
Next, the second method will be explained. In the second method,
As shown in FIG. 5, between the end of the test and the start of a new test, the elapsed time (tn) from the end of the test and the amount of leakage (Qn) at that time are memorized,
A regression analysis calculation is performed using the (tn) and (Qn) to estimate the amount of ineffective gas leak at any given time.

この任意の時間における無効ガスリーク量CQ (t)
)は、次の関係式から求めることができる。
Ineffective gas leak amount CQ (t) at this arbitrary time
) can be obtained from the following relational expression.

Q(t)=Q’exp(−)+QBG τ ここで・Q′、τ、 QBGは次の回帰分析計算式(こ
よって今、無効ガースリーク量を第1の方法で求めたと
すると、第4図における新たな測定テストにおける時刻
(t3)の正味のガスリーク量(Qv)は、見掛は上の
ガスリーク量(Q′)を測定部(1)で測定して得る一
方、第1計算部(2)で前記関係式の時間(1)に(t
3)を代入して無効ガスリーク量(QI)を計算し、第
2計算部(3)で見掛は上のガスリーク量(Q′)から
無効ガスリーク量(Q+)を減算することにより求めら
れる。
Q(t)=Q'exp(-)+QBG τ Here, Q', τ, and QBG are the following regression analysis calculation formulas (Thus, if we now calculate the amount of ineffective gas leak using the first method, Fig. 4 The net gas leak amount (Qv) at time (t3) in the new measurement test is obtained by measuring the apparent gas leak amount (Q') in the measuring section (1), while ) at time (1) of the above relational expression (t
3) is substituted to calculate the ineffective gas leak amount (QI), and the apparent value is obtained by subtracting the ineffective gas leak amount (Q+) from the above gas leak amount (Q') in the second calculation section (3).

本実施例では、成る測定テスト終了後から無効ガスリー
ク量がQBGのようにほぼ一定になるまで待つことなく
、次の測定テストを開始することができるので、繰返し
て、このような測定テストを行う場合には非常に好適す
る。
In this embodiment, after the measurement test is completed, the next measurement test can be started without waiting until the amount of ineffective gas leak becomes almost constant like QBG, so such a measurement test can be repeated. Very suitable in some cases.

第6図は、本発明の他の実施例のブロック回路図である
。この実施例では、成る測定テスト終了後から長時間経
過し、無効ガスリーク量が一定のQBGになったときに
次の測定テストを開始するものである。本実施例の測定
部(1つは、先述の実施例と同様のものである。成る測
定テスト終了後から相当の長時間が経過すると、測定部
(1′)で測定されるガスリーク量は、QBGの無効ガ
スリーク量(QI)である。この無効ガスリーク量(Q
I)は、制御部(2′)からの制御信号に応答して記憶
部(3つにストアされる。
FIG. 6 is a block circuit diagram of another embodiment of the invention. In this embodiment, the next measurement test is started when a long time has elapsed after the end of the previous measurement test and the amount of ineffective gas leak reaches a constant QBG. After a considerable period of time has elapsed after the end of the measurement test, the amount of gas leakage measured by the measuring section (1') of this embodiment is as follows: This is the amount of ineffective gas leakage (QI) of QBG.This amount of ineffective gas leakage (Q
I) is stored in three storage units in response to a control signal from the control unit (2').

したがって、次の測定テストにおける無効ガスリーり量
は測定テスト開始前に記憶部(3′)にストアされるこ
とになる。次に、測定テストが開始されると、測定部(
1つからは見掛は上のガスリーク量に関する信号が、ま
た、話憶部(3′)からは無効ガスリーク量に関する信
号が、それぞれ、演算部(4′)に入力される。演算部
(4′)は、入力された両信号に基づいて見掛は上のガ
スリーク量から無効ガスリーク量を減算するとともに、
その出力部から減算結果である正味のガスリーク量に関
する信号を送出する。
Therefore, the amount of ineffective gas leakage in the next measurement test will be stored in the storage section (3') before the start of the measurement test. Next, when the measurement test starts, the measurement section (
A signal regarding the apparent gas leak amount is inputted from one of the two, and a signal regarding the invalid gas leak amount is inputted from the memory section (3') to the calculation section (4'). The calculation unit (4') subtracts the invalid gas leak amount from the apparent gas leak amount based on both input signals, and
A signal regarding the net gas leakage amount, which is the result of the subtraction, is sent from the output section.

こうして、本実施例では正味のガスリーク量を検出する
ことができる。第7図は、各測定テスト毎の見掛は上の
ガスリーク量(q<) (Q2’)(Q3’)を時間軸
上にあられしたものである。したがって、本実施例では
各測定テスト開始前の各々の無効ガスリ−り量(Q]’
BG)(Q2’BG)(Q3’BG)に対応して正味の
ガスリーク量(QV+’) (QV2’)(QV3’)
を正確に求めることができる。
In this way, in this embodiment, the net amount of gas leak can be detected. FIG. 7 shows the apparent gas leak amount (q<) (Q2') (Q3') for each measurement test on the time axis. Therefore, in this example, each ineffective gas leakage amount (Q]' is calculated before each measurement test starts.
Net gas leakage amount (QV+') (QV2') (QV3') corresponding to BG) (Q2'BG) (Q3'BG)
can be determined accurately.

以上説明したように、本発明によれば、上述の構成を有
するので、測定された見掛は上のガスリーク量から無効
ガスリーク量を減算して自動的に正味のガスリーク量を
求めることができ、測定操作上の煩わしさが解消され、
しかも正確な測定が可能である等の効果が発揮される。
As explained above, according to the present invention, since it has the above-mentioned configuration, the net gas leak amount can be automatically determined by subtracting the invalid gas leak amount from the measured apparent gas leak amount, Eliminates troublesome measurement operations,
Moreover, effects such as being able to perform accurate measurements are exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック回路図、第2図は
上記実施例における測定テスト毎のガスリーク量曲線を
時間軸上にあられしたグラフ、第3図は排気系における
無効ガスリーク量の減衰特性曲線を時間軸にあられした
グラフ、第4図、第5図は上記実施例による測定動作の
説明に供するガスリーク量の時間軸上における各グラフ
、第6図は本発明の他の実施例のブロック回路図、第7
図は上記能の実施例における測定テスト毎のガスリーク
曲線を時間軸にあられしたグラフである。 (1) (1’)・・・測定部、(2)・・第1計算部
、(3)・・第2計算部、(2′)・・・制御部、(3
′)・・・記憶部、(4つ・・・演算部 特許出願人  株式会社島津製作所 第5図 t、t、t (、[@      g楕(t)第6図 第7図
Fig. 1 is a block circuit diagram of an embodiment of the present invention, Fig. 2 is a graph showing the gas leak amount curve for each measurement test in the above embodiment on the time axis, and Fig. 3 is a graph of the amount of ineffective gas leak in the exhaust system. FIGS. 4 and 5 are graphs showing the attenuation characteristic curve on the time axis. FIGS. 4 and 5 are graphs of the gas leak amount on the time axis to explain the measurement operation according to the above embodiment. FIG. 6 is a graph showing another embodiment of the present invention. Block circuit diagram, No. 7
The figure is a graph plotting gas leak curves for each measurement test in the above-mentioned embodiment on a time axis. (1) (1')...Measurement section, (2)...First calculation section, (3)...Second calculation section, (2')...Control section, (3
')...Storage section, (4...Arithmetic section Patent applicant Shimadzu Corporation Fig. 5 t, t, t (, [@ g ellipse (t) Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 容器壁における微小孔の有無およびその大きさ等をガス
リーク量により検出する装置をこおし)で、ガスリーク
量を測定する第1の手段と、i+を定開始前の前記第1
の手段からの測定データカ)ら無効ガスリーク量を記憶
あるいは計算する第2の手段と、測定開始後は前記第1
の手段からの見掛は上のガスリーク量から前記第2の手
段からの無効ガス1ノーク量を減算して正味のガスリー
ク量を得る第3の手段とを含むことを特徴とする、リー
ク検出装置。
A first means for measuring the amount of gas leak by using a device for detecting the presence or absence of micropores in the container wall and their size based on the amount of gas leak;
a second means for storing or calculating the amount of ineffective gas leak from the measurement data from the means;
and a third means for obtaining a net gas leak amount by subtracting one nok amount of ineffective gas from the second means from the apparent gas leak amount from the above means. .
JP6276982A 1982-04-14 1982-04-14 Leak detecting device Granted JPS58179330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6276982A JPS58179330A (en) 1982-04-14 1982-04-14 Leak detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6276982A JPS58179330A (en) 1982-04-14 1982-04-14 Leak detecting device

Publications (2)

Publication Number Publication Date
JPS58179330A true JPS58179330A (en) 1983-10-20
JPH0456251B2 JPH0456251B2 (en) 1992-09-07

Family

ID=13209920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6276982A Granted JPS58179330A (en) 1982-04-14 1982-04-14 Leak detecting device

Country Status (1)

Country Link
JP (1) JPS58179330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688307A1 (en) * 1992-03-04 1993-09-10 Aerospatiale Method for detection and overall quantification of leaks on at least one junction of a container
JP2008517257A (en) * 2004-10-16 2008-05-22 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング How to detect leaks
WO2017037842A1 (en) * 2015-08-31 2017-03-09 島津エミット株式会社 Helium leak detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556801U (en) * 1978-06-29 1980-01-17
JPS55160873A (en) * 1979-06-04 1980-12-15 Aloka Co Ltd Dosage measuring method
JPS58158533A (en) * 1982-03-16 1983-09-20 Toshiba Corp Leak testing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515881A (en) * 1974-07-02 1976-01-19 Ebara Infilco Haikibutsuno kaenyojuhoho oyobi sochi

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556801U (en) * 1978-06-29 1980-01-17
JPS55160873A (en) * 1979-06-04 1980-12-15 Aloka Co Ltd Dosage measuring method
JPS58158533A (en) * 1982-03-16 1983-09-20 Toshiba Corp Leak testing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688307A1 (en) * 1992-03-04 1993-09-10 Aerospatiale Method for detection and overall quantification of leaks on at least one junction of a container
JP2008517257A (en) * 2004-10-16 2008-05-22 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング How to detect leaks
JP4801081B2 (en) * 2004-10-16 2011-10-26 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング How to detect leaks
WO2017037842A1 (en) * 2015-08-31 2017-03-09 島津エミット株式会社 Helium leak detector
KR20180033579A (en) * 2015-08-31 2018-04-03 시마쯔에미트 가부시키가이샤 Helium leak detector
CN107949781A (en) * 2015-08-31 2018-04-20 岛津Emit株式会社 Helium leakage detector
JPWO2017037842A1 (en) * 2015-08-31 2018-06-07 島津エミット株式会社 Helium leak detector
CN107949781B (en) * 2015-08-31 2020-10-27 岛津Emit株式会社 Helium gas leakage detector

Also Published As

Publication number Publication date
JPH0456251B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
US9970828B2 (en) Device for measuring the temperature of a medium through a wall
CN102928171B (en) The uncertainty defining method of spacecraft total leak rate test result
JPS58179330A (en) Leak detecting device
JPS55142244A (en) Inspecting device for moisture meter for grain
US4155246A (en) Rapid gas analyzing system
JP2024526892A (en) Evaluating the measurement signal of vacuum leak detectors
CH622927B (en) ELECTRONIC WATCH ALLOWING THE MEASUREMENT OF THE REACTION TIME.
US4059762A (en) Method and apparatus for determining accuracy of radiation measurements made in the presence of background radiation
JP2921923B2 (en) Radiation detector sensitivity calibration device
RU2077023C1 (en) Method of measurement of electric and nonelectric quantities
JPS60113173A (en) Background subtracting method of pollutive radiation dode measuring device
JPS6353488B2 (en)
JPS58158533A (en) Leak testing method
JPS626544Y2 (en)
JPH0251037A (en) Air-tightness testing apparatus
JPS58208636A (en) Detecting device for position of leakage from piping such as leakage of water
Shields et al. Tube method of sound‐absorption measurement extended to frequencies far above cutoff
JPS6356936B2 (en)
Buhr et al. Intercomparison of visual diffuse transmission density measurements
SU1109964A1 (en) Versions of x-ray unit
SU1628657A1 (en) Radioisotope method of measuring material thickness using a radioisotope thickness meter
SU737898A1 (en) Ferrometer
JPH02262020A (en) Water-level measuring apparatus of boiler drum
JPH04169888A (en) Apparatus for measuring radiation
JPS63163139A (en) Light pulse tester