JPS58208636A - Detecting device for position of leakage from piping such as leakage of water - Google Patents

Detecting device for position of leakage from piping such as leakage of water

Info

Publication number
JPS58208636A
JPS58208636A JP9102382A JP9102382A JPS58208636A JP S58208636 A JPS58208636 A JP S58208636A JP 9102382 A JP9102382 A JP 9102382A JP 9102382 A JP9102382 A JP 9102382A JP S58208636 A JPS58208636 A JP S58208636A
Authority
JP
Japan
Prior art keywords
data
pipe
value
trigger signal
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9102382A
Other languages
Japanese (ja)
Other versions
JPS6367846B2 (en
Inventor
Yoshio Seki
関 良雄
Ryutaro Tanimoto
谷本 竜太郎
Kenji Yamada
健二 山田
Masaru Shiotani
塩谷 勝
Shozo Yamazaki
山崎 章三
Masaru Sakuma
勝 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nihon Musen KK
Original Assignee
Japan Radio Co Ltd
Nihon Musen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nihon Musen KK filed Critical Japan Radio Co Ltd
Priority to JP9102382A priority Critical patent/JPS58208636A/en
Publication of JPS58208636A publication Critical patent/JPS58208636A/en
Publication of JPS6367846B2 publication Critical patent/JPS6367846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To improve the accuracy of measurement of a position of water leakage by measuring actually the value of either one of the speed of propagation of vibration of a piping to be measured or the length of the pipeline thereof with the value of the other made known, and by using a calibrated value of the length of the pipeline or the speed of propagation of vibration. CONSTITUTION:The titled detecting device is provided with first and second sensors 2 and 3 provided in the longitudinal direction of a pipe 1 to be measured, a comparator 8 delivering a trigger signal only when it receives a sensing signal delivered from the sensor 2 when a reference voltage set beforehand is exceeded, an A/D converter 6, and a correlation wave memory 10 accumulating digital signals of digital data sequentially according to the trigger signal and recording the n-th data corresponding to the maximum amplitude value from the first data starting from the trigger signal. The number N of the recorded data from the first to the n-th is detected by CPU12, and the time TD of delay of amplitude from the sensor 2 to the sensor 3 and the period TS of a sampling pulse are determined to have the relationship of TD=TSXN based on a known value of the speed of propagation of amplitude or the length of a pipeline, and on a calibrated value in conformity with the actual state at the point of time of measurement.

Description

【発明の詳細な説明】 本発明は、水その他油、カス等が配管の特定位置から漏
れている個所を、相関方式を利用して感知し検出する漏
水等配管からの漏れ位置検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting the location of water leaks from piping by using a correlation method to sense and detect locations where water, oil, scum, etc. are leaking from specific positions of piping. It is.

現任漏水等発見作業は地中に突き刺した聴音棒および増
幅器等により地中を伝播する例えば漏水音を直接耳で讃
」き、その音量、音色等により漏水位置の予測を行って
いる。しかしこの方法はかなり高度な熟練度を要し、か
つ雑音の少ない夜間計測が行われる。なお、建物、川、
アスファルト道路等の障害物の下に配管されているもの
の漏水位置発見は実際上不可能とされている。これらの
困難さを改良すべく相関関数の理論に基づく例えば漏水
点の位置計測が行われるようになった。しかし現在使用
されている装置は、漏水音の管内伝播速度および管路長
が正確に分っているものに対して正確な漏水位置計測が
可能であり、配管図不備による管路長の不明確、管の腐
蝕劣化による伝播速度の経年変化等が考えられる場合は
測定位置の誤差が大きくなる欠点があった。また相関関
数を計測した後相関値のピーク点を目で読取り、電卓等
による手計算で漏水位置の結果を得ていたため、現場で
の計測が煩雑で間違った結果を算出する欠点があった。
Current water leakage detection work uses listening rods and amplifiers inserted into the ground to listen directly to the sound of water leaks that propagate underground, and predicts the location of water leaks based on the sound volume, tone, etc. However, this method requires a high level of skill and requires nighttime measurements with little noise. In addition, buildings, rivers,
It is practically impossible to locate water leaks in pipes installed under obstacles such as asphalt roads. In order to overcome these difficulties, measurements of the location of water leakage points, for example, have come to be carried out based on the theory of correlation functions. However, the devices currently in use are capable of accurately measuring the location of water leaks when the propagation velocity of water leak sound in the pipe and the length of the pipe are accurately known, and the length of the pipe is unclear due to incomplete piping diagrams. However, if the propagation velocity changes over time due to corrosion and deterioration of the pipe, the error in the measurement position increases. In addition, after measuring the correlation function, the peak point of the correlation value was read visually and the leak position was obtained by hand calculation using a calculator, etc., which had the disadvantage that on-site measurement was complicated and incorrect results were calculated.

不発明はこれらの欠点を解決するために、計測しようと
する配管の振動伝播速度及び管路長のいづれか一万の値
を既知として、他方の値の実測を行い管路長又は振動伝
播速度の校正値を使用して精度の良い漏水位置の計測を
行わせるれ ごとを目的とする漏水等配管からの漏寥位置検出装置を
提供するもので、以下図面に基づきこれを詳細に説明す
る。
In order to solve these shortcomings, the present inventor has determined that either the vibration propagation velocity or the pipe length of the piping to be measured is known, and the other value is actually measured to determine the pipe length or vibration propagation velocity. This invention provides a device for detecting the position of water leaks from piping, which is intended to measure the position of water leaks with high precision using calibration values, and will be described in detail below with reference to the drawings.

図面は本発明の一実施例を示す構成概略図である。先ず
、同図のように、消火栓、止水栓。
The drawing is a schematic diagram showing an embodiment of the present invention. First, as shown in the diagram, fire hydrants and water stop hydrants.

量水器等の場所を利用して漏水等を検出しようとする被
測定管1に適当な距離を隔ててその長手軸方向に振動検
出センサ2およびセンサ3をそれぞれ固定装着する。2
及び3は、第1及び第20感矧信号を検昶する第1及び
第2の振動検出素子に相当する。この状態でセンサ2の
取付1[1i1所の管にハンマーで衝撃を与える。そう
すればセンサ2へは時間遅れなしで振動が伝達され、セ
ンサ3にはある時間遅、1″Lをもって振動が伝達され
る。各センサからの感知信号出力はそれぞれに内応した
増幅器4.増、@器5VC入力され増幅される。増幅器
4からの第1の感知信号はコンパレータ8に入力され、
あらかにぬ設定されている基準電圧以上になったときト
リガ信号としてパルスが出力される。−万増幅器5がら
の第2の感知信号はA/D変換器7に人力され一定時間
毎のサンプリングパルス周期によりデジタルに変換され
出力される。制御回路9により相関・ウェーブメモリ刊
をウェーブメモリ動作に設定しておけばコンパレータ8
がらのトリガパルスによりA/D変換器7からのデジタ
ルデータが順次メモリに記録される。指定されたデータ
数の記録つまり前記トリガ信号を基点とする第1番目の
データから第2の感知信号の最大振幅値に至る第n番目
のデータの記録が完了すると、ROMIIVc格納され
ているプログラムに従いCPU12により前記記録デー
タのスタートからピーク位置までの点数Nが検出され、
センサ2からセンサ31での遅れ時間TDはサンプリン
グ周期TsよりTD=TSXNとして決定される。
A vibration detection sensor 2 and a sensor 3 are respectively fixedly mounted in the longitudinal axis direction of a pipe 1 to be measured, separated by an appropriate distance, from which water leakage or the like is to be detected using a water meter or the like. 2
and 3 correspond to the first and second vibration detection elements that detect the first and 20th sensing signals. In this state, apply an impact with a hammer to the pipe at the 1 location where the sensor 2 is installed. In this way, vibrations are transmitted to sensor 2 without any time delay, and vibrations are transmitted to sensor 3 with a certain time delay of 1"L. Sensing signal output from each sensor is transmitted to the corresponding amplifier 4. , @5VC is input and amplified.The first sensing signal from the amplifier 4 is input to the comparator 8,
When the voltage exceeds a preset reference voltage, a pulse is output as a trigger signal. - The second sensing signal from the amplifier 5 is inputted to the A/D converter 7, converted into digital data by a sampling pulse cycle at fixed time intervals, and outputted. If the correlation/wave memory is set to wave memory operation by the control circuit 9, the comparator 8
The digital data from the A/D converter 7 is sequentially recorded in the memory by the trigger pulse. When the recording of the specified number of data, that is, the recording of the nth data from the first data based on the trigger signal to the maximum amplitude value of the second sensing signal, is completed, according to the program stored in ROMIIVc. The CPU 12 detects the number N of points from the start of the recorded data to the peak position,
The delay time TD from the sensor 2 to the sensor 31 is determined from the sampling period Ts as TD=TSXN.

具体的にはCRT13にTDが表示される。したがって
管路伝播速度Vが既知であれば管路長りはL=’l”p
XV  として決定され、管路長りが既知であれば管路
伝播速度VはV = L/TOとして決定され漏水等漏
れ位置の計算に必要なパラメータの校正値としてCRT
13[表示される。?71nに制御回路9により相関・
ウェーブメモリloを相関演算動作(つまり時間遅れを
パラメータとする乗算・積分を行う動作)に設定すれば
センサ2およびセンサ3より検出された例えば漏水音は
V変換器6.A/D変換器7を介して相関・ウェーブメ
モ1月0により相関関数が演算される。演算が完了すれ
ばROMIIのプログラムに従いCPU12により自動
的に相関値のピーク点が検出され漏水点より発生する振
動信号のセンサ2とセンサ3への到達時間差が決定され
CRT13V?−表示される。7′KにあらかじめRO
MIIに設定されている管種、管径、管長、配管構造等
のパラメータとROMIIに格納されている演算ブロク
ラムに従いCPU12ニより基準点(例えばセンサ2)
より漏水発生点までの距離がCRT13に表示される。
Specifically, TD is displayed on the CRT 13. Therefore, if the pipe propagation velocity V is known, the pipe length is L = 'l''p
If the pipe length is known, the pipe propagation velocity V is determined as V = L/TO.
13 [Displayed. ? 71n by the control circuit 9.
If the wave memory lo is set to a correlation calculation operation (that is, an operation that performs multiplication and integration using a time delay as a parameter), for example, water leakage sound detected by the sensors 2 and 3 will be detected by the V converter 6. A correlation function is calculated using the correlation/wave memo January 0 via the A/D converter 7. When the calculation is completed, the peak point of the correlation value is automatically detected by the CPU 12 according to the ROM II program, and the difference in time between the arrival time of the vibration signal generated from the water leak point to the sensor 2 and the sensor 3 is determined. -Displayed. RO in advance at 7'K
The reference point (for example, sensor 2) is determined by the CPU 12 according to the parameters such as the pipe type, pipe diameter, pipe length, and pipe structure set in the MII and the calculation program stored in the ROMII.
The distance to the water leakage point is displayed on the CRT 13.

この場合プリンタ14ニ出力してもよい。In this case, it may be output to the printer 14.

以上説明したように漏水位置計算に必要な重要パラメー
タである管路長または管路伝播速度を実測値で校正し、
この校正値をもとにすれば測定時の配管の実状に合うか
ら精度の良い位置計算ができる利点がある。また相関演
算スタートから漏水位置決定まで自動的に計測ができる
ため間違のない結果を容易に得ることができる。
As explained above, the pipe length or pipe propagation velocity, which is an important parameter necessary for calculating the leak location, is calibrated using actual measured values.
Based on this calibration value, it has the advantage of allowing highly accurate position calculations because it matches the actual condition of the piping at the time of measurement. In addition, since measurements can be performed automatically from the start of correlation calculation to the determination of the water leak location, accurate results can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は不発明の一実施例を示す構成概略図である。 1・・・被測定管、2・・・センサ、3・・・センサ、
4・・・増幅器、5・・・増幅器、6・・・A/D変換
器、7・・・A/D変換器、8・・・コンパレータ、9
・・・制御回路。 10・・・相関・ウェーブメモリ回路、11・・・RO
M、12・・・CPU、13・・・CRT、14・プリ
ンタ特許出願人 日本無線株式会社
The figure is a schematic configuration diagram showing an embodiment of the invention. 1... Pipe to be measured, 2... Sensor, 3... Sensor,
4... Amplifier, 5... Amplifier, 6... A/D converter, 7... A/D converter, 8... Comparator, 9
...Control circuit. 10...Correlation/wave memory circuit, 11...RO
M, 12...CPU, 13...CRT, 14/Printer Patent applicant Japan Radio Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 被測定管の賃定位置に与えられる打Sによって生ずる撮
動に対応した第1の感知信号を検知する第1の振動検出
素子と、前記打撃によって生ずる振動の発生時点から一
定の遅れ時間後の時点に生ずる該被測定管長手軸方向の
特定位置の撮動に?j応した第2の感知信号を検知する
第2の速動検出素子とをそれぞれ被測定管の長手軸1同
に配設し、第1の感知信号と予め設定された基準電圧と
が加えられて該基準電圧を越える第1の感知信号の到来
時のみトリガ信号を出力するコンパrりと、第2の振動
検出素子から得られる最大振幅値の第2の感知信号が加
えられて一定時間毎のサンブリンクパルス周期により順
次デジタル信号化されたデジタルデータを出力するA/
D i換器と、該トリガ信号によって該テ2;タルデー
タの各デジタル信号が逐次蓄積されて該トリガ信号を基
点とする第1番目のデータから前記最大振幅値に対応の
第n番目のデータを記録する相関・ウェーブメモリとを
具備し、第1番目から第n番目までの記録データの点数
NをCPUにより検出し、第1の振動検出素子から第2
の振動検出素子までの振幅遅れ時間TDと該サンプリン
グパルス周期TsとがTD=T″sXNとなる関係をも
ち、振動伝播速度及び管路長のいずれか既矧の値から測
定時点の実状にそくした校正値を有する管路長又は振動
伝播速度をもとにしてなることを特徴とする漏水等配管
からの漏れ位置検出装置。
a first vibration detection element that detects a first sensing signal corresponding to the imaging caused by a strike S applied to a fixed position of the pipe to be measured; For photographing a specific position in the longitudinal axis direction of the pipe to be measured that occurs at a certain point in time? A second fast-moving detection element for detecting a corresponding second sensing signal is arranged on the same longitudinal axis of the tube to be measured, and the first sensing signal and a preset reference voltage are applied. a comparator that outputs a trigger signal only when a first sensing signal exceeding the reference voltage arrives; An A/A that outputs digital data sequentially converted into digital signals using
D i converter, each digital signal of the digital data is sequentially accumulated by the trigger signal, and the data is stored from the first data to the n-th data corresponding to the maximum amplitude value based on the trigger signal. The CPU detects the number N of recorded data from the first vibration detection element to the second vibration detection element.
The amplitude delay time TD up to the vibration detection element and the sampling pulse period Ts have a relationship of TD=T''s 1. An apparatus for detecting the position of a leak from a pipe, such as a water leak, based on a pipe length or a vibration propagation velocity having a calibration value.
JP9102382A 1982-05-28 1982-05-28 Detecting device for position of leakage from piping such as leakage of water Granted JPS58208636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9102382A JPS58208636A (en) 1982-05-28 1982-05-28 Detecting device for position of leakage from piping such as leakage of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9102382A JPS58208636A (en) 1982-05-28 1982-05-28 Detecting device for position of leakage from piping such as leakage of water

Publications (2)

Publication Number Publication Date
JPS58208636A true JPS58208636A (en) 1983-12-05
JPS6367846B2 JPS6367846B2 (en) 1988-12-27

Family

ID=14014936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9102382A Granted JPS58208636A (en) 1982-05-28 1982-05-28 Detecting device for position of leakage from piping such as leakage of water

Country Status (1)

Country Link
JP (1) JPS58208636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676098A (en) * 1984-08-21 1987-06-30 Batelle - Institut E.V. Vessel for bulk materials
FR2626974A1 (en) * 1988-02-09 1989-08-11 Eaux Cie Gle Method and device for detecting leaks in fluid pipelines
US5231866A (en) * 1991-05-28 1993-08-03 Dnv Industrial Services, Inc. Acoustic leak detection system
US5544074A (en) * 1992-01-16 1996-08-06 Kabushiki Kaisha Toshiba Method and apparatus for detecting the position of an abnormal site of a buried pipe
JP2018151343A (en) * 2017-03-15 2018-09-27 日本電気株式会社 Analyzer, analysis system, analysis method and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676098A (en) * 1984-08-21 1987-06-30 Batelle - Institut E.V. Vessel for bulk materials
FR2626974A1 (en) * 1988-02-09 1989-08-11 Eaux Cie Gle Method and device for detecting leaks in fluid pipelines
US5231866A (en) * 1991-05-28 1993-08-03 Dnv Industrial Services, Inc. Acoustic leak detection system
US5544074A (en) * 1992-01-16 1996-08-06 Kabushiki Kaisha Toshiba Method and apparatus for detecting the position of an abnormal site of a buried pipe
JP2018151343A (en) * 2017-03-15 2018-09-27 日本電気株式会社 Analyzer, analysis system, analysis method and program

Also Published As

Publication number Publication date
JPS6367846B2 (en) 1988-12-27

Similar Documents

Publication Publication Date Title
US6561032B1 (en) Non-destructive measurement of pipe wall thickness
CN102630302B (en) High precision ultrasonic corrosion rate monitoring
CN105351756A (en) Pipeline leakage recognizing and positioning system and method based on sound wave imaging
CN110953486A (en) System and method for positioning leakage of pressurized pipeline
CA2152102C (en) High resolution measurement of thickness using ultrasound
DK0956491T3 (en) Device for volume measurement of flowing media and similar method
CN106153173A (en) Sonic velocity measurement method and device in a kind of water
RU93043666A (en) METHOD AND DEVICE FOR ULTRASOUND DETERMINATION OF LOCATION LOCATION
JPS58208636A (en) Detecting device for position of leakage from piping such as leakage of water
WO2021057288A1 (en) Pipe creep measurement system and method
KR100374428B1 (en) Sonic Level Metering Method
RU2620023C1 (en) Method of determining the place of the flow in the pipeline and the device for its implementation
JPS5826239A (en) Detecting method for liquid leakage position
JPH11201812A (en) Method for measuring sound velocity in fluid piping
JP2650935B2 (en) Partial discharge location method
JP3048284B2 (en) Sound velocity calibration device for acoustic pipe length measurement system
JP3023199B2 (en) Acoustic pipe length measuring instrument
JPS61215908A (en) Piping inspecting instrument
JP2001242000A (en) Ultrasonic level meter
GB2071849A (en) Improvements in ultrasonic testing
JPS637335B2 (en)
JPH1114493A (en) Method and device for airtightness test of gas piping
JP3384197B2 (en) Pipe shape estimation method
JPS5834334A (en) Detection system for leakage position
SU885850A1 (en) Stand for calibrating pressure pickups