JPS58177146A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS58177146A
JPS58177146A JP57060484A JP6048482A JPS58177146A JP S58177146 A JPS58177146 A JP S58177146A JP 57060484 A JP57060484 A JP 57060484A JP 6048482 A JP6048482 A JP 6048482A JP S58177146 A JPS58177146 A JP S58177146A
Authority
JP
Japan
Prior art keywords
catalyst
noble metal
durability
exhaust gas
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060484A
Other languages
Japanese (ja)
Other versions
JPH0334368B2 (en
Inventor
Kazuko Yoshida
和子 吉田
Shigenori Sakurai
桜井 茂徳
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57060484A priority Critical patent/JPS58177146A/en
Publication of JPS58177146A publication Critical patent/JPS58177146A/en
Publication of JPH0334368B2 publication Critical patent/JPH0334368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain the titled catalyst having excellent activity even in a low temp. region and durability, by supporting V, Mo and K along with a noble metal by a catalyst carrier. CONSTITUTION:V, Mo and K are supported along with a noble metal by a catalyst carrier to obtain a catalyst wherein the catalytic activity of said noble metal can be enhanced even in a wide range of a temp. region and, as the result, sufficient catalytic activity can be developed even in a low temp. region as well as the durability is made excellent. Because above mentioned beneficial results can be achieved without increasing the support amount of the noble metal, it is advantageous from the point of view of the cost.

Description

【発明の詳細な説明】 するものである。[Detailed description of the invention] It is something to do.

排気ガス浄化用触媒(以下、単に触媒という)は、アル
ミナ等セラミック質の担体に、触媒活性を有する貴金属
たとえば白金、ロジウム着たはパラジウム等を担持させ
ることによって構成されるものであり、担持された上記
貴金属が酸素または水素を吸収し、これらを活性化する
ことにより、排気カスを酸化・還元反応に供し、排気ガ
スを浄化するというものである。
Exhaust gas purification catalysts (hereinafter simply referred to as catalysts) are constructed by supporting a noble metal with catalytic activity, such as platinum, rhodium, or palladium, on a ceramic carrier such as alumina. The noble metal absorbs oxygen or hydrogen and activates it, thereby subjecting the exhaust gas to an oxidation/reduction reaction and purifying the exhaust gas.

ところで、自動車エンジン等の内燃機関においては、始
動運転から正常運転に至るまでの温良範囲が広い。その
ため、i!度状況に拘らず触媒活性の曖れた触媒が必要
となるが、一般に触媒の活性化は温度が高くなるにつれ
て促進されるため、エンジン胎動期などの低温域におい
ては、触媒があまり有効に働かず、不完全燃焼ガスを大
気中に排出する恐れがあった。
By the way, internal combustion engines such as automobile engines have a wide temperature range from startup to normal operation. Therefore, i! A catalyst with ambiguous catalytic activity is required regardless of temperature conditions, but catalyst activation is generally accelerated as temperature increases, so in low-temperature ranges such as when the engine is running, the catalyst may not work as effectively. However, there was a risk that incomplete combustion gas would be emitted into the atmosphere.

本発明の目的は、低温域においても優れた活性を有する
とともに耐久性を併せもつ触媒を提供することにある。
An object of the present invention is to provide a catalyst that has both excellent activity and durability even in a low temperature range.

本発明者等は、この点を鑑みて檀々研究を重ねた結果、
通常の担持金属すなわち貴金属に加えて、バナジウム、
モリブデンおよびカリウムを担持させねば、貴金属の触
媒活性を広範囲の温度域においても高めることができ、
結果として低温域においても充分な触媒活性を発揮しう
ることを見出し、本発明を構成した。
In view of this point, the inventors have conducted extensive research and found that
In addition to the usual support metals, i.e. noble metals, vanadium,
If molybdenum and potassium are supported, the catalytic activity of precious metals can be increased even in a wide temperature range.
As a result, it was discovered that sufficient catalytic activity could be exhibited even at low temperatures, and the present invention was constructed based on this finding.

本発明において貴金属と一緒に担持せしめる元素、すな
わち、バナジウム、モリブデンおよびカリウムは、貴金
属を担持させる方法と同様な方法で担体に担持させるこ
とができる。一例を挙げれば、上記元素をそれらの水溶
性化合物とし、該化合物の水溶液を担体に含浸させ、乾
燥そして焼成するという方法がある。この場合、使用さ
れる化合物としては、バナジウムの場合、メタバナジン
酸アンモニウム、モリブデンの場合、モリブデン酸アン
モニウム、カリウムの場合、炭酸カリ9ム、硝酸カリウ
ムなどがあり、このほか二種の元素を同時に含む化合物
、たとえば、メタバナジン酸カリウム、モリブデン酸モ
ルの範囲とされる。
In the present invention, the elements to be supported together with the noble metal, ie, vanadium, molybdenum, and potassium, can be supported on the carrier in the same manner as the method for supporting the noble metal. For example, there is a method in which the above elements are made into water-soluble compounds thereof, a carrier is impregnated with an aqueous solution of the compound, and the carrier is dried and fired. In this case, the compounds used include vanadium, ammonium metavanadate, molybdenum, ammonium molybdate, potassium, potassium carbonate, potassium nitrate, and other compounds containing two types of elements at the same time. , for example, potassium metavanadate, mole molybdate.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 比表面積50 m”/ gの球状アルミナ担体200C
Cに、メタバナジン酸アンモニウム水溶液を含浸し、1
20℃×2時間(以下hrで示す)乾燥した後、800
℃x 2 hr焼成した。次に、モリブデン酸カリウム
水溶液を含浸し、120 ’Cx 2hr乾燥後、80
0℃x2hr焼成した。続いて、硝酸カリウム水溶液を
含浸し、120℃X 2 hr乾燥後、600℃x2h
r焼成した。 次に、塩化ロジウム水溶液を含浸し、1
20℃×2hr乾燥後、500℃xo、5hr焼成した
。更に、塩化白金酸水溶液を含浸し、120しX2hr
乾燥後、500℃xO,5hr焼成して、触媒化した0
 各元素の担持tについては下記表に示す。
Example 1 Spherical alumina support 200C with a specific surface area of 50 m”/g
C was impregnated with an aqueous ammonium metavanadate solution, and 1
After drying at 20°C for 2 hours (hereinafter referred to as hr),
It was baked at ℃ x 2 hours. Next, it was impregnated with potassium molybdate aqueous solution, and after drying at 120'Cx 2hr,
It was baked at 0°C for 2 hours. Subsequently, it was impregnated with an aqueous potassium nitrate solution, dried at 120°C for 2 hours, and then dried at 600°C for 2 hours.
It was fired. Next, it is impregnated with rhodium chloride aqueous solution and 1
After drying at 20°C for 2 hours, it was fired at 500°C for 5 hours. Furthermore, it was impregnated with a chloroplatinic acid aqueous solution and heated for 120×2 hr.
After drying, it was calcined at 500°C x O for 5 hours to form a catalyst.
The supported t of each element is shown in the table below.

比較例1 比表面積50 rr?/ gの球状アルばす担体200
ccに、実施例1と同様の操作でセリウム、ロジウムお
よび白金を担持し、P!i媒化した。このとき、バナジ
ウム、モリブデンおよびカリウムの担持は行なわなかっ
た。
Comparative Example 1 Specific surface area 50 rr? / g of spherical aluminum carrier 200
Cerium, rhodium and platinum were supported on cc in the same manner as in Example 1, and P! I made it into an i-media. At this time, vanadium, molybdenum, and potassium were not supported.

比較例2−7 比表面積5 On?/ gの球状アルミナ担体200c
c IC、責合−であるセリウム、ロジウムおよび白金
のはか、バナジウム、モリブデンおよびカリウムの1槌
または2檀を、)配光の割合で担持サセルことにより、
触媒化した。この場合、炭酸カリウム水溶液、モリブデ
ン酸アンモニウム水溶液およびメタバナジン峡アンモニ
ウム水溶液を使用し、含浸後における乾燥を120’X
2 hr、焼成を800’CX2hr行なツタ。また、
セリウム、白金およびロジウムの担持は、実施例1と同
様の操作で行なった。
Comparative Example 2-7 Specific surface area 5 On? / g of spherical alumina carrier 200c
c IC, by carrying cerium, rhodium and platinum scales, vanadium, molybdenum and potassium in the proportion of light distribution,
catalyzed. In this case, a potassium carbonate aqueous solution, an ammonium molybdate aqueous solution and a metavanazine ammonium aqueous solution are used, and the drying after impregnation is carried out at 120'X.
2 hr, 800'C x 2 hr firing of ivy. Also,
Cerium, platinum, and rhodium were supported in the same manner as in Example 1.

表 中 金属担持量は触媒11当りの電を示す。table The amount of metal supported indicates the charge per 11 catalysts.

o K担持量はに20に換算 このように@贅した各触媒について、下記モデルガスを
用いて、浄化性能の試験を行なった。
o The supported amount of K was converted to 20. The purification performance of each of the catalysts thus prepared was tested using the following model gas.

モデルガス成分 CO:Q、8%、 NOx:2,200 ppm 、炭
化水素(C!Hs): 840 pprr) 、 02
 : [L8 ’li 、H2: 0.17%、 H,
0:約5%、CO,zo%、N2;残部 (11初期(耐久試験前)活性 上記組成よりなるモデルカスに、0.8%過剰の02.
 t 6%過剰のCOとなるように交互に1Hzで導入
した変動ガスを、200〜350℃(入カス温度)に加
熱し、空間速度(SV)約6万1−11−1の割合で触
媒に通過せしめることにより、一方において炭化水素(
HC)およびGoを酸化させ、他方においてNOxを還
元させ、HC、(:0  およびN0xcDfp化率を
測定した。測定結果を第1図〜躯6図に示す。
Model gas components CO: Q, 8%, NOx: 2,200 ppm, hydrocarbons (C!Hs): 840 pprr), 02
: [L8'li, H2: 0.17%, H,
0: about 5%, CO, zo%, N2; remainder (11 initial (before durability test) activity) 0.8% excess of 02.
A fluctuating gas alternately introduced at 1 Hz to give a 6% excess of CO is heated to 200-350°C (input temperature) and catalyzed at a space velocity (SV) of approximately 60,001-11-1. On the one hand, hydrocarbons (
HC) and Go were oxidized, and NOx was reduced on the other hand, and the conversion rate of HC, (:0 and NOxcDfp) was measured. The measurement results are shown in Figs. 1 to 6.

([1耐久試験後活性 空燃比をほぼ16に制御した排気カス中に30時間触媒
をさらすという方法で耐久試験を付った。このとき−M
媒床m度は約800℃−空間速度は約6万Hr−’とし
た。浄化率測定の条件は、初期活性におけると同様とし
た。測定結果を第4図〜第6図に示す。
(After the durability test, the catalyst was exposed for 30 hours to exhaust gas with an active air-fuel ratio of approximately 16. At this time, the -M
The medium bed temperature was approximately 800°C and the space velocity was approximately 60,000 Hr-'. The conditions for measuring the purification rate were the same as those for the initial activity. The measurement results are shown in FIGS. 4 to 6.

これらの各図に示された結果かられかるように、貴金属
以外の成分としてバナジウム、モリブデンおよびカリウ
ムを担持してなる触媒は、初期および耐久後ともに優れ
た浄化性能を示し、特に低温域における活性が高く、耐
久後も大ガス温度300℃で80%以上の浄化率が得ら
れる。
As can be seen from the results shown in these figures, the catalyst that supports vanadium, molybdenum, and potassium as components other than precious metals exhibits excellent purification performance both at the initial stage and after durability, and shows particularly high activity at low temperatures. is high, and even after durability, a purification rate of 80% or more can be obtained at a large gas temperature of 300°C.

この場合、各元素の作用は次のように推測される: バナジウム:*金−とともに、酸素および水素を吸看す
ることができ、貴金属の助触媒として働く。そのために
、触媒である貴金属の触媒性能を向上せしめるとともに
、酸素等が消費された貴金属にそれらを供給できるため
、より長期にわたり、触媒活性を維持できる。こうした
ことは、バナジウムが周囲の状況に応じてその原子価を
変化するに起因する。
In this case, the actions of each element are assumed to be as follows: Vanadium: *Along with gold, it can absorb oxygen and hydrogen, and acts as a promoter for noble metals. Therefore, it is possible to improve the catalytic performance of the noble metal that is the catalyst, and to supply oxygen and the like to the noble metal that has been consumed, so that the catalytic activity can be maintained for a longer period of time. This is due to the fact that vanadium changes its valence depending on the surrounding conditions.

モ11ブデン;詳細は不明であるが、バナジウムC)原
子価を変化させ易くするといわれる。
Mo11butene: Although the details are unknown, it is said that vanadium (C) makes it easier to change the valence.

カリウム:セラばツク質担体の結晶のα化を抑制し、担
体を安定化させる。
Potassium: Suppresses gelatinization of the crystals of the cellulose carrier and stabilizes the carrier.

以上の如く、本発明触棹は、負金桐とともにバナジウム
、モリブデンおよびカリウムを担持させて41′ること
から、貴金属だけを担持してなる触媒、さらには貴金属
とともに上記元素の多くとも2樵を担持してなる触媒に
比して、低温域(200〜500℃)番こおける浄化性
能が格段に向上する。この浄化性能の向上は、有害カス
の?′I知に拘らず、また耐久前後に拘らず、認められ
る。着た、こうしたことは貴金属の担持蓋會壇加するこ
となく成し遂けられることから、コスト的にも有利であ
る。
As described above, since the present invention supports a catalyst having vanadium, molybdenum, and potassium supported together with negative metal paulownia, it is possible to use a catalyst supported only with precious metals, and furthermore, to support at most two of the above elements together with precious metals. Compared to a supported catalyst, the purification performance in the low temperature range (200 to 500°C) is significantly improved. Is this improvement in purification performance of harmful scum? 'Irrespective of knowledge, and regardless of whether or not the durability has been completed, it is recognized. This is also advantageous in terms of cost, as it can be accomplished without the need for a precious metal carrier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は初期(耐久前)における入カス′IM
ノ徒に対する浄化率の変化を示すグラフ、第4図〜第6
図は耐久仮における上記同様のグラフ、 を表わす。 第1図 −人力゛ス1度1℃) yr4p) 才6f!!’ 一人nス温度(℃)
Figures 1 to 6 show the input debris 'IM' at the initial stage (before durability).
Graphs showing changes in the purification rate for Nozomi, Figures 4 to 6
The figure shows a graph similar to the above in the case of durability. Figure 1 - Human power (1 degree 1 degree Celsius) yr4p) yr6f! ! 'One person's temperature (℃)

Claims (1)

【特許請求の範囲】[Claims] (1)触媒担体に、貴金属とともにバナジウム、モリブ
デンおよびカリウムを担持せしめたことを%徴とする排
気ガス浄化用触媒。
(1) A catalyst for exhaust gas purification characterized by having vanadium, molybdenum, and potassium supported along with precious metals on a catalyst carrier.
JP57060484A 1982-04-12 1982-04-12 Catalyst for purifying exhaust gas Granted JPS58177146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060484A JPS58177146A (en) 1982-04-12 1982-04-12 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060484A JPS58177146A (en) 1982-04-12 1982-04-12 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS58177146A true JPS58177146A (en) 1983-10-17
JPH0334368B2 JPH0334368B2 (en) 1991-05-22

Family

ID=13143595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060484A Granted JPS58177146A (en) 1982-04-12 1982-04-12 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS58177146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021214955A1 (en) * 2020-04-23 2021-10-28

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153038B2 (en) * 2001-04-19 2013-02-27 株式会社Adeka Plastic oil composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021214955A1 (en) * 2020-04-23 2021-10-28
WO2021214955A1 (en) * 2020-04-23 2021-10-28 千代田化工建設株式会社 Eggshell type platinum-loaded alumina catalyst, method for producing same, and use of same
CN115485063A (en) * 2020-04-23 2022-12-16 千代田化工建设株式会社 Eggshell type platinum-loaded alumina catalyst, preparation method and application method thereof

Also Published As

Publication number Publication date
JPH0334368B2 (en) 1991-05-22

Similar Documents

Publication Publication Date Title
JP4290240B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS6135897B2 (en)
JP3436427B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS59127649A (en) Catalyst for purifying exhaust gas
JPH0338894B2 (en)
JPS6384635A (en) Catalyst for purifying exhaust gas
JPS58177146A (en) Catalyst for purifying exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JP3335755B2 (en) Exhaust gas purification catalyst
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP2001162166A (en) Catalyst for purification of discharged gas
JP2001170483A (en) Combustion catalyst for treating diesel exhaust gas
JPS6050490B2 (en) Method for manufacturing palladium catalyst
JP2000246103A (en) Production of catalyst for cleaning exhaust gas
JP2000107602A (en) Oxidation catalyst for unburned hydrocarbon in waste gas and its preparation
JPH0522261Y2 (en)
JP3298115B2 (en) Method for producing exhaust gas purifying catalyst
JPH074527B2 (en) Combustible gas oxidation catalyst
JPH08168650A (en) Material and method for purifying exhaust gas
JPS5933019B2 (en) Method for producing platinum supported catalyst
JP4246274B2 (en) Nitrogen oxide removal method
JPH08294625A (en) Catalyst for purifying exhaust gas and exhaust gas-purifying method
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JP2001347168A (en) Exhaust gas cleaning catalyst