JP4246274B2 - Nitrogen oxide removal method - Google Patents

Nitrogen oxide removal method Download PDF

Info

Publication number
JP4246274B2
JP4246274B2 JP17991196A JP17991196A JP4246274B2 JP 4246274 B2 JP4246274 B2 JP 4246274B2 JP 17991196 A JP17991196 A JP 17991196A JP 17991196 A JP17991196 A JP 17991196A JP 4246274 B2 JP4246274 B2 JP 4246274B2
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
nitrogen
nitrogen oxides
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17991196A
Other languages
Japanese (ja)
Other versions
JPH0999220A (en
Inventor
聡 角屋
雅孝 古山
文雄 大柴
正博 矢作
重夫 里川
憲一 山関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP17991196A priority Critical patent/JP4246274B2/en
Publication of JPH0999220A publication Critical patent/JPH0999220A/en
Application granted granted Critical
Publication of JP4246274B2 publication Critical patent/JP4246274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒素酸化物と過剰の酸素を含む燃焼排ガスから、窒素酸化物、特に二酸化窒素を効果的に除去することのできる方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
コージェネレーションシステム用ガスエンジン、ガスタービン等から排出される各種の燃焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸化窒素等の窒素酸化物(一般にNOx と呼ばれる)が含まれている。ここで、窒素酸化物とは一般に、一酸化窒素及び/又は二酸化窒素を指し、また、「過剰の酸素を含む」とは、その排ガス中に含まれる一酸化炭素、水素、炭化水素等の未燃焼成分を燃焼するのに必要な理論酸素量より多い酸素を含むことを意味する。
【0003】
このような窒素酸化物は酸性雨の原因の一つとされ、環境上の大きな問題となっている。そのため、燃焼機器が排出する排ガス中の窒素酸化物を除去するさまざまな方法が検討されている。例えば、無機酸化物に触媒活性種を担持した触媒を用いて、排ガス中の酸素との理論反応量以下の炭化水素、含酸素有機化合物等を還元剤として添加して窒素酸化物を除去する方法が提案された。
【0004】
しかしながら、排ガス中の残留炭化水素及び/又は含酸素有機化合物を含む部分燃焼成分を還元剤として用いる除去方法がまだ確立していない。また、ガスエンジン及びガスタービンの特有の問題として、窒素酸化物除去装置による排ガスの圧損が大きいと、エンジン自体の出力が大きく影響され、燃焼効率が低下してしまう。
【0005】
したがって、本発明の目的は、ガス燃料燃焼機器からの燃焼排ガスで、窒素酸化物及び一酸化炭素、炭化水素等の未燃焼、部分燃焼分に対する理論反応量以上の酸素を含有する燃焼排ガスから、排ガス中の残留炭化水素及び/又は含酸素有機化合物を還元剤として効率良く窒素酸化物を除去することができる方法を提供することである。
【0006】
【課題を解決するための手段】
上記課題に鑑み鋭意研究の結果、本発明者は、多孔質の無機酸化物に銀又は銀化合物を担持し、金属製ハニカムにコートしてなる触媒に、液化石油ガス、都市ガス、液化天然ガス等を燃料とする燃焼機器の排ガスを所定の条件で接触させてやれば、排ガス中の残留炭化水素及び/又は含酸素有機化合物を還元剤として窒素酸化物を効果的に除去できることを発見し、本発明を完成した。
【0007】
すなわち、ガス燃料を用いる希薄燃焼機器から排出される排ガス中に含まれる窒素酸化物を除去する本発明の方法は、多孔質の無機酸化物に銀又は銀化合物のみを0.5〜15重量%(元素換算値)担持し、金属製ハニカムにコートしてなる触媒に前記排ガスを80,000hr-1以下の空間速度で接触させることにより、前記窒素酸化物と排ガス中の残留炭化水素及び/又は含酸素有機化合物とを反応させて前記窒素酸化物を除去することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明では、液化石油ガス、都市ガス、液化天然ガスのいずれかを燃料とする燃焼機器からの排ガスを多孔質の無機酸化物に銀又は銀化合物を担持してなる触媒に接触させ、排ガス中に残留炭化水素及び/又は含酸素有機化合物と排ガス中の窒素酸化物とを反応させて窒素酸化物を除去する。窒素酸化物のうち、特に二酸化窒素を選択的に除去する。なお、前記燃焼機器は希薄燃焼方式ガスエンジン又はガスタービンのいずれかである。
【0009】
まず、排ガス中の残留炭化水素及び/又は含酸素有機化合物と排ガス中の窒素酸化物との反応サイトとなる触媒としては、多孔質の無機酸化物に銀又は銀化合物を担持してなるものを用いる。多孔質の無機酸化物としては、多孔質のアルミナ、チタニア、ジルコニア、及びそれらの複合酸化物等を使用することができるが、好ましくはγ−アルミナ、又はアルミナ系複合酸化物を用いる。多孔質の無機酸化物の比表面積は10m2 /g以上であるのが好ましい。比表面積が10m2 /g未満であると、排ガスと無機酸化物(及びこれに担持した銀成分)との接触面積が小さくなり、良好な窒素酸化物の除去が行えない。
【0010】
銀化合物としてハロゲン化銀、燐酸銀、硫酸銀、酸化銀を用いることができる。銀又は銀化合物の担持量は、無機酸化物の重量の0.5〜15重量%(元素換算値)とするのがよい。銀又は銀化合物の担持量が上記範囲の下限値未満では、銀の担持による窒素酸化物の除去効果が顕著とはならず、また、上限値を超す量の銀を担持すると炭化水素類のみの酸化が優先的になり、窒素酸化物の除去率が低下する。より好ましくは、銀又は銀化合物の担持量を無機酸化物の重量の0.5〜12重量%とし、特に好ましくは1〜10重量%とする。
【0011】
アルミナ等の無機酸化物に銀を担持する方法としては、公知の含浸法、共沈法、粉末法等を用いることができる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸アンモニウムの水溶液に再び浸漬する。沈澱法でハロゲン化銀を調製するには硝酸銀とハロゲン化アンモニウムとを反応させて、ハロゲン化銀として多孔質無機酸化物上に沈澱させる。これを50〜150℃、特に70℃程度で乾燥後、100〜600℃で段階的に昇温して焼成するのが好ましい。焼成は、空気中、酸素を含む窒素気流下や水素ガス気流下で行うのが好ましい。水素ガス気流下で行う場合には、最後に300〜650℃で酸化処理するのが好ましい。
【0012】
本発明では、上記触媒は金属製ハニカム状基体表面にコートして用いる。従来使われているコージェライト等のセラミックス製ハニカムに比べ、金属性ハニカムは隔壁を薄くすることができるため、接触面積を減少させずに開口率を大きくでき、窒素酸化物除去装置の圧損を低下させることができる。また、振動、衝撃に対する機械的強度が強く、寿命が長いという特徴がある。さらに、長期使用による触媒活性の低下がコージェライトに比べて、金属製ハニカムの方が少ないという予想外の特徴がある。その理由は隔壁を薄くしたことにより、オイルアッシュ分の堆積量、堆積速度が減少したためと考えられる。
【0013】
金属製ハニカムに触媒をコートする方法として、金属製ハニカム状基体表面に粉末状の触媒(銀又は銀化合物を担持した粉末状の無機酸化物)を公知の方法(たとえばウォッシュコート法等)によりコートする方法が挙げられる。また無機酸化物を基体にコートした後、銀又は銀化合物を担持することもできる。基体の体積に対する触媒のコート量(多孔質無機酸化物と銀成分の合計重量)は50〜200g/リットルであるのが好ましい。コート量が50g/リットル未満では、窒素酸化物の除去が不十分であり、またコート量が200g/リットルを越えても、窒素酸化物の除去率の向上が見られない。
【0014】
また、金属製ハニカムのセル数は、100〜400セル/平方インチであるのが好ましい。金属製ハニカムのセル数が100セル/平方インチ未満では、接触面積が十分ではなく、窒素酸化物の除去率が十分でない。一方セル数が400セル/平方インチを越えると、除去装置の圧損が大きくなり、ガスエンジン、ガスタービンの燃焼が影響される。
【0015】
本発明では、残留炭化水素及び/又は含酸素有機化合物による窒素酸化物の還元除去を効率的に進行させるために排ガスと触媒との空間速度は80,000h-1以下、好ましくは 70,000 h-1以下とする。空間速度が 80,000 h-1を越えると、窒素酸化物の還元反応が十分に起こらず、窒素酸化物の除去率が低下する。なお、ここでいう含酸素有機化合物はガス燃料が燃焼機器で部分燃焼して生成した酸素を含有する有機化合物の混合物を意味する。
【0016】
【実施例】
本発明を以下の具体的実施例によりさらに詳細に説明する。
実施例1
市販の粉末状γ−アルミナ(比表面積220m2 /g)を硝酸銀水溶液に浸漬し、70℃で乾燥後、150℃〜600℃まで段階的に焼成し、γ−アルミナに対して10重量%の銀(元素換算値)を担持した。この触媒0.8gを市販のメタルハニカム型成形体(200セル/平方インチ、直径30mm×長さ16mm)にコートし、乾燥後650℃まで段階的に焼成し、浄化材を得た。
【0017】
この浄化材1個(合計体積0.11リットル)を充填した窒素酸化物除去装置を用い、ガスエンジンからの排ガス中の窒素酸化物の除去を行った。ガスエンジンは300KWの希薄燃焼方式ガスエンジンであり、浄化材に対する排ガスの空間速度は30,000h-1である(ただし、排ガスを分岐し、浄化材出口側でポンプで吸引して調整した)。浄化材入口の窒素酸化物濃度は190ppm(酸素濃度0%換算)であり、そのうち二酸化窒素の含有率は59容量%である。また、エンジンの運転は100%負荷で行い、浄化材入口での排ガス温度は378℃であった。なお、上記窒素酸化物濃度は下式で計算した:
窒素酸化物換算濃度=Cs×(21−On)/(21−Os)
ただし、Csは排ガス中の窒素酸化物の濃度であり、Onは換算酸素濃度(ここでは0%)であり、Osは排ガス中の酸素濃度である。
【0018】
除去装置通過後のガス中の窒素酸化物の濃度を化学発光式窒素酸化物分析計により測定し、窒素酸化物の除去率を求めた。結果を表1及び図1に示す。
【0019】
実施例2
実施例1と同じ方法で、市販の粉末状γ−アルミナ(比表面積220m2 /g)に5重量%の銀(元素換算値)を担持した。この触媒0.8gを市販のメタルハニカム型成形体(200セル/平方インチ、直径30mm×長さ16mm)にコートし、乾燥後650℃まで段階的に焼成し、浄化材を得た。
【0020】
実施例1と同じように窒素酸化物除去装置にこの浄化材を充填し、実施例1と同じガスエンジンからの排ガス中の窒素酸化物の除去を行った。浄化材に対する排ガスの空間速度は70,000h-1である。浄化材入口の窒素酸化物濃度は193ppm(酸素濃度0%換算)であり、そのうち二酸化窒素の含有率は61容量%である。また、エンジンの運転は100%負荷で行い、浄化材入口での排ガス温度は376℃であった。
【0021】
除去装置通過後のガス中の窒素酸化物の濃度を化学発光式窒素酸化物分析計により測定し、窒素酸化物の除去率を求めた。結果を表1及び図2に示す。
【0022】
比較例1
市販の粉末状γ−アルミナ(比表面積200m2 /g)を硝酸銀水溶液に浸漬し、70℃で乾燥後、150℃〜600℃まで段階的に焼成し、γ−アルミナに対して0.01重量%の銀(元素換算値)を担持した。この触媒0.8gを市販のコージェライト製ハニカム型成形体(200セル/平方インチ、直径30mm×長さ16mm)にコートし、乾燥後650℃まで段階的に焼成し、浄化材を得た。
【0023】
この浄化材を充填した窒素酸化物除去装置を用い、実施例1と同じガスエンジンからの排ガス中の窒素酸化物の除去を行った。浄化材に対する排ガスの空間速度は50,000h-1である(ただし、浄化材出口側でポンプで吸引して調製した)。浄化材入口の窒素酸化物濃度は190ppm(酸素濃度0%換算)であり、そのうち二酸化窒素の含有率は59容量%である。また、エンジンの運転は100%負荷で行い、浄化材入口での排ガス温度は378℃であった。
【0024】
除去装置通過後のガス中の窒素酸化物の濃度を化学発光式窒素酸化物分析計により測定し、窒素酸化物の除去率を求めた。結果を表1及び図3に示す。
【0025】
比較例2
実施例1と同じ窒素酸化物除去装置を用い、実施例1と同じガスエンジンからの排ガス中の窒素酸化物の除去を行った。浄化材に対する排ガスの空間速度は100,000h-1である。浄化材入口の窒素酸化物濃度は182ppm(酸素濃度0%換算)であり、そのうち二酸化窒素の含有率は59容量%である。また、エンジンの運転は100%負荷で行い、浄化材入口での排ガス温度は373℃であった。
【0026】
除去装置通過後のガス中の窒素酸化物の濃度を化学発光式窒素酸化物分析計により測定し、窒素酸化物の除去率を求めた。結果を表1及び図4に示す。
【0027】

Figure 0004246274
【0028】
図1〜図4からわかるように、実施例1〜実施例2においては、窒素酸化物、特に二酸化窒素が効果的な除去がみられた。一方、比較例1では、窒素酸化物の除去率は著しく小さかった。また、比較例2の空間速度の条件では、窒素酸化物除去率が実施例1に比べて大きく低下した。
【0029】
比較例3
市販の粉末状γ−アルミナ(比表面積200m2 /g)を硝酸銀水溶液に浸漬し、70℃で乾燥後、150℃〜600℃まで段階的に焼成し、γ−アルミナに対して10重量%の銀(元素換算値)を担持した。この触媒0.8gを市販のコージェライト製ハニカム型成形体(200セル/平方インチ、直径30mm×長さ16mm)にコートし、乾燥後650℃まで段階的に焼成し、浄化材を得た。
【0030】
この浄化材と実施例1の浄化材とを実施例1と同じ方法で充填した窒素酸化物除去装置を用い、実施例1と同じガスエンジンからの排ガス中の窒素酸化物の除去をそれぞれ行い、除去装置の圧損、長期除去特性について評価を行った。ただし、浄化材に対する排ガスの空間速度は30,000h-1である。浄化材入口の窒素酸化物濃度は190ppm(酸素濃度0%換算)であり、そのうち二酸化窒素の含有率は59容量%である。また、エンジンの運転は100%負荷で行い、浄化材入口での排ガス温度は378℃であった。結果を表2に示す。
【0031】
Figure 0004246274
ただし、圧損が150 mmH2 O以下は○とし、150 mmH2 Oを超えると×とした。また、2500時間後の窒素酸化物除去率が30%以上の場合では長期除去性能が○で、30%満たない場合では×とした。
【0032】
表2からわかるように、基体としてコージェライトハニカムを用いた比較例3では、実施例1に比べて、圧損が高く、長期除去性能が低かった。
【0033】
比較例4
実施例1と同じ窒素酸化物除去装置を用い、ディーゼルエンジン(排気量6リットル)からの排ガス中の窒素酸化物の除去を行った。浄化材に対する排ガスの空間速度は50,000h-1である。浄化材入口の窒素酸化物濃度は2083ppm(酸素濃度0%換算)であり、そのうち二酸化窒素の含有率は90容量%である。また、エンジンの運転は100%負荷で行い、浄化材入口での排ガス温度は373℃であった。
【0034】
除去装置通過後のガス中の窒素酸化物の濃度を化学発光式窒素酸化物分析計により測定し、窒素酸化物の除去率を求めた。結果を表3及び図5に示す。
【0035】
Figure 0004246274
【0036】
表3からわかるように、ディーゼルエンジンの排ガスに対して、本発明による実施例1の窒素酸化物除去方法では、窒素酸化物の除去率が十分ではない。これは、ディーゼルエンジンの排ガス中に高分子の残留炭化水素等を含有し、銀のみの触媒に対してこれらの高分子炭化水素の還元作用が小さいだけでなく、残留炭化水素と排気中の窒素酸化物との重量比がガスエンジンに比べて小さく、低温領域で触媒上に高分子残留炭化水素が付着して窒素酸化物の除去を阻害していることによるものと考えられている。
【0037】
【発明の効果】
以上詳述したように、本発明の方法によれば、400℃以下の排ガス温度領域で排ガス中の窒素酸化物を効率良く除去することができる。本発明の窒素酸化物除去方法は、ガスエンジン、ガスタービン、希薄燃焼方式のガスエンジン等の排ガスに含まれる窒素酸化物の除去に広く利用することができる。
【図面の簡単な説明】
【図1】実施例1における浄化材入口と浄化材出口の窒素酸化物の濃度を示すグラフである。
【図2】実施例2における浄化材入口と浄化材出口の窒素酸化物の濃度を示すグラフである。
【図3】比較例1における浄化材入口と浄化材出口の窒素酸化物の濃度を示すグラフである。
【図4】比較例2における浄化材入口と浄化材出口の窒素酸化物の濃度を示すグラフである。
【図5】比較例4における浄化材入口と浄化材出口の窒素酸化物の濃度を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of effectively removing nitrogen oxides, particularly nitrogen dioxide, from combustion exhaust gas containing nitrogen oxides and excess oxygen.
[0002]
[Prior art and problems to be solved by the invention]
Various combustion exhaust gases discharged from gas engines for cogeneration systems, gas turbines, and the like contain nitrogen oxides (generally referred to as NOx) such as nitrogen monoxide and nitrogen dioxide together with excess oxygen. Here, the nitrogen oxide generally refers to nitrogen monoxide and / or nitrogen dioxide, and “contains excess oxygen” refers to carbon monoxide, hydrogen, hydrocarbons, etc. contained in the exhaust gas. It means containing more oxygen than the theoretical amount of oxygen required to burn the combustion components.
[0003]
Such nitrogen oxides are considered to be one of the causes of acid rain and have become a major environmental problem. Therefore, various methods for removing nitrogen oxides in the exhaust gas discharged from the combustion equipment have been studied. For example, a method of removing nitrogen oxides by using a catalyst in which a catalytically active species is supported on an inorganic oxide, and adding a hydrocarbon, oxygen-containing organic compound or the like having a theoretical reaction amount or less with oxygen in exhaust gas as a reducing agent Was proposed.
[0004]
However, a removal method using a partial combustion component containing residual hydrocarbons and / or oxygen-containing organic compounds in exhaust gas as a reducing agent has not yet been established. Further, as a problem peculiar to the gas engine and the gas turbine, when the pressure loss of the exhaust gas by the nitrogen oxide removing device is large, the output of the engine itself is greatly affected and the combustion efficiency is lowered.
[0005]
Therefore, the object of the present invention is combustion exhaust gas from a gas fuel combustion device, from combustion exhaust gas containing nitrogen oxide and carbon monoxide, hydrocarbons and other unburned, oxygen more than the theoretical reaction amount for partial combustion, An object of the present invention is to provide a method capable of efficiently removing nitrogen oxides using residual hydrocarbons and / or oxygen-containing organic compounds in exhaust gas as a reducing agent.
[0006]
[Means for Solving the Problems]
As a result of diligent research in view of the above problems, the present inventors have found that a catalyst formed by supporting silver or a silver compound on a porous inorganic oxide and coating a metal honeycomb with liquefied petroleum gas, city gas, or liquefied natural gas. It is discovered that nitrogen oxides can be effectively removed using residual hydrocarbons and / or oxygen-containing organic compounds in the exhaust gas as a reducing agent if the exhaust gas of combustion equipment using fuel as a fuel is brought into contact under predetermined conditions. The present invention has been completed.
[0007]
That is, the method of the present invention for removing nitrogen oxides contained in exhaust gas discharged from lean combustion equipment using gas fuel is obtained by adding 0.5 to 15% by weight of a porous inorganic oxide only with silver or a silver compound. (Element conversion value) By contacting the exhaust gas at a space velocity of 80,000 hr −1 or less with a catalyst that is supported and coated on a metal honeycomb, the nitrogen oxides and residual hydrocarbons in the exhaust gas and / or The nitrogen oxide is removed by reacting with an oxygen-containing organic compound.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, exhaust gas from a combustion device using either liquefied petroleum gas, city gas, or liquefied natural gas as a fuel is brought into contact with a catalyst in which silver or a silver compound is supported on a porous inorganic oxide, The residual hydrocarbon and / or oxygen-containing organic compound is reacted with nitrogen oxides in the exhaust gas to remove nitrogen oxides. Of the nitrogen oxides, nitrogen dioxide in particular is selectively removed. The combustion device is either a lean combustion type gas engine or a gas turbine.
[0009]
First, as a catalyst that becomes a reaction site between residual hydrocarbons and / or oxygen-containing organic compounds in exhaust gas and nitrogen oxides in exhaust gas, a catalyst in which silver or a silver compound is supported on a porous inorganic oxide is used. Use. As the porous inorganic oxide, porous alumina, titania, zirconia, and composite oxides thereof can be used, and γ-alumina or alumina composite oxide is preferably used. The specific surface area of the porous inorganic oxide is preferably 10 m 2 / g or more. When the specific surface area is less than 10 m 2 / g, the contact area between the exhaust gas and the inorganic oxide (and the silver component supported thereon) becomes small, and good nitrogen oxide removal cannot be performed.
[0010]
As the silver compound, silver halide, silver phosphate, silver sulfate, or silver oxide can be used. The supported amount of silver or silver compound is preferably 0.5 to 15% by weight (element conversion value) of the weight of the inorganic oxide. If the supported amount of silver or silver compound is less than the lower limit of the above range, the effect of removing nitrogen oxides by supporting the silver does not become significant, and if the amount of silver exceeding the upper limit is supported, only hydrocarbons are supported. Oxidation is preferential and nitrogen oxide removal rate is reduced. More preferably, the supported amount of silver or silver compound is 0.5 to 12% by weight, particularly preferably 1 to 10% by weight of the weight of the inorganic oxide.
[0011]
As a method for supporting silver on an inorganic oxide such as alumina, a known impregnation method, coprecipitation method, powder method or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate or the like or an aqueous ammoniacal solution. Alternatively, the porous inorganic oxide is immersed in an aqueous silver nitrate solution, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. To prepare silver halide by the precipitation method, silver nitrate and ammonium halide are reacted to precipitate on the porous inorganic oxide as silver halide. After drying this at 50-150 degreeC, especially about 70 degreeC, it is preferable to heat up in steps at 100-600 degreeC and to bake. Firing is preferably performed in air, under a nitrogen stream containing oxygen, or under a hydrogen gas stream. In the case of performing under a hydrogen gas stream, it is preferable to oxidize at 300 to 650 ° C. at the end.
[0012]
In the present invention, the catalyst is used by coating the surface of a metallic honeycomb substrate. Compared to ceramic honeycombs such as cordierite that are used in the past, metallic honeycombs can make the partition wall thinner, so the aperture ratio can be increased without reducing the contact area, and the pressure loss of the nitrogen oxide removal device is reduced. Can be made. In addition, the mechanical strength against vibration and impact is strong and the life is long. Furthermore, there is an unexpected feature that the metal honeycomb has a decrease in catalytic activity due to long-term use compared to cordierite. The reason for this is considered to be that the amount of oil ash and the rate of deposition decreased as the partition walls were made thinner.
[0013]
As a method of coating the catalyst on the metal honeycomb, the surface of the metal honeycomb substrate is coated with a powdered catalyst (powdered inorganic oxide carrying silver or a silver compound) by a known method (for example, a wash coating method). The method of doing is mentioned. Moreover, after coating an inorganic oxide on a base | substrate, silver or a silver compound can also be carry | supported. The coating amount of the catalyst with respect to the volume of the substrate (total weight of the porous inorganic oxide and the silver component) is preferably 50 to 200 g / liter. If the coating amount is less than 50 g / liter, the removal of nitrogen oxides is insufficient, and even if the coating amount exceeds 200 g / liter, no improvement in the removal rate of nitrogen oxides is observed.
[0014]
Further, the number of cells of the metal honeycomb is preferably 100 to 400 cells / in 2. When the number of cells of the metal honeycomb is less than 100 cells / square inch, the contact area is not sufficient, and the nitrogen oxide removal rate is not sufficient. On the other hand, when the number of cells exceeds 400 cells / in 2, the pressure loss of the removing device increases, and the combustion of the gas engine and gas turbine is affected.
[0015]
In the present invention, the space velocity of the exhaust gas and the catalyst in order to promote efficient reduction removal of nitrogen oxides due to the residual hydrocarbons and / or oxygen-containing organic compound is 80,000 -1 or less, preferably 70,000 h -1 or less And When the space velocity exceeds 80,000 h −1 , the reduction reaction of nitrogen oxide does not occur sufficiently and the nitrogen oxide removal rate decreases. The oxygen-containing organic compound referred to here means a mixture of organic compounds containing oxygen produced by partial combustion of gas fuel by a combustion device.
[0016]
【Example】
The invention is illustrated in more detail by the following specific examples.
Example 1
A commercially available powdery γ-alumina (specific surface area 220 m 2 / g) is immersed in an aqueous silver nitrate solution, dried at 70 ° C., and baked stepwise from 150 ° C. to 600 ° C., and 10% by weight based on γ-alumina. Silver (element conversion value) was supported. 0.8 g of this catalyst was coated on a commercially available metal honeycomb molded body (200 cells / square inch, diameter 30 mm × length 16 mm), dried and then fired stepwise to 650 ° C. to obtain a purification material.
[0017]
Nitrogen oxides in the exhaust gas from the gas engine were removed using a nitrogen oxide removing device filled with one of the purification materials (total volume 0.11 liter). The gas engine is a 300 KW lean combustion type gas engine, and the space velocity of the exhaust gas with respect to the purification material is 30,000 h −1 (however, the exhaust gas is branched and adjusted by sucking with a pump at the purification material outlet side). The nitrogen oxide concentration at the purification material inlet is 190 ppm (oxygen concentration 0% conversion), of which nitrogen dioxide content is 59% by volume. The engine was operated at 100% load, and the exhaust gas temperature at the purification material inlet was 378 ° C. The nitrogen oxide concentration was calculated by the following formula:
Nitrogen oxide equivalent concentration = Cs × (21−On) / (21−Os)
However, Cs is the concentration of nitrogen oxides in the exhaust gas, On is the converted oxygen concentration (here 0%), and Os is the oxygen concentration in the exhaust gas.
[0018]
The concentration of nitrogen oxides in the gas after passing through the removing device was measured with a chemiluminescent nitrogen oxide analyzer, and the nitrogen oxide removal rate was determined. The results are shown in Table 1 and FIG.
[0019]
Example 2
In the same manner as in Example 1, 5% by weight of silver (element converted value) was supported on a commercially available powdery γ-alumina (specific surface area 220 m 2 / g). 0.8 g of this catalyst was coated on a commercially available metal honeycomb molded body (200 cells / square inch, diameter 30 mm × length 16 mm), dried and then fired stepwise to 650 ° C. to obtain a purification material.
[0020]
In the same manner as in Example 1, this purification material was filled in the nitrogen oxide removing device, and nitrogen oxides in the exhaust gas from the same gas engine as in Example 1 were removed. The space velocity of the exhaust gas with respect to the purification material is 70,000 h- 1 . The nitrogen oxide concentration at the purification material inlet is 193 ppm (oxygen concentration 0% conversion), of which the nitrogen dioxide content is 61% by volume. The engine was operated at 100% load, and the exhaust gas temperature at the purification material inlet was 376 ° C.
[0021]
The concentration of nitrogen oxides in the gas after passing through the removing device was measured with a chemiluminescent nitrogen oxide analyzer, and the nitrogen oxide removal rate was determined. The results are shown in Table 1 and FIG.
[0022]
Comparative Example 1
A commercially available powdery γ-alumina (specific surface area 200 m 2 / g) is immersed in an aqueous silver nitrate solution, dried at 70 ° C., and then baked stepwise from 150 ° C. to 600 ° C. to 0.01 wt. % Silver (element-converted value) was supported. 0.8 g of this catalyst was coated on a commercially available cordierite honeycomb-type molded body (200 cells / square inch, diameter 30 mm × length 16 mm), dried and then fired stepwise to 650 ° C. to obtain a purification material.
[0023]
Using the nitrogen oxide removing device filled with the purification material, nitrogen oxide in the exhaust gas from the same gas engine as in Example 1 was removed. The space velocity of the exhaust gas with respect to the purification material is 50,000 h −1 (however, it was prepared by sucking with a pump at the purification material outlet side). The nitrogen oxide concentration at the purification material inlet is 190 ppm (oxygen concentration 0% conversion), of which nitrogen dioxide content is 59% by volume. The engine was operated at 100% load, and the exhaust gas temperature at the purification material inlet was 378 ° C.
[0024]
The concentration of nitrogen oxides in the gas after passing through the removing device was measured with a chemiluminescent nitrogen oxide analyzer, and the nitrogen oxide removal rate was determined. The results are shown in Table 1 and FIG.
[0025]
Comparative Example 2
Using the same nitrogen oxide removing apparatus as in Example 1, nitrogen oxides in the exhaust gas from the same gas engine as in Example 1 were removed. The space velocity of the exhaust gas with respect to the purification material is 100,000 h- 1 . The nitrogen oxide concentration at the purification material inlet is 182 ppm (oxygen concentration 0% conversion), of which the nitrogen dioxide content is 59% by volume. The engine was operated at 100% load, and the exhaust gas temperature at the purification material inlet was 373 ° C.
[0026]
The concentration of nitrogen oxides in the gas after passing through the removing device was measured with a chemiluminescent nitrogen oxide analyzer, and the nitrogen oxide removal rate was determined. The results are shown in Table 1 and FIG.
[0027]
Figure 0004246274
[0028]
As can be seen from FIGS. 1 to 4, in Examples 1 to 2, nitrogen oxides, particularly nitrogen dioxide, were effectively removed. On the other hand, in Comparative Example 1, the nitrogen oxide removal rate was remarkably small. Further, under the space velocity conditions of Comparative Example 2, the nitrogen oxide removal rate was greatly reduced as compared with Example 1.
[0029]
Comparative Example 3
A commercially available powdery γ-alumina (specific surface area 200 m 2 / g) is immersed in an aqueous silver nitrate solution, dried at 70 ° C., and baked stepwise from 150 ° C. to 600 ° C., and 10% by weight based on γ-alumina. Silver (element conversion value) was supported. 0.8 g of this catalyst was coated on a commercially available cordierite honeycomb-type molded body (200 cells / square inch, diameter 30 mm × length 16 mm), dried and then fired stepwise to 650 ° C. to obtain a purification material.
[0030]
Using the nitrogen oxide removing device in which the purification material and the purification material of Example 1 were filled in the same manner as in Example 1, nitrogen oxides in the exhaust gas from the same gas engine as in Example 1 were removed, respectively. The pressure loss and long-term removal characteristics of the removal device were evaluated. However, the space velocity of the exhaust gas with respect to the purification material is 30,000 h −1 . The nitrogen oxide concentration at the purification material inlet is 190 ppm (oxygen concentration 0% conversion), of which nitrogen dioxide content is 59% by volume. The engine was operated at 100% load, and the exhaust gas temperature at the purification material inlet was 378 ° C. The results are shown in Table 2.
[0031]
Figure 0004246274
However, when the pressure loss was 150 mmH 2 O or less, it was evaluated as ◯, and when it exceeded 150 mmH 2 O, it was rated as x. Further, when the nitrogen oxide removal rate after 2500 hours was 30% or more, the long-term removal performance was ○, and when it was less than 30%, it was ×.
[0032]
As can be seen from Table 2, in Comparative Example 3 using a cordierite honeycomb as the substrate, the pressure loss was higher and the long-term removal performance was lower than in Example 1.
[0033]
Comparative Example 4
Using the same nitrogen oxide removing apparatus as in Example 1, nitrogen oxide in exhaust gas from a diesel engine (displacement 6 liters) was removed. The space velocity of the exhaust gas with respect to the purification material is 50,000 h −1 . The nitrogen oxide concentration at the purification material inlet is 2083 ppm (in terms of oxygen concentration 0%), and the content of nitrogen dioxide is 90% by volume. The engine was operated at 100% load, and the exhaust gas temperature at the purification material inlet was 373 ° C.
[0034]
The concentration of nitrogen oxides in the gas after passing through the removing device was measured with a chemiluminescent nitrogen oxide analyzer, and the nitrogen oxide removal rate was determined. The results are shown in Table 3 and FIG.
[0035]
Figure 0004246274
[0036]
As can be seen from Table 3, the nitrogen oxide removal rate of the exhaust gas of the diesel engine is not sufficient in the nitrogen oxide removal method of Example 1 according to the present invention. This is because the exhaust gas of a diesel engine contains polymer residual hydrocarbons and the like, and not only the reduction effect of these polymer hydrocarbons on the silver-only catalyst is small, but also residual hydrocarbons and nitrogen in the exhaust. It is thought that the weight ratio with the oxide is smaller than that of the gas engine, and the polymer residual hydrocarbon adheres on the catalyst in the low temperature region and inhibits the removal of nitrogen oxides.
[0037]
【The invention's effect】
As described above in detail, according to the method of the present invention, nitrogen oxides in exhaust gas can be efficiently removed in an exhaust gas temperature range of 400 ° C. or lower. The method for removing nitrogen oxides of the present invention can be widely used for removing nitrogen oxides contained in exhaust gas from gas engines, gas turbines, lean combustion type gas engines and the like.
[Brief description of the drawings]
1 is a graph showing the concentration of nitrogen oxides at a purification material inlet and a purification material outlet in Example 1. FIG.
2 is a graph showing the concentration of nitrogen oxides at the purification material inlet and the purification material outlet in Example 2. FIG.
3 is a graph showing the concentration of nitrogen oxides at the purification material inlet and the purification material outlet in Comparative Example 1. FIG.
4 is a graph showing nitrogen oxide concentrations at a purification material inlet and a purification material outlet in Comparative Example 2. FIG.
5 is a graph showing nitrogen oxide concentrations at a purification material inlet and a purification material outlet in Comparative Example 4. FIG.

Claims (2)

液化石油ガス、都市ガス、液化天然ガスのいずれかのガス燃料を用いる希薄燃焼方式ガスエンジン又はガスタービンから排出される排ガス中に含まれる窒素酸化物を除去する方法において、多孔質のアルミナに銀又は銀化合物のみを0.5〜15重量%(元素換算値)担持し、金属製ハニカムにコートしてなる触媒に前記排ガスを80,000hr-1以下の空間速度で接触させることにより、前記窒素酸化物と排ガス中の残留炭化水素及び含酸素有機化合物を反応させて前記窒素酸化物を除去することを特徴とする窒素酸化物除去方法。In a method for removing nitrogen oxides contained in exhaust gas discharged from a lean combustion gas engine or gas turbine using a gas fuel of liquefied petroleum gas, city gas, or liquefied natural gas, silver is added to porous alumina. Alternatively, the nitrogen gas is brought into contact with a catalyst formed by supporting only 0.5 to 15% by weight (element conversion value) of a silver compound and coated on a metal honeycomb at a space velocity of 80,000 hr −1 or less. A method for removing nitrogen oxides, comprising reacting oxides with residual hydrocarbons and oxygen-containing organic compounds in exhaust gas to remove the nitrogen oxides. 請求項1に記載の方法において、前記排ガス中に含まれる窒素酸化物のうち、二酸化窒素を選択的に除去することを特徴とする方法。 The method according to claim 1, wherein nitrogen dioxide is selectively removed from nitrogen oxides contained in the exhaust gas.
JP17991196A 1995-06-22 1996-06-20 Nitrogen oxide removal method Expired - Fee Related JP4246274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17991196A JP4246274B2 (en) 1995-06-22 1996-06-20 Nitrogen oxide removal method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-179513 1995-06-22
JP17951395 1995-06-22
JP17991196A JP4246274B2 (en) 1995-06-22 1996-06-20 Nitrogen oxide removal method

Publications (2)

Publication Number Publication Date
JPH0999220A JPH0999220A (en) 1997-04-15
JP4246274B2 true JP4246274B2 (en) 2009-04-02

Family

ID=26499342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17991196A Expired - Fee Related JP4246274B2 (en) 1995-06-22 1996-06-20 Nitrogen oxide removal method

Country Status (1)

Country Link
JP (1) JP4246274B2 (en)

Also Published As

Publication number Publication date
JPH0999220A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
GB2248194A (en) Catalyst for cleaning exhaust gases
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
US20060034741A1 (en) Catalyst composition for use in a lean NOx trap and method of using
JPH09201531A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JP4246274B2 (en) Nitrogen oxide removal method
WO2022165887A1 (en) Three-way catalyst having low nh3 formation and preparation method therefor
JPH05115782A (en) Material for cleaning exhaust gas and method for cleaning exhaust gas
JP3956158B2 (en) Nitrogen oxide removal catalyst
JPH11244695A (en) Oxidation catalyst
JP3131630B2 (en) Method for oxidizing and removing carbon fine particles in diesel engine exhaust gas and catalyst used therefor
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
WO2020149313A1 (en) Catalyst for exhaust gas purification use
JPH06154607A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
JPH07163878A (en) Nitrogen oxide removing catalyst and method
JPH06178937A (en) Catalyst for removing nitrogen oxides and method of removing the same
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JP4216907B2 (en) Exhaust gas purification catalyst
JP3284312B2 (en) Three-way catalyst for combustion exhaust gas of methane main gas
JPH09173841A (en) Catalyst for cleaning exhaust gas from diesel engine
JPH06198195A (en) Purifying material for exhaust gas and purifying method thereof
JP4556084B2 (en) Exhaust gas purification catalyst
JPH1066833A (en) Removal of nitrogen oxide
JPH10328567A (en) Waste gas purifying material and waste gas purifying method
JP2745644B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees