JPS6050490B2 - Method for manufacturing palladium catalyst - Google Patents

Method for manufacturing palladium catalyst

Info

Publication number
JPS6050490B2
JPS6050490B2 JP53045031A JP4503178A JPS6050490B2 JP S6050490 B2 JPS6050490 B2 JP S6050490B2 JP 53045031 A JP53045031 A JP 53045031A JP 4503178 A JP4503178 A JP 4503178A JP S6050490 B2 JPS6050490 B2 JP S6050490B2
Authority
JP
Japan
Prior art keywords
palladium
carrier
solution
catalyst
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53045031A
Other languages
Japanese (ja)
Other versions
JPS54136589A (en
Inventor
龍蔵 堀
裕雄 木下
芳樹 天達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP53045031A priority Critical patent/JPS6050490B2/en
Publication of JPS54136589A publication Critical patent/JPS54136589A/en
Publication of JPS6050490B2 publication Critical patent/JPS6050490B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、パラジウム担持触媒の製造方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing a supported palladium catalyst.

内燃機関の排ガス中に含まれる一酸化炭素、炭化水素及
び窒素酸化物は大気汚染の原因となるため、公害防止の
観点から、一酸化炭素(Co)及び炭化水素(HC)の
再酸化と窒素酸化物(NOx)の還元によつてこれらを
無毒化せねばならない。
Carbon monoxide, hydrocarbons, and nitrogen oxides contained in the exhaust gas of internal combustion engines cause air pollution, so from the perspective of pollution prevention, reoxidation of carbon monoxide (Co) and hydrocarbons (HC) and These must be made non-toxic by reducing the oxides (NOx).

この排ガス浄化用酸化触媒として、白金族触媒が優れた
活性を示すことは、知られている。しかしてガス転化触
媒反応においては、反応ガス類は触媒の表面で捕えられ
、そこで転化反応が進行する確率が大きいため、これら
高価な白金属の触媒金属を効率良く高性能に働かせるに
は、担体の表面に白金族金属等の触媒有効成分をできる
だけ高密度に担持させることが重要な条件となる。
It is known that platinum group catalysts exhibit excellent activity as oxidation catalysts for exhaust gas purification. However, in gas conversion catalytic reactions, the reaction gases are captured on the surface of the catalyst, and there is a high probability that the conversion reaction will proceed there. Therefore, in order to make these expensive platinum catalysts work efficiently and with high performance, it is necessary to use a carrier. An important condition is to support catalytic active components such as platinum group metals as densely as possible on the surface of the catalyst.

触媒金属を担体に担持させる方法は、従来より含浸法す
なわち粒状の担体へ白金族金属含有溶液(含浸液)を含
浸させ、担体表面部て吸着、加水分解させて白金族金属
を沈積させる方法が最も一般的に用いられている。
The conventional method for supporting catalytic metals on a carrier is the impregnation method, that is, a method in which a granular carrier is impregnated with a platinum group metal-containing solution (impregnating solution), and the platinum group metal is deposited by adsorption and hydrolysis on the surface of the carrier. Most commonly used.

この含浸法において、含浸溶液は塩酸酸性か硝酸酸性液
として一般に使用されるが、硝酸酸性溶液とすれば、焼
成のみで硝酸を分解除去できるため、除去しにくい塩素
を含有する塩酸酸性溶液に比べ、触媒製造工程が簡略化
し、製造コストの低減につながつて有利である。本発明
は詳しくは硝酸酸性溶液を用い、白金族金属のうちパラ
ジウムを用いたいわゆる硝酸パラジウム溶液での含浸法
によるパラジウム担持触媒の製造方法の改良に関するも
のである。
In this impregnation method, the impregnating solution is generally used as a hydrochloric acid solution or a nitric acid solution, but if the nitric acid solution is used, the nitric acid can be decomposed and removed only by calcination, compared to a hydrochloric acid solution that contains chlorine, which is difficult to remove. This is advantageous because it simplifies the catalyst manufacturing process and reduces manufacturing costs. More specifically, the present invention relates to an improvement in a method for manufacturing a palladium-supported catalyst using a so-called palladium nitrate solution impregnation method using palladium among platinum group metals using a nitric acid solution.

高性能な触媒の製造には、触媒金属の担体表面への高密
度な担持が重要であることは前述したが、一般に含浸法
によつて担体を含浸処理した場合に触媒金属が担体の表
層部に高密度に担持されるか、または内部まで拡散浸透
して担持されるかは含浸液のpH)加水分解点、担体の
吸着能等の要因によつて左右され、中でもpHには大き
く影響される。
As mentioned above, in order to produce high-performance catalysts, it is important to support the catalytic metal at a high density on the surface of the carrier.Generally, when the carrier is impregnated by the impregnation method, the catalytic metal is deposited on the surface of the carrier. Whether the impregnating liquid is supported at a high density or by diffusion and penetration into the interior depends on factors such as the pH of the impregnating solution, the hydrolysis point, and the adsorption capacity of the support, among which pH is a major factor. Ru.

すなわちpHの高い場合は担体表層部で吸J着、沈積さ
れるが、反対に低い場合には担体内部にまで拡散浸透し
てしまう。従つて高性能触媒を製造するために、アルカ
リを添加して含浸液pHを高くする方法が従来より行な
われてきたが、PHが高くなるほど沈澱が生じやすくな
り、また添加す7るアルカリ特にナトリウムが触媒の活
性に悪影響を与える等の問題点が生じている。また一方
で、アルカリを添加する代わりに界面活性剤あるいは有
機酸を添加して担持層を調節する方法が各種試みられて
いるため、本発明者等もこれらの方法について鋭意検討
した結果、硝酸パラジウムの場合には界面活性剤は殆ど
効果がなく、また有機酸のうちでもクエン酸においての
みその効果を見出した。このクエン酸の効果は、硝酸パ
ラジウム溶液にクエン酸を添加することによつて、パラ
ジウムクエン酸錯体が形成され、該溶液での担体含浸時
にその形成した錯体の特異性によつて担体内部への拡散
・浸透が抑制され、パラジウムが担体の表層部に担持さ
れるものである。しかしながら、クエン酸を用いた場合
においても、パラジウム濃度が高く、遊離硝酸濃度が高
い場合、すなわちPHの低い範囲においては、この錯体
が形成されず、この効果も失われるという不具合が生じ
る。
That is, when the pH is high, it is adsorbed and deposited on the surface of the carrier, but when the pH is low, it diffuses into the interior of the carrier. Therefore, in order to produce high-performance catalysts, a method of increasing the pH of the impregnating solution by adding alkali has been conventionally carried out, but the higher the pH, the more likely precipitation will occur, and the added alkali, especially sodium However, problems such as adverse effects on the activity of the catalyst have arisen. On the other hand, various methods have been tried to adjust the support layer by adding surfactants or organic acids instead of adding alkali.As a result of intensive study of these methods, the present inventors found that palladium nitrate In this case, surfactants have almost no effect, and among organic acids, only citric acid has been found to have an effect. This effect of citric acid is due to the fact that by adding citric acid to a palladium nitrate solution, a palladium-citrate complex is formed, and when the carrier is impregnated with the solution, the specificity of the formed complex allows it to enter the inside of the carrier. Diffusion and permeation are suppressed, and palladium is supported on the surface layer of the carrier. However, even when citric acid is used, if the palladium concentration is high and the free nitric acid concentration is high, that is, in a low pH range, this complex will not be formed and this effect will be lost.

錯体を形成させるべく、クエン酸添加硝酸パラジウム溶
液の遊離硝酸濃度を低くしてパラジウムが沈澱を生じな
い限度にまでそのPHを高めても、錯体を形成するPH
までには至らない。このようにクエン酸の添加によるこ
の方法は、パラジウム濃度の低い触媒のみに有効で、ど
うしてもその使用範囲が限定されるという欠点を有する
ため、パラジウムを担体表層部に高密度に担持させたパ
ラジウム含有量の高い触媒を得るには、パンラジウム濃
度の低い含浸液を用いて繰返し何回も担持させるしかな
かつた。本発明者等は、上記欠点を排除すべく鋭意検討
した結果、本発明をここに提案するものである。
In order to form a complex, the free nitric acid concentration of the citric acid-added palladium nitrate solution is lowered and the pH is increased to the limit where palladium does not precipitate, but the pH at which the complex is formed is still low.
It doesn't reach that point. This method of adding citric acid is effective only for catalysts with a low palladium concentration, and has the drawback of limiting its range of use. In order to obtain a large amount of catalyst, the only way is to repeatedly carry out the loading using an impregnating solution with a low concentration of panradium. The present inventors hereby propose the present invention as a result of intensive studies to eliminate the above-mentioned drawbacks.

本発明は、担体にパラジウムを担持させるに際5し、硝
酸パラジウムに従来のクエン酸の代わりにクエン酸アン
モニウムを添加し、この溶液に担体を浸漬することを特
徴とする。本発明によれば硝酸パラジウムにクエン酸ア
ンモニウムを添加すると、これがアルカリとして作3用
するため、溶液のPHを高め、PHの低い硝酸パラジウ
ム溶液の場合においても錯体形成が可能となる。
The present invention is characterized by adding ammonium citrate to palladium nitrate instead of the conventional citric acid and immersing the carrier in this solution when supporting palladium on the carrier. According to the present invention, when ammonium citrate is added to palladium nitrate, it acts as an alkali, thereby increasing the pH of the solution and making it possible to form a complex even in the case of a palladium nitrate solution with a low pH.

この錯体の作用によつてPHの低い場合でもパラジウム
を担体表層部に高密度に含浸担持せしめることができ、
担体層の薄い触媒を製造すること4ができる。本発明に
おいて添加するクエン酸アンモニウムの量は、パラジウ
ムとクエン酸の錯体がモル比1:1で形成されるため、
パラジウムに対して当量もしくはそれ以上の時最も有効
であり、また当量以下の場合にはその添加量に応じて担
持密度及び担持層の厚さの調節ができる。
Due to the action of this complex, even when the pH is low, palladium can be impregnated and supported on the surface layer of the carrier at a high density.
It is possible to produce catalysts with thin carrier layers. In the present invention, the amount of ammonium citrate added is such that a complex of palladium and citric acid is formed at a molar ratio of 1:1.
It is most effective when the amount is equivalent to or more than palladium, and when it is less than the equivalent amount, the supported density and the thickness of the supported layer can be adjusted depending on the amount added.

また本発明で使用する担体はアルミナ、シリカ、アルミ
ナ−シリカ、アルミナ−マグネシア等の耐火性無機酸化
物である。更に本発明による担持法は含浸法のみならず
浸漬法及びスプレー法等の何れに対しても適用でき、そ
の応用範囲の広いものである。
Further, the carrier used in the present invention is a refractory inorganic oxide such as alumina, silica, alumina-silica, alumina-magnesia, etc. Furthermore, the supporting method according to the present invention can be applied not only to impregnation methods but also to dipping methods, spray methods, etc., and has a wide range of applications.

以下実施例で本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例 硝酸パラジウム原液(パラジウム濃度50fI′)に、
パラジウムに対して等モル量のクエン酸アンモニウムを
添加し、その溶液を蒸溜水で希釈してパラジウム濃度2
.5y1eの含浸液を調製する。
Example: To the palladium nitrate stock solution (palladium concentration 50 fI'),
Add an equimolar amount of ammonium citrate to palladium, dilute the solution with distilled water, and make a palladium concentration of 2.
.. Prepare an impregnating solution of 5y1e.

この含浸液を活性アルミナ担体に吸水率分だけ含浸させ
、乾燥後600℃で1時間焼成する。得られた担持層の
厚さを光学顕微鏡で測定する。更に、パラジウム濃度5
y1fの含浸液を上記方法で調製し、担持に含浸させ、
焼成後同様に担持層の厚さを測定する。また、これら触
媒の性能を調べるため、無鉛ガソリンを用いた発電気用
エンジンの排ガス(組成はCO4.3%、HC36Op
pm,.CO29.5%、024.4%)を使用して、
800℃5叫間の耐久試験後における一酸化炭素及び炭
化水素の浄化性能を高温及び低温について測定する。
The activated alumina carrier is impregnated with this impregnating liquid in an amount corresponding to the water absorption rate, dried, and then fired at 600° C. for 1 hour. The thickness of the support layer obtained is measured using an optical microscope. Furthermore, palladium concentration 5
Prepare the impregnating solution of y1f by the above method and impregnate the support,
After firing, the thickness of the support layer is measured in the same manner. In addition, in order to investigate the performance of these catalysts, we investigated the exhaust gas from an engine for power generation using unleaded gasoline (composition: CO4.3%, HC36Op.
pm,. Using CO29.5%, 024.4%),
After a durability test of 800°C for 5 hours, the purification performance of carbon monoxide and hydrocarbons is measured at high and low temperatures.

触媒床温度は高温試験では500℃、低温試験は室温か
ら、2紛間後に500℃となるようにして行つた。また
触媒量は10m11空間速度は40000Hr1とした
。本実施例における活性試験条件を以下の表1に示す。
以上の結果を第2表に示した。
The catalyst bed temperature was 500° C. in the high temperature test, and 500° C. in the low temperature test from room temperature after two millings. Further, the amount of catalyst was 10 m11, and the space velocity was 40000 Hr1. The activity test conditions in this example are shown in Table 1 below.
The above results are shown in Table 2.

比較例 上記実施例で添加したクエン酸アンモニウムの代わりに
クエン酸を使用して実施例と同様に触媒を作製した後、
担持層の厚さ及び触媒性能を調べる。
Comparative Example After preparing a catalyst in the same manner as in the example using citric acid instead of the ammonium citrate added in the above example,
Examine the thickness of the support layer and catalyst performance.

更に、無添加の場合についても同様に行つた。Furthermore, the same procedure was carried out in the case of no additives.

*3これらの結果を以下の表に示す。上記表からも明ら
かなように、担持層の厚さはクエン酸アンモニウムを添
加したものが一番薄く作製され、またその活性も最高で
、これらの触媒性能が優れていることがわかる。
*3 These results are shown in the table below. As is clear from the table above, the thickness of the support layer was the thinnest when ammonium citrate was added, and the activity was also the highest, indicating that these catalysts had excellent catalytic performance.

以上のように、本発明の製造方法は、パラジウム金属を
広い濃度範囲にわたつて担体表層部に高密度に担持させ
ることを可能とし、更には必要に応じて添加量を変える
ことにより担持密度及び層厚を調節することもできるの
で、貴重なパラジウム金属を効率良く高性能に活用てき
る等多くの利点を有する。
As described above, the manufacturing method of the present invention makes it possible to support palladium metal at high density on the surface layer of the carrier over a wide range of concentrations, and furthermore, by changing the amount added as necessary, the supporting density can be adjusted. Since the layer thickness can be adjusted, it has many advantages, such as allowing valuable palladium metal to be used efficiently and with high performance.

Claims (1)

【特許請求の範囲】[Claims] 1 硝酸パラジウムにクエン酸アンモニウムを添加した
溶液に担体を浸漬することを特徴とするパラジウム担持
触媒の製造方法。
1. A method for producing a palladium-supported catalyst, which comprises immersing a carrier in a solution of palladium nitrate and ammonium citrate.
JP53045031A 1978-04-17 1978-04-17 Method for manufacturing palladium catalyst Expired JPS6050490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53045031A JPS6050490B2 (en) 1978-04-17 1978-04-17 Method for manufacturing palladium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53045031A JPS6050490B2 (en) 1978-04-17 1978-04-17 Method for manufacturing palladium catalyst

Publications (2)

Publication Number Publication Date
JPS54136589A JPS54136589A (en) 1979-10-23
JPS6050490B2 true JPS6050490B2 (en) 1985-11-08

Family

ID=12707960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53045031A Expired JPS6050490B2 (en) 1978-04-17 1978-04-17 Method for manufacturing palladium catalyst

Country Status (1)

Country Link
JP (1) JPS6050490B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19734974A1 (en) * 1997-08-13 1999-02-25 Hoechst Ag Production of supported catalyst for vinyl acetate production
CN104475092A (en) * 2014-11-17 2015-04-01 贵州大学 Supported Pd catalyst for directly synthesizing hydrogen peroxide and preparation method thereof
JP2019058870A (en) * 2017-09-27 2019-04-18 イビデン株式会社 Honeycomb catalyst
JP7450346B2 (en) * 2019-06-20 2024-03-15 株式会社キャタラー Catalyst material for methane purification
GB202109994D0 (en) * 2021-07-12 2021-08-25 Johnson Matthey Plc Highly dispersed palladium catalysts

Also Published As

Publication number Publication date
JPS54136589A (en) 1979-10-23

Similar Documents

Publication Publication Date Title
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
US4171289A (en) Selective automotive exhaust catalysts and a process for their preparation
US6685899B1 (en) Catalyst and method for purifying exhaust gas from vehicle engines
JPS5814255B2 (en) Shiyokubiso Seibutsu no Seizou Hohou
JP3436427B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
US4024079A (en) Method of preparing a catalyst for treatment of exhaust gases
US4122039A (en) Process for preparing catalyst
JPS6050490B2 (en) Method for manufacturing palladium catalyst
US3455843A (en) Hydrocarbon oxidation catalyst
HU202133B (en) Process for producing catalytic preparations acting on the catalytic oxidation of carbon monoxide and not burnt hydrocarbons being in the exhaust gases of vehicles
US4064073A (en) Catalyst for the purification of the exhaust gases of internal combustion engines
JP3956158B2 (en) Nitrogen oxide removal catalyst
JP2605956B2 (en) Exhaust gas purification catalyst
US4120821A (en) Catalyst for conversion of engine exhaust gas
JPH04284824A (en) Method for purifying exhaust gas
JP3298115B2 (en) Method for producing exhaust gas purifying catalyst
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JP2921130B2 (en) Exhaust gas purification catalyst
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JP2923064B2 (en) Manufacturing method of exhaust gas purification catalyst
JP3766984B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4017089B2 (en) Nitrogen oxide removal catalyst contained in combustion exhaust gas of diesel engine and nitrogen oxide removal method using the same
JP3221706B2 (en) Nitrogen oxide removal catalyst and exhaust gas purification method using the same
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
JP2000246103A (en) Production of catalyst for cleaning exhaust gas