JPS58176211A - Curing of epoxy resin composition - Google Patents

Curing of epoxy resin composition

Info

Publication number
JPS58176211A
JPS58176211A JP5956582A JP5956582A JPS58176211A JP S58176211 A JPS58176211 A JP S58176211A JP 5956582 A JP5956582 A JP 5956582A JP 5956582 A JP5956582 A JP 5956582A JP S58176211 A JPS58176211 A JP S58176211A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
equivalent
aliphatic diamine
phenylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5956582A
Other languages
Japanese (ja)
Inventor
「くれ」松 一彦
Kazuhiko Kurematsu
Kazutaka Matsumoto
松本 一高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP5956582A priority Critical patent/JPS58176211A/en
Publication of JPS58176211A publication Critical patent/JPS58176211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To obtain a cured epoxy resin of good cracking resistance, by heating a composition containing an epoxy resin, a specified aliphatic diamine and a specified phenylenediamine in two stages under specified conditions. CONSTITUTION:1eq. of a liquid epoxy resin, MW<=1,000, is mixed with 0.2- 1.0eq. of an aliphatic diamine of the formula, wherein n>=4, and in which the distance between the primary amino groups is at least 1.25 times longer than the maximum molecular diameter of phenylenediamine, and 1.0-0.2 eq. of phenylenediamine so that the total amount of the both diamines added is 0.7-1.2 eq. and the resulting mixture is dried by heating at 60-120 deg.C for 20-100min and then heating at 120-160 deg.C for 60-250min.

Description

【発明の詳細な説明】 (1)  発明の属する技術分野 本発明は、耐クラツク性の良好なエポキシ樹脂硬化物を
得るためのエポキシ樹脂組成物の硬化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to a method for curing an epoxy resin composition for obtaining a cured epoxy resin product with good crack resistance.

(2)従来技術とその問題点 エポキシ樹脂は、電気特性、機械特性および接着力など
がすぐれているために、電気機器および機械部品の注形
や成形およびポツティング、シーリング、接着材料とし
て広く使用されている。しかし、硬化に伴なう収縮や低
温環境にさらされるとおこゐ収縮によって内部応力を生
じ、樹脂硬化物自体のクラックや樹脂と被埋込み物ある
いは被接着物とのけ〈離をおこし易い。
(2) Prior art and its problems Epoxy resins have excellent electrical properties, mechanical properties, and adhesive strength, so they are widely used as casting, molding, potting, sealing, and adhesive materials for electrical equipment and mechanical parts. ing. However, shrinkage caused by curing and exposure to a low-temperature environment generates internal stress, which tends to cause cracks in the cured resin itself and separation of the resin from the object to be embedded or adhered.

エポキシ樹脂組成物の耐クラツク性の改善のため、従来
法の方法がとられている。
Conventional methods have been used to improve the crack resistance of epoxy resin compositions.

第1Kエポキシ樹脂に可とう性行与剤を加えて硬化させ
、内部応力を分散させる方法である。この方法は、クラ
ックの発生する温度を低くすることができるが、それK
ともないガラス転移点は低下し、このために硬化物の耐
熱性が悪くなるという問題点がある。
This is a method in which a flexibility imparting agent is added to the No. 1 K epoxy resin and cured to disperse internal stress. This method can lower the temperature at which cracks occur, but it is
There is a problem in that the glass transition point is lowered and the heat resistance of the cured product is deteriorated.

第2は、シリカ、アルミナなどの熱膨張係数の小さな無
機物光てん剤粉末をエポキシ樹脂に50〜90容量チの
範囲で配合することにより金属、セラミック、ガラスな
どの被埋込物または被接着物と樹脂組成物の熱膨張係数
の差を小さくすることにより、内部応力を低減し、クラ
ックを防ぐ方法である。しかし樹脂に50容量−以上の
無機物光てん剤を配合した樹脂組成物の流動性は著るし
く損なわれ、そのため注形や成形およびボッティング、
シーリング接着などの作業が困Sになる間顆点がある。
Second, by blending inorganic photonic agent powder with a small coefficient of thermal expansion such as silica and alumina into epoxy resin in a range of 50 to 90% by volume, it can be applied to objects to be embedded or bonded such as metals, ceramics, and glass. This method reduces internal stress and prevents cracks by reducing the difference in coefficient of thermal expansion between the resin composition and the resin composition. However, the fluidity of a resin composition containing 50 volumes or more of an inorganic photonic agent is significantly impaired, and as a result, casting, molding, and botting are difficult.
There are condyle points that make work such as sealing adhesive difficult.

(3)発明の目的 本発明は上述した様々可とう性行与剤を加えることによ
りガラス転移点の低下、あるいは多量に無機物光てん剤
を加えることKよる作業性の低下のない耐クラツク性に
優れたエポキシ樹脂組成物による硬化物の製造方法を提
供することを目的とするものである。
(3) Purpose of the Invention The present invention provides crack resistance without lowering the glass transition point by adding the various flexibility-imparting agents mentioned above, or without reducing workability due to the addition of a large amount of inorganic brightening agents. The object of the present invention is to provide a method for producing a cured product using an excellent epoxy resin composition.

(4)発明の概要 本発明はエポキシ樹脂と次式で示される脂肪族ジアミン H,N−(−CH,姶NH。(4) Summary of the invention The present invention relates to an epoxy resin and an aliphatic diamine represented by the following formula. H, N-(-CH, 姶NH.

(但しnは4以上の整数) およびフェニレンジアミンからなるエポキシ樹脂組成物
を60〜120℃で第1次の加温後、120〜160℃
で第2次の加温をすることを特徴とするエポキシ樹脂組
成物の硬化方法であり、411FJ/C脂肪族ジアミン
は1級アミン基間の距離がフェニレンジアミンの分子径
の1.25倍以上であることを特徴とする。
(However, n is an integer of 4 or more) and an epoxy resin composition consisting of phenylenediamine is heated at 60 to 120°C, and then heated to 120 to 160°C.
411FJ/C aliphatic diamine has a distance between primary amine groups that is 1.25 times or more the molecular diameter of phenylene diamine. It is characterized by

またエポキシ樹脂1当量に対して、脂肪族ジアミンは当
量比0.2〜1.0相当量を添加し、さらにフェニレン
ジアミンを当量比1.0〜0.2相当量を脂肪族ジアミ
ンとフェニレンジアミンとの添加量の和が当量比0.7
〜1.2相当量となるように添加したエポキシ樹脂組成
物の硬化方法に関する。
In addition, for 1 equivalent of epoxy resin, aliphatic diamine is added in an equivalent amount of 0.2 to 1.0 equivalent, and phenylene diamine is added in an equivalent amount of 1.0 to 0.2 in equivalent ratio of aliphatic diamine and phenylene diamine. The sum of the amounts added is equivalent ratio 0.7
This invention relates to a method of curing an epoxy resin composition added in an amount equivalent to 1.2.

本発明は、脂肪族ジアミンがフェニレンジアミンに比べ
架橋反応速度が大きいので、60〜120℃の硬化温度
ではエポキシ樹脂との架橋反応は、脂肪族ジアミンから
はじまる。を九脂肪族ジアミンの架橋反応にあずかる2
つの官症基間の距離がフェニレンジアミンの最長分子径
よりも大きいことKより、脂肪族ジアミンの架橋反応が
完了後本フェニレンジアミンの架橋反応に必要な分子運
勢が可能であり、フェニレンジアミンもひきつづき架橋
反応を完了することができる。ここで、フェニレンジア
ミンとエポキシ樹脂との架橋反応は、硬化温度を120
〜160℃とすることにより、未架橋官能基を残すこと
がなく、また架橋の均一な分布を示し、機械強度特に耐
クラツク性のすぐれた硬化物が得られる。しかし、脂肪
族ジアミンまたはフェニレンジアミンの単独での硬化反
応では、架橋反応が進むに従い、架橋反応に必要な硬化
剤の分子運動が束縛され、未反応の硬化剤が残ることに
なシ、さらに架橋密度の均一な分布を得ることが難かし
く、機械強度にも限界がある。
In the present invention, since aliphatic diamine has a higher crosslinking reaction rate than phenylenediamine, the crosslinking reaction with the epoxy resin starts from aliphatic diamine at a curing temperature of 60 to 120°C. Participates in the crosslinking reaction of nine aliphatic diamines2
Since the distance between the two functional groups is larger than the longest molecular diameter of phenylenediamine, it is possible that the molecular movement necessary for the crosslinking reaction of the present phenylenediamine is possible after the crosslinking reaction of the aliphatic diamine is completed, and the phenylenediamine also continues. The crosslinking reaction can be completed. Here, the crosslinking reaction between phenylenediamine and epoxy resin is performed at a curing temperature of 120°C.
By controlling the temperature to 160 DEG C., a cured product with no uncrosslinked functional groups remaining, a uniform distribution of crosslinks, and excellent mechanical strength, particularly crack resistance, can be obtained. However, in the curing reaction of aliphatic diamine or phenylene diamine alone, as the crosslinking reaction progresses, the molecular movement of the curing agent necessary for the crosslinking reaction is restricted, leaving unreacted curing agent. It is difficult to obtain a uniform distribution of density, and there is a limit to mechanical strength.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明は、エポキシ樹脂と、脂肪族ジアミンおよびフェ
ニレンジアミンからなるエポキシ樹脂組成物を60〜1
20℃で第1次の加温を行なうもので、硬化温度60℃
以下では脂肪族ジアミンとエポキシ樹脂の架橋反応速度
が遅くなり、架橋反応が完了するまでに時間がかかるの
で、製造工程上好ましくなく、シかも脂肪族ジアミンや
フェニレンジアミンの析出を引き起し、架橋密度の分布
の均一な分布を得ることが出来なくなり好ましくない。
The present invention provides an epoxy resin composition consisting of an epoxy resin, an aliphatic diamine, and a phenylene diamine with a concentration of 60 to 1
The first heating is performed at 20℃, and the curing temperature is 60℃.
In the following, the crosslinking reaction rate between the aliphatic diamine and the epoxy resin will be slow, and it will take time to complete the crosslinking reaction, which is unfavorable in terms of the manufacturing process. This is not preferable because it becomes impossible to obtain a uniform density distribution.

また第1次の加温を120℃以上とすると脂肪族ジアミ
ンとエポキシ樹脂の架橋反応速度が速くなるが、フェニ
レンジアミンとエポキシ樹脂との架橋反応も促進される
。したがって脂肪族ジアミンとエポキシ樹脂の架橋反応
が完了する前にフェニレンジアミンとエポキシ樹脂の架
橋反応が進み脂肪族ジアミンは分子径が大きいので、分
子運動が束縛され、未反応硬化剤として残ることになり
、すなわち架橋密度の均一な分布を得ることができなく
なり好ましくない。さらに脂肪族ジアミンとエポキシ樹
脂の架橋反応が硬化温度60 ’0では100分間以内
で完了し、120℃では20分間以内で完了するので、
その範囲内で硬化時間を適宜選択するのが好ましい。
Moreover, when the first heating is 120° C. or higher, the crosslinking reaction rate between the aliphatic diamine and the epoxy resin increases, but the crosslinking reaction between the phenylene diamine and the epoxy resin is also promoted. Therefore, before the crosslinking reaction between the aliphatic diamine and the epoxy resin is completed, the crosslinking reaction between the phenylene diamine and the epoxy resin progresses, and since the aliphatic diamine has a large molecular diameter, its molecular movement is restricted and it remains as an unreacted curing agent. In other words, it becomes impossible to obtain a uniform distribution of crosslinking density, which is not preferable. Furthermore, the crosslinking reaction between aliphatic diamine and epoxy resin is completed within 100 minutes at a curing temperature of 60'0, and within 20 minutes at 120°C.
It is preferable to appropriately select the curing time within this range.

一方、第1次の硬化反応の工程に引き続き、120〜1
60℃で第2次の加温を行なうが、硬化温度120℃以
下では、脂肪族ジアミンとエポキシ樹脂の架橋により、
フェニレンジアミンの分子運動とエポキシ樹脂の分子鎮
運動が束縛されるので、フェニレンジアミンと≠ボキシ
樹脂の架橋反応速度が遅くなり、架橋反応が完了するま
でに時間がかかるので製造工程上好ましくなく、シかも
未反応のフェニレンジアミンが残ることになり、ので好
ましくない。また第2次の加温を160 ”0以上とす
るとフェニレンジアミンとエポキシ樹脂の硬化発熱量が
大きくなるので、硬化物に大きな内部ひずみを残すこと
になり、クラックを発生しやすくなり好ましくない。さ
らに、フェニレンジアミンとエポキシ樹脂の架橋反応が
硬化温度120°Cでは250分間以内で完了し、16
0”Oでは60分以内間で完了するので、その範囲内で
硬化時間を適宜選択するのが製造工程上好ましい。
On the other hand, following the step of the first curing reaction,
Secondary heating is carried out at 60°C, but if the curing temperature is below 120°C, crosslinking of the aliphatic diamine and epoxy resin will cause
Since the molecular motion of phenylenediamine and the molecular motion of the epoxy resin are restricted, the rate of crosslinking reaction between phenylenediamine and ≠ boxy resin is slowed down, and it takes time for the crosslinking reaction to complete, which is unfavorable in the manufacturing process. Otherwise, unreacted phenylenediamine will remain, which is undesirable. Furthermore, if the secondary heating is set to 160"0 or more, the curing calorific value of the phenylenediamine and epoxy resin will increase, which will leave a large internal strain in the cured product, making it more likely to cause cracks, which is undesirable. , the crosslinking reaction between phenylenediamine and epoxy resin was completed within 250 minutes at a curing temperature of 120°C, and 16
Since curing is completed within 60 minutes at 0''O, it is preferable in terms of the manufacturing process to appropriately select the curing time within this range.

次に本発明に使用できる材料について説明する。Next, materials that can be used in the present invention will be explained.

本発明に使用するエポキシ樹脂は、1分子中に2個以上
のエポキシ基を有する化合物なら特に限定はない。例え
ば、グリシジルコ−チル型、グリシジルエステル型、線
状脂肪族エポキシサイド型、脂環族エポキシサイド型、
ノボラック型、複素環族エポキシサイド型などで単独あ
るいa混合物として用いても良い。上記エポキシ樹脂の
分子量は特に限定しないが作業温度で液状を示す、分子
量1000以下のものが好ましい。
The epoxy resin used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. For example, glycidyl co-tyl type, glycidyl ester type, linear aliphatic epoxide type, alicyclic epoxide type,
Novolac type, heterocyclic epoxide type, etc. may be used alone or as a mixture. The molecular weight of the epoxy resin is not particularly limited, but it is preferably 1000 or less, which is liquid at working temperatures.

また本発明において用いる脂肪族ジアミンは次式であら
れされる。
Further, the aliphatic diamine used in the present invention is expressed by the following formula.

H2N+CH8+−NH! (但しnは4以上の整数)ジアミンであり、たとえば1
.4〜ジアミノブタン(n=4.官能基間距離=6.2
5k)、1.5−ジアミノペンタン(n=5.官能基間
距離= 7.52^)、1.6−ジアミツヘキサン(n
=6.官能基間距離= 8.79^)。
H2N+CH8+-NH! (However, n is an integer of 4 or more) Diamine, for example 1
.. 4-diaminobutane (n = 4. Distance between functional groups = 6.2
5k), 1,5-diaminopentane (n = 5. Distance between functional groups = 7.52^), 1,6-diamithexane (n
=6. Distance between functional groups = 8.79^).

1.7−ジアミノへブタン(n=7.官能基間距離=1
0.06A)、1.8−ジアミノオクタy(n=9゜官
能基間距離=11.33^)、1.9−ジアミノオクタ
(n=9.官能基間距離=12.60尺)。
1.7-Diaminohebutane (n=7. Distance between functional groups=1
0.06A), 1.8-diaminooctay (n=9°, distance between functional groups=11.33^), 1.9-diaminooctay (n=9.distance between functional groups=12.60゜).

1.10−ジアミノデカン(n=to、官能基間距離=
13.87&)、1.12−ジアミノドデカン(n=1
2 、官能基間距離=16.41A)などがある。また
これらの混合物であっても良い。
1.10-diaminodecane (n=to, distance between functional groups=
13.87&), 1,12-diaminododecane (n=1
2, distance between functional groups=16.41A), etc. It may also be a mixture of these.

また本発明において用いるフェニレンジアミンは、オル
ンフエニレンジアミン、メタフェニレンジアミンおよび
パラフェニレンジアミンの異性体のいづれでも良く、さ
らにそれらの混合物であっても良い。なおオルソフェニ
レンジアミン、メタフェニレンジアミン、およびパラフ
ェニレンジアミンの分子径はそれぞれ約411,6.5
&および7.5人であ石。
Further, the phenylene diamine used in the present invention may be any of the isomers of orne-phenylene diamine, meta-phenylene diamine, and para-phenylene diamine, or may be a mixture thereof. The molecular diameters of orthophenylenediamine, metaphenylenediamine, and paraphenylenediamine are approximately 411 and 6.5, respectively.
& and 7.5 people.

脂肪族ジアミンの1級アミン基間距離がフェニレンジア
ミンの最大分子径に比較して、1.25倍v上とする理
由は、脂肪族ジアミンが硬化終了後も、フェニレンジア
ミンの架橋反応に必要な分子運動が可能であり、したが
って脂肪族ジアミンの1級アミン基による架橋反応が完
了後も、フェニレンジアミンはひきつづき架橋反応を進
め完了することができるためである。脂肪族ジアミンの
1級アミノ基間距離がフェニレンジアミンの1,25倍
以内とすると、脂肪族ジアミンの硬化反応が完了するこ
とにより、フェニレンジアミンの硬化反応に必要な分子
運動ができにくくなり、フェニレンジアミンの架橋反応
は完了せず未反応のフェニレンジアミンを残すことにな
り、エポキシ樹脂の未架橋部分が存在し1機械強度、特
に耐クラツク性の改善とならないためである。
The reason why the distance between the primary amine groups of aliphatic diamine is set to be 1.25 times larger than the maximum molecular diameter of phenylene diamine is because the distance between the primary amine groups of aliphatic diamine is 1.25 times larger than the maximum molecular diameter of phenylene diamine. This is because molecular movement is possible, and therefore, even after the crosslinking reaction by the primary amine group of the aliphatic diamine is completed, phenylenediamine can continue to proceed with the crosslinking reaction to complete it. If the distance between the primary amino groups of aliphatic diamine is within 1.25 times that of phenylene diamine, the curing reaction of aliphatic diamine will be completed, making it difficult for the molecular movement necessary for the curing reaction of phenylene diamine to occur, and This is because the crosslinking reaction of the diamine is not completed and unreacted phenylenediamine remains, and the presence of uncrosslinked portions of the epoxy resin does not improve mechanical strength, particularly crack resistance.

したがって、オルソフェニレンジアミンを第2の硬化剤
として用いると!には、nが4以上のいずれの脂肪族ジ
アミンと組合せても良く、メタフェニレンジアミンを第
2の硬化剤ルして用いみときには、nが6以上のいずれ
の脂肪族ジアミンと組合せても良く、またパラフェニレ
ンジアミンを第2の硬化剤として用いるときには、nが
7以上のいずれの脂肪族ジアミンと組合わせても良い。
Therefore, if orthophenylenediamine is used as the second curing agent! may be combined with any aliphatic diamine where n is 4 or more, and when metaphenylenediamine is used as a second curing agent, it may be combined with any aliphatic diamine where n is 6 or more. , When paraphenylenediamine is used as the second curing agent, it may be combined with any aliphatic diamine in which n is 7 or more.

脂肪族ジアミンはエポキシ樹脂に対する当量比として0
.2〜1.0相当量を配合することが望ましく、当量比
0.2相当量以下では、耐クラツク性が乏しく、当量比
1.0相当量以上では耐熱性が悪くなる。
The equivalent ratio of aliphatic diamine to epoxy resin is 0.
.. It is desirable to blend the compound in an amount equivalent to 2 to 1.0, and if the equivalent ratio is less than 0.2, the crack resistance will be poor, and if the equivalent ratio is more than 1.0, the heat resistance will be poor.

またフェニレンジアミンは、°エポキシ樹脂に対する当
量比として、脂肪族ジアミンの当量比との和が0.7〜
1.2相当量となる轡に1.0〜0.2相当量配合する
ことが望ましく、縞量比02相当量以下では、耐熱性が
悪くかり、当量比1.0以上では耐クラツク性が乏しく
なる。
In addition, the equivalent ratio of phenylenediamine to the epoxy resin is 0.7 to the sum of the equivalent ratio of the aliphatic diamine.
It is desirable to mix 1.0 to 0.2 equivalent to the 1.2 equivalent amount. If the stripe amount ratio is less than 02 equivalent, the heat resistance will be poor, and if the equivalent ratio is 1.0 or more, the crack resistance will be poor. become scarce.

(5)発明の効果 本発明によればエポキシ樹脂硬化物の耐熱性を低下させ
ること力く、耐クラツク性を著るしく向上することが可
能である。
(5) Effects of the Invention According to the present invention, it is possible to significantly improve the crack resistance of a cured epoxy resin product without reducing its heat resistance.

(6)発明の実施例 以下本発明を実施例により説明する。なお樹脂硬化物の
熱変形温度は、A8TM D648−56の方法により
測定した。また樹脂硬化物の破壊強度(P)を図に示す
試料により高滓オートグラフで測定し、次式により 破壊しん性値(K)を求めた。ここでtは試料の厚さで
ありtmは試料の厚さ+1)から破壊を導ひく溝の深さ
を差しひいた厚さを示す。νはポアソン比でありWは試
料の幅を示し、協は破壊応力のモーメントの長さを示す
。kは定数である。すなわち今回測定した試料でB t
n=2m+、 t−4mm、 W= 60w 、 Wm
=10m+ 、 ν=0.35 、 k=173の6値
である。
(6) Examples of the Invention The present invention will be explained below with reference to Examples. The heat distortion temperature of the cured resin product was measured by the method of A8TM D648-56. Furthermore, the fracture strength (P) of the cured resin product was measured using a high-slag autograph using the sample shown in the figure, and the fracture resistance value (K) was determined using the following formula. Here, t is the thickness of the sample, and tm is the thickness obtained by subtracting the depth of the groove that leads to fracture from the sample thickness + 1). ν is Poisson's ratio, W indicates the width of the sample, and K indicates the length of the moment of fracture stress. k is a constant. That is, in the sample measured this time, B t
n=2m+, t-4mm, W=60w, Wm
There are six values: =10m+, ν=0.35, and k=173.

実施例1゜ 1.2−ジアミノエタン(官能幕間距離=3.7λ)と
1.4−ジアミノブタン(官能基間距離=6.3k)と
1.6−ジアミツヘキサン(官能幕間距離=8,79k
)と1.8−ジアミノオクタン(官能基間距離=11.
3k)と1.12−ジアミノドデカン(官能基間距離=
ls、4i)およびオルソフェニレンジアミン(分子径
= 4.8 X)とメタフェニレンジアミン(分子径=
6.5人)とパラフェニレンジアミン(分子径= 7.
51 )の配合をビスフェノール人ジグリシジルエーテ
ル型エポキシ樹脂(エビコー)828.シェル社製エポ
キシ当量190)の1当量に対する当量比で第1表に示
した。表IK示す組成で各硬化剤をエポキシ樹脂に溶解
せしめた後に、各硬化条件で、第1図に示す形状の試験
片を得た。第1表の実施例A−Dと比較例a % Cを
比較すると、脂肪族ジアミンのアミン官能基間距離が、
フェニレンジアミンの分子径より1.25M以上でない
と良好な破壊しん性値を示さない。また比較例d−jは
、各硬化剤単独の場合であり、破壊しん性値および熱変
形温度ともに、実施例A〜Dに劣る。以1ホ旬 実施例2゜ ビッツエノール人ジグリシジルエーテル型のエポキシ樹
脂(エピコート828.シェル社製、エポキシ当量19
0)の1当量に対して、1.12−ジアミノドデカ/と
メタフェニレンジアミンの配合量を当量比で第2表に示
した。可とう性付与剤としてポリエチレングリコールは
エポキシ樹脂100重量部に対する重量部で示した。第
2表の実施例E−Fと比較fi3 k−tを比較すると
、第1次の加熱硬化温度が60〜120°Cで良好な破
壊しん性値と熱変形温度を示す。実施例G−Hと比較例
m −”−nを比較すると第2次の加熱硬化温度が12
0〜160℃で良好な破壊しん性値と熱変形温度を示す
ことが明らかである。実施例I−Jと比較例0〜rを比
較すると1.12−シアミツドデカントメタフェニレン
ジアミンの添加量が、ツレぞれ当量比で0.2〜1.0
相当量および1.0〜0.2相当量で、しかも硬化剤の
添加量の和が0.7〜1.2相当量のとき良好な破壊し
ん性値と熱変形温度を示すことが明らかである。比較例
S#i可とう性付与剤を添加したものであるが、実施例
E−Jに比較して耐熱性の低下をきたすことが明らかで
ある。
Example 1 1.2-diaminoethane (functional intermetal distance = 3.7λ), 1,4-diaminobutane (functional intergroup distance = 6.3k), and 1,6-diamithexane (functional intermetal distance = 8) ,79k
) and 1,8-diaminooctane (distance between functional groups=11.
3k) and 1,12-diaminododecane (distance between functional groups =
ls, 4i) and orthophenylenediamine (molecular diameter = 4.8X) and metaphenylenediamine (molecular diameter =
6.5 people) and paraphenylenediamine (molecular size = 7.
51) is mixed with bisphenol diglycidyl ether type epoxy resin (Ebicor) 828. Table 1 shows the equivalent ratio to 1 equivalent of Shell epoxy equivalent (190). After each curing agent was dissolved in an epoxy resin with the composition shown in Table IK, a test piece having the shape shown in FIG. 1 was obtained under each curing condition. Comparing Examples A-D and Comparative Example A%C in Table 1, the distance between the amine functional groups of the aliphatic diamine is
Unless the molecular diameter of phenylenediamine is 1.25M or more, a good fracture resistance value is not exhibited. Moreover, Comparative Examples d-j are cases in which each curing agent is used alone, and are inferior to Examples A to D in both the fracture resistance value and the heat distortion temperature. Example 2 Bitzenol diglycidyl ether type epoxy resin (Epicote 828, manufactured by Shell Co., Ltd., epoxy equivalent: 19
Table 2 shows the equivalent ratio of 1,12-diaminododeca/ and metaphenylenediamine to 1 equivalent of 0). Polyethylene glycol as a flexibility imparting agent is expressed in parts by weight based on 100 parts by weight of the epoxy resin. Comparing Examples E-F and Comparative fi3 k-t in Table 2, the first heat curing temperature is 60 to 120°C, showing good fracture toughness values and heat distortion temperatures. Comparing Example G-H and Comparative Example m-”-n, the second heat curing temperature is 12
It is clear that it shows good fracture toughness values and heat distortion temperatures between 0 and 160°C. Comparing Examples I-J and Comparative Examples 0 to r, the amount of 1.12-cyamidodecantomephenylenediamine added was 0.2 to 1.0 in equivalent ratio.
It is clear that a good fracture toughness value and heat distortion temperature are exhibited when the amount of curing agent is equivalent to 1.0 to 0.2, and the sum of the amounts of curing agent added is 0.7 to 1.2 equivalent. be. Comparative Example S#i Although a flexibility imparting agent was added, it is clear that the heat resistance is lower than that of Examples E-J.

【図面の簡単な説明】[Brief explanation of drawings]

先部Iは本発明に係る破壊しん性値を測定する試料の形
状を示す。 1〜4・・・・・応 力  5・・・・試 料l久手化
Tip I shows the shape of the sample whose fracture strength value is to be measured according to the invention. 1 to 4...Stress 5...Sample l Kuteka mortar

Claims (5)

【特許請求の範囲】[Claims] (1)  エポキシ樹脂と次式で示される脂肪族ジアミ
  ン 1N4CH,i NH。 (但し、nは4以上の整数) とフェニレンジアミンからなるエポキシ樹脂組成物を6
0〜120℃で纂1次の加温後120〜160℃で第2
次の加温をすることを特徴とするエポキシ樹脂組成物の
硬化方法。
(1) Epoxy resin and aliphatic diamine 1N4CH,iNH represented by the following formula. (However, n is an integer of 4 or more) and phenylenediamine.
After the first heating at 0 to 120℃, the second heating at 120 to 160℃
A method for curing an epoxy resin composition, which comprises heating as follows.
(2)  フェニレンジアミンの分子径に対して、1級
アミノ基間の距離が1.25倍以上であることを特徴と
する脂肪族ジアミンを添加することからかる特許請求の
範囲第1項記載のエポキシ樹脂組成物の硬化方法。
(2) The method according to claim 1, which includes the addition of an aliphatic diamine characterized in that the distance between primary amino groups is 1.25 times or more the molecular diameter of phenylene diamine. A method of curing an epoxy resin composition.
(3)  エポキシ樹脂1壱量に対して脂肪族ジアミン
を当量比0.2〜1.0相轟を添加することからなる特
許請求の範囲第1項記載のエポキシ樹脂組成物の硬化方
法。
(3) A method for curing an epoxy resin composition according to claim 1, which comprises adding an aliphatic diamine at an equivalent ratio of 0.2 to 1.0 to one weight of epoxy resin.
(4)エポキシ樹脂1当量に対して、フェニレンジアミ
ンを当量比1.0〜0.2相当量を添加することからな
る特許請求の範囲第1項記載のエポキシ樹脂組成物の硬
化方法。
(4) A method for curing an epoxy resin composition according to claim 1, which comprises adding phenylenediamine in an equivalent amount of 1.0 to 0.2 equivalent to 1 equivalent of epoxy resin.
(5)  エポキシ樹脂1当量に対して脂肪族ジアミン
とフェニレンジアミンの添加量の和が当量比0゜7〜1
.2相当量となる特許請求の範囲第1項記載のエポキシ
樹脂組成物の硬化方法。
(5) The sum of the amounts of aliphatic diamine and phenylene diamine added to 1 equivalent of epoxy resin has an equivalent ratio of 0°7 to 1.
.. 2. A method for curing an epoxy resin composition according to claim 1, wherein the amount is equivalent to 2.
JP5956582A 1982-04-12 1982-04-12 Curing of epoxy resin composition Pending JPS58176211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5956582A JPS58176211A (en) 1982-04-12 1982-04-12 Curing of epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5956582A JPS58176211A (en) 1982-04-12 1982-04-12 Curing of epoxy resin composition

Publications (1)

Publication Number Publication Date
JPS58176211A true JPS58176211A (en) 1983-10-15

Family

ID=13116886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5956582A Pending JPS58176211A (en) 1982-04-12 1982-04-12 Curing of epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS58176211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388095A2 (en) * 1989-03-16 1990-09-19 AT&T Corp. Method of curing polymeric or oligomeric material
WO2001098428A1 (en) * 2000-06-20 2001-12-27 Sanyo Chemical Industries, Ltd. Adhesive for resin roll assembly and resin roll
WO2003031160A1 (en) * 2001-10-03 2003-04-17 Yamauchi Corporation Process for producing resin roll
JP2007042520A (en) * 2005-08-05 2007-02-15 Uchihashi Estec Co Ltd Manufacturing method of case type alloy temperature fuse and case type alloy temperature fuse
JP2016538415A (en) * 2013-11-19 2016-12-08 レイセオン カンパニー Reworkable epoxy resins and cured mixtures for low thermal expansion applications
JP2021017537A (en) * 2019-07-24 2021-02-15 株式会社クラレ Curable composition and cured product excellent in heat resistance and toughness using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388095A2 (en) * 1989-03-16 1990-09-19 AT&T Corp. Method of curing polymeric or oligomeric material
CN100362072C (en) * 2000-06-20 2008-01-16 三洋化成工业株式会社 Adhesive for resin roll assembly and resin roll
WO2001098428A1 (en) * 2000-06-20 2001-12-27 Sanyo Chemical Industries, Ltd. Adhesive for resin roll assembly and resin roll
EP1293549A1 (en) * 2000-06-20 2003-03-19 SANYO CHEMICAL INDUSTRIES, Ltd. Adhesive for resin roll assembly and resin roll
EP1293549A4 (en) * 2000-06-20 2004-04-28 Sanyo Chemical Ind Ltd Adhesive for resin roll assembly and resin roll
WO2003031160A1 (en) * 2001-10-03 2003-04-17 Yamauchi Corporation Process for producing resin roll
AU2002344058B2 (en) * 2001-10-03 2005-07-28 Yamauchi Corporation Process for producing resin roll
US7135137B2 (en) 2001-10-03 2006-11-14 Yamauchi Corporation Process for producing resin roll
EP1440785A1 (en) * 2001-10-03 2004-07-28 Yamauchi Corporation Process for producing resin roll
EP1440785A4 (en) * 2001-10-03 2012-02-08 Yamauchi Corp Process for producing resin roll
JP2007042520A (en) * 2005-08-05 2007-02-15 Uchihashi Estec Co Ltd Manufacturing method of case type alloy temperature fuse and case type alloy temperature fuse
JP2016538415A (en) * 2013-11-19 2016-12-08 レイセオン カンパニー Reworkable epoxy resins and cured mixtures for low thermal expansion applications
JP2021017537A (en) * 2019-07-24 2021-02-15 株式会社クラレ Curable composition and cured product excellent in heat resistance and toughness using the same

Similar Documents

Publication Publication Date Title
JPS5821417A (en) Curable epoxy composition
JPS58198525A (en) Epoxy resin composition
JPS58176211A (en) Curing of epoxy resin composition
JPS6220555A (en) Epoxy resin composition
JPS5879011A (en) Precursory solid epoxyresin
US6220305B1 (en) Coal tar enamel coated steel pipe and process for same
JPS6112724A (en) Epoxy resin composition
JPS61185528A (en) Epoxy resin composition
JP2869635B2 (en) Epoxy resin composition
JPS5824458B2 (en) epoxy resin composition
JPH02115257A (en) Induction curing epoxy resin system
JPS5857424A (en) Curing of epoxy resin composition
JPS6390531A (en) Epoxy resin composition for semiconductor sealing use
JPS58168620A (en) Curing of epoxy resin composition
JPH0346006B2 (en)
JPS59117525A (en) Curing of epoxy resin composition
JPS59105018A (en) Sealing resin composition
JPS5815527A (en) Method for curing epoxy resin composition
JPS59174615A (en) Curing of epoxy resin composition
JPS6322853A (en) Siliconephenolic compound composition and use thereof
JPH0827253A (en) Photosemiconductor apparatus
JPS5815526A (en) Method for curing epoxy resin composition
JP2001214039A (en) Epoxy resin composition and sealed semiconductor device
JPS6341935B2 (en)
JP3821253B2 (en) Epoxy resin composition and method for producing electrical device