JPS58175822A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58175822A
JPS58175822A JP57058835A JP5883582A JPS58175822A JP S58175822 A JPS58175822 A JP S58175822A JP 57058835 A JP57058835 A JP 57058835A JP 5883582 A JP5883582 A JP 5883582A JP S58175822 A JPS58175822 A JP S58175822A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
substrate
onto
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57058835A
Other languages
Japanese (ja)
Inventor
Haruhide Fuse
玄秀 布施
Shigenobu Akiyama
秋山 重信
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57058835A priority Critical patent/JPS58175822A/en
Publication of JPS58175822A publication Critical patent/JPS58175822A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a semiconductor film, which is hardly exfoliated and has excellent quality, onto an insulating film by forming an armophous or polycrystalline semiconductor film under the state of 800 deg.C or less and melting the film by energy beams. CONSTITUTION:CVD SiO2 2, thickness thereof is 1mum and density thereof is low, is deposited onto a substrate 1 at 400 deg.C. The amorphous or polycrystalline Si film 3 with 5,000Angstrom is formed onto the CVD SiO2 through a decompression CVD method at 600 deg.C. Continuous-wave Ar laser beams 4 are irradiated onto the surface of the polycrystalline Si3 while being diaphragmed up to approximately 40mum width under the state in which the substrate is heated at 320 deg.C. The whole surface of the Si layer 3 is scanned by beams 4 at the pitches of 10mum at 10mm./s, and the polycrystalline Si3 is melted.

Description

【発明の詳細な説明】 本発明は非晶質絶縁膜上に結晶性の良い、St等の半導
体層を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a semiconductor layer made of St or the like with good crystallinity on an amorphous insulating film.

従来よりエネルギービームにより表面ノーのみの溶解に
よって非晶質又゛は多結晶St(シリコン)の膜質を改
善する方法が行なわれているが、大面積においてすべて
を結晶化させるには、至っていない。また、この結晶成
長をおこす為には表面Si層の溶融ガス不可欠である為
、溶融していない下地の絶縁膜(S 102や5i3N
4)はレーザの場合にはエネルギーを吸収しない為、温
度がほとんど上昇しないとともに、多少一度が上昇して
も溶融温度が高くて溶融が起らないため、熱ヒズミが生
じ、非常なストレスの発生があり、Si層のノ1ガレ等
が生じる。したがって、膜買改署のために十分に強力な
パワーを与えることができず、ノ1ガレが生じる寸前の
レーザパワー条件が要求される。
Conventionally, methods have been used to improve the film quality of amorphous or polycrystalline St (silicon) by melting only the surface layer using an energy beam, but it has not yet been possible to crystallize all of the film over a large area. In addition, in order to cause this crystal growth, molten gas from the surface Si layer is essential, so the underlying insulating film (S102 or 5i3N
4) In the case of a laser, it does not absorb energy, so the temperature hardly rises, and even if the temperature rises a little, the melting temperature is high and no melting occurs, so thermal strain occurs and extreme stress occurs. This results in cracking of the Si layer. Therefore, it is not possible to provide a sufficiently strong power for the purpose of refining the membrane, and a laser power condition that is on the verge of causing splashing is required.

その為、やむなく単結晶化が十分とはいえないレーザ出
力で膜質の改善を行う必要があり、十分な効果を得にく
い現状であった。
Therefore, it was necessary to improve the film quality with a laser output that was not sufficient for single crystallization, and it was difficult to obtain sufficient effects.

5O8(silicon on 5aphair、)’
ff@わる寄生容量の小さい基板として大いに利用され
る、非晶質絶縁物上に形成され素子形成の行われる5i
7−は結晶性についてもすぐれていないといけないが、
前述したように結晶性の良い5i7−を得ることは困難
な現状である。
5O8 (silicon on 5ahair,)'
5i, which is formed on an amorphous insulator and is used to form elements, is widely used as a substrate with low parasitic capacitance.
7- must also have excellent crystallinity,
As mentioned above, it is currently difficult to obtain 5i7- with good crystallinity.

本発明は、上に述べた欠点にかんがみなされたもので、
非晶質絶縁膜上に形成した半導体ノーのノ1ガレを小さ
クシ、半導体層へのより高出力のビーム照射を可能とし
て良好な膜質の改善を行うことのできを方法を提供する
ものである。
The present invention has been made in view of the above-mentioned drawbacks.
The present invention provides a method for improving the film quality by combing the semiconductor layer formed on an amorphous insulating film into a small comb and making it possible to irradiate the semiconductor layer with a beam of higher power. .

まず、本発明の詳細な説明を行なう。一般にビームアニ
ールによる多結晶Siの粒成長には、酸化膜や窒化膜上
に堆積した多結晶Siをもとにして、成長させる方法を
とっている。この下地の酸化膜や窒化膜は、熱処理の為
高密度−であり、非常にち密性密化されたものを用いて
いる。この為、の上に形成された多結晶Siがビームア
ニールにて溶融状態になった場合の熱ストレスの逃げる
部分が極めて少なく、ノ)ガレに結びつくものである。
First, the present invention will be explained in detail. Generally, grain growth of polycrystalline Si by beam annealing is performed using a method of growing polycrystalline Si deposited on an oxide film or a nitride film. The underlying oxide film or nitride film has a high density due to heat treatment, and is extremely dense. For this reason, when the polycrystalline Si formed thereon becomes molten during beam annealing, there is a very small portion from which thermal stress can escape, leading to (3) cracking.

一方、低@(toor)での気相化学蒸着法すなわちC
V D (chemiaal vapour depo
sition)法を用いて堆積した8 102はJ堆積
直後はその密度が低く、十分な前述した緻密な酸化膜と
して利用する為には、高温(900C)以上の熱処理が
必要である。本発明はこの堆積直後が又はaOOC以下
での熱処理後の酸化膜等の絶縁膜が一般の前述した酸化
膜等の絶縁膜に比べ屈折率から1lIl断すると密贋が
未だ低くストレスの発生が少ないことに着目してなされ
たものである。
On the other hand, vapor phase chemical vapor deposition method at low @(toor), that is, C
V D (chemical vapor depot)
Immediately after J deposition, 8102 deposited using the J deposition method has a low density, and in order to be used as a sufficiently dense oxide film as described above, heat treatment at a high temperature (900 C) or higher is required. In the present invention, the insulating film such as an oxide film immediately after deposition or after heat treatment at a temperature below aOOC has a lower refractive index by 1lIl than the general insulating film such as the above-mentioned oxide film. This was done with this in mind.

以下、本発明の一実施例を工程図に基づいて説明を行な
う。第1,2図は工程を示すものである。
An embodiment of the present invention will be described below based on process diagrams. Figures 1 and 2 show the process.

基板1上に1μm厚の密度の低いCVD 81022を
400Cで堆積した(第1(ロ)。その上に600Cで
、LPCVD(d圧CVD)法?5000人の非晶質又
は多結晶Si膜3を形成した。なお、膜3はプラズマC
VD法で形成してもよい。その後基板を320t:’に
加熱した状態で、連続発振Arレーザビーム4を試料面
すなわち多結晶81 a面上で幅40μm程度に絞って
照射した。すなわち40μm幅で多結晶St3を溶融す
る。−8t層3の全面’1100./Sで10μmピッ
チでビーム4にて走査し、多結晶siaを溶融した(第
2図)a一方、比較の為、いわゆる緻密な1μmの熱酸
化膜に形成した多結晶Stに同様のビーム4の照射を行
なった。この場合人力レーザ出力が18Wで、ハガレ、
クラックが生じたのに対して本発明に従がう前述の試料
については21Wにレーザ出力が達してもハガレること
なく多結晶Si3の表面が十分に溶融され、成長した結
晶化膜の粒径に関しても200μm X 30μmのも
のが1d中に多数個得られ、従来のものでは同粒径が数
10X200μmのものは1−当り数個のオーダーであ
った。本発明にかかる方法では多数のものが、10X2
0μmを超えており、界面でのストレスを除いた為これ
らの効果は非常に大きい。
A low-density CVD 81022 with a thickness of 1 μm was deposited at 400C on the substrate 1 (first (b)).Amorphous or polycrystalline Si film 3 of 5,000 layers was deposited on top of it at 600C using the LPCVD (d-pressure CVD) method. The film 3 was formed using plasma C.
It may also be formed by a VD method. Thereafter, while the substrate was heated to 320 t:', a continuous wave Ar laser beam 4 was irradiated onto the sample surface, that is, the polycrystalline 81a surface, with a width of about 40 μm. That is, polycrystalline St3 is melted with a width of 40 μm. -8t layer 3 entire surface '1100. /S with beam 4 at a pitch of 10 μm to melt the polycrystalline Sia (Fig. 2). On the other hand, for comparison, the same beam 4 was applied to polycrystalline St formed on a so-called dense thermal oxide film of 1 μm. irradiation was performed. In this case, the human power laser output was 18W, and there was no peeling.
Whereas cracks occurred in the above sample according to the present invention, the surface of the polycrystalline Si3 was sufficiently melted without peeling even when the laser output reached 21 W, and the grain size of the grown crystallized film decreased. Also, many particles of 200 .mu.m x 30 .mu.m were obtained per 1 d, whereas in conventional products, particles with the same diameter of several 10 x 200 .mu.m were on the order of several particles per 1 d. In the method according to the invention, a large number of
It exceeds 0 μm, and since the stress at the interface is removed, these effects are very large.

なお、本発明の実施において高温熱処理を受けたSiO
又はSi3N4膜が形成されている基板の場合には、こ
の上に低温でCV D S i02膜を堆積することに
よって、本発明の効果を発揮することが可能となる。と
ころで、本発明における基板上への低温絶縁膜たとえば
CVD5tO2膜に、800Cで熱処理を加えるとCV
 D S 102膜の屈折率は1.46に近づき熱酸化
膜の密度になり、5i02膜がかなり硬化し本発明の効
果は発揮されにくい。
In addition, in the implementation of the present invention, SiO
Alternatively, in the case of a substrate on which a Si3N4 film is formed, the effects of the present invention can be exhibited by depositing a CVD Si02 film thereon at a low temperature. By the way, if a low-temperature insulating film on a substrate in the present invention, such as a CVD 5tO2 film, is heat treated at 800C, CV
The refractive index of the D S 102 film approaches 1.46, resulting in the density of a thermal oxide film, and the 5i02 film is considerably hardened, making it difficult to exhibit the effects of the present invention.

壕だ本発明に用いる低温形成される絶縁膜は、Si  
N  膜等の他の絶縁膜でもよいとともしこルrJK 
4 方法もCVI)法以外の他の1戊錨形成方法を/4Jし
1でもよい。また、基板1としてはシリコン(1)単#
1与11^基板を用いてもよい0 以上のように本発明によれば800C以下’1./)4
大態で非晶質又は多結晶半導体膜を形成し工不ルキーピ
ームにより、容重することVCより、絶縁+j’AトQ
こ艮好な+g實を有する半導体膜を形成すること〃二で
き、浦注目ヒな半纏1杢装置の製造に大きく谷与−rる
ものである。
The insulating film formed at a low temperature used in the present invention is made of Si.
It may be possible to use other insulating films such as N film.
4 Method may also be /4J and 1 other than the CVI method. In addition, the substrate 1 is made of silicon (1) single #
1 and 11^ substrate may be used.0 As described above, according to the present invention, 800C or less'1. /)4
In general, an amorphous or polycrystalline semiconductor film is formed, and by using a mechanical beam, the insulation + j'A and Q
It is possible to form a semiconductor film having such excellent +g-reality, which greatly contributes to the production of a half-layered device that attracts attention.

【図面の簡単な説明】[Brief explanation of drawings]

図 第1図、第2ぐは本発明の一央り夕りこかかる下−導体
4族の製造工程所面図である。 1・・・・・基板、2・・・・・CvL)S102戻、
3・・・・・・非結質又は多結晶シリコン膜、4・・ 
・ レーザビーム。
FIGS. 1 and 2 are diagrams showing the manufacturing process of the fourth group of lower conductors, which is the central stage of the present invention. 1... Board, 2... CvL) S102 return,
3...Non-crystalline or polycrystalline silicon film, 4...
・Laser beam.

Claims (2)

【特許請求の範囲】[Claims] (1)基板の上に絶縁膜を堆積する工程と、80゜Cを
こえる温度での熱処理を加えることなしに、前記絶縁膜
の上に多結晶又は非晶質半導体膜を堆積する工程と、8
0oCをこえる温度での熱処理を加えることなしにエネ
ルギービームを照射し、前記半導体膜を溶融して膜質を
向上させる工程とを備えたことを特徴とする半導体装置
の製造方法。
(1) a step of depositing an insulating film on a substrate; and a step of depositing a polycrystalline or amorphous semiconductor film on the insulating film without applying heat treatment at a temperature exceeding 80°C; 8
A method for manufacturing a semiconductor device, comprising the step of irradiating the semiconductor film with an energy beam to melt the semiconductor film and improve the film quality without applying heat treatment at a temperature exceeding 0oC.
(2)絶縁膜をCVD法を用いて形成することを特徴と
する特許請求の範囲第1項に記載の半導体装置の製造方
法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the insulating film is formed using a CVD method.
JP57058835A 1982-04-08 1982-04-08 Manufacture of semiconductor device Pending JPS58175822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57058835A JPS58175822A (en) 1982-04-08 1982-04-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57058835A JPS58175822A (en) 1982-04-08 1982-04-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58175822A true JPS58175822A (en) 1983-10-15

Family

ID=13095704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57058835A Pending JPS58175822A (en) 1982-04-08 1982-04-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58175822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308090A (en) * 1988-06-07 1989-12-12 Fujitsu Ltd Stabilization of oscillation frequency of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308090A (en) * 1988-06-07 1989-12-12 Fujitsu Ltd Stabilization of oscillation frequency of semiconductor laser

Similar Documents

Publication Publication Date Title
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JPS5869798A (en) Growing method for semiconductor crystal
JPS58175822A (en) Manufacture of semiconductor device
JPS5918196A (en) Preparation of thin film of single crystal
JPS6119116A (en) Manufacture of semiconductor device
JPH027415A (en) Formation of soi thin film
JP2743370B2 (en) Method of forming polycrystalline film
JPS59148322A (en) Manufacture of semiconductor device
JPH09186086A (en) Epitaxial crystallization process and thin film silicon crystal
JPH05218367A (en) Production of polycrystalline silicon thin film board and polycrystalline silicon thin film
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPS5853824A (en) Manufacture of semiconductor device
JPH0770479B2 (en) Method for manufacturing semiconductor device
JPS62296509A (en) Manufacture of semiconductor device
JPS58175844A (en) Manufacture of semiconductor device
JPS5922318A (en) Forming of single crystal semiconductor layer
JPS5825220A (en) Manufacture of semiconductor substrate
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS5984416A (en) Manufacture of single crystal thin film
JP2532252B2 (en) Method for manufacturing SOI substrate
JPS59158515A (en) Manufacture of semiconductor device
JPS5835916A (en) Manufacture of semiconductor device
JPS59154016A (en) Formation of thin film crystal
JPS5961117A (en) Manufacture of semiconductor device
JP3144707B2 (en) Manufacturing method of crystal base material