JPS58173627A - Method and apparatus for preparation of polyester container - Google Patents

Method and apparatus for preparation of polyester container

Info

Publication number
JPS58173627A
JPS58173627A JP57055482A JP5548282A JPS58173627A JP S58173627 A JPS58173627 A JP S58173627A JP 57055482 A JP57055482 A JP 57055482A JP 5548282 A JP5548282 A JP 5548282A JP S58173627 A JPS58173627 A JP S58173627A
Authority
JP
Japan
Prior art keywords
container
mold
temperature
heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57055482A
Other languages
Japanese (ja)
Inventor
Toru Matsubayashi
徹 松林
Hiroshi Toyao
洋 鳥屋尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57055482A priority Critical patent/JPS58173627A/en
Publication of JPS58173627A publication Critical patent/JPS58173627A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • B29C33/048Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/007Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means
    • B29C2049/4838Moulds with incorporated heating or cooling means for heating moulds or mould parts
    • B29C2049/4846Moulds with incorporated heating or cooling means for heating moulds or mould parts in different areas of the mould at different temperatures, e.g. neck, shoulder or bottom
    • B29C2049/4848Bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C2049/4879Moulds characterised by mould configurations
    • B29C2049/4892Mould halves consisting of an independent main and bottom part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To efficiently prepare a polyester container which is excellent in thermal shrinkability and uniform capacity by such an arrangement wherein a container is heated and blow molded by introducing pressurized steam into the passage of a metal mold, and the container is then cooled by introducing cooling water into the passage to reduce the pressure inside the container, and then the container is taken out. CONSTITUTION:A drum part metal mold 1 is provided with valves 5, 7 for introducing steam and cooling water, and a shoulder part metal mold 2 is provided with a flowrate control valve 9 for introducing cooling water and a bottom part metal mold 3 is provided with a flowrate control valve 10 for introducing heat medium, and all metal molds, the drum 1, shoulder 2 and bottom 3, are provided with passages 11, 12, 13 of steam and cooling water. All valves 5-8 are equipped with electromagnetic valves which are capable of opening or closing valves at desired time by electrical sequence. In the blow metal mold, preform of polyester resin is elongated in the axial direction at a temperature at which elongation can be made, and then it is caused to expand laterally by blowing to form a container.

Description

【発明の詳細な説明】 本発明は耐熱収縮性の良好なポリエステル容器の製造法
及びその装置E1mする。更に詳しくは、本発明は耐熱
収縮性と、客量均−性、透明性、*械的特性等に優れた
ポリエステル容器を効率良く製造する方法及びその装置
K11lするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polyester container having good heat shrinkage resistance and an apparatus therefor. More specifically, the present invention provides a method and apparatus for efficiently manufacturing polyester containers having excellent heat shrinkage resistance, customer volume uniformity, transparency, mechanical properties, etc.

ポリエステル、特にポリエチレンテレフタレートは優れ
た物理的、化学的性質を有する重合体であり、従来より
繊維、フィルム或(・は機側に広く使用されている。ま
た、最近ポリエステルよりなる容器は、機械的強度、気
体遮断性。
Polyester, especially polyethylene terephthalate, is a polymer with excellent physical and chemical properties, and has traditionally been widely used in fibers, films, and machinery. Strength, gas barrier properties.

透明性、耐薬品性等に優れた特性を有することから飲料
用1食品用或いは化粧品用等の容器として注目されてい
る。特に2軸延伸吹込成形法により成形された2軸配向
ポリエチレンテレフタレート容器は、機械的強度、透明
性が極めて良好であり、前記用途の容器として広く使用
されている。
Because it has excellent properties such as transparency and chemical resistance, it is attracting attention as a container for beverages, foods, cosmetics, etc. In particular, biaxially oriented polyethylene terephthalate containers formed by biaxially stretched blow molding have extremely good mechanical strength and transparency, and are widely used as containers for the above-mentioned purposes.

しかしながら、かかる2軸配向ポリエチレンテレフタレ
ート容器は機械的強度が優れて〜・る反面、耐熱収縮性
に劣る欠点を有して(・る。この欠点を改良するために
、近年多数の提案がなされており、例えば特開ll85
1−82316号公報、特公昭52−126376号公
報1%開紹53−246号会報、特−11853−21
71号公報等に起重されているように成形後容器に熱処
理を施す方法:特開昭I53−741i70号公報。
However, although such biaxially oriented polyethylene terephthalate containers have excellent mechanical strength, they have the drawback of poor heat shrinkage resistance.In order to improve this drawback, many proposals have been made in recent years. For example, Japanese Patent Publication No. ll85
Publication No. 1-82316, Publication No. 126376/1976 1% Disclosure No. 53-246, Special Publication No. 11853-21
A method of heat-treating the container after molding as described in Japanese Patent Application Laid-open No. 153-741i70.

特開昭54−66968号公報、特開昭54−7767
2号公報、特開昭54−86659号公報。
JP-A-54-66968, JP-A-54-7767
No. 2, JP-A-54-86659.

特開昭54−133563号公報、特開昭54−137
060号公報等に記載されているように吹込金層を高温
にして容器を製造する方法:I!#開昭56−1040
32号公報に記載されているように+?1殊な液体で金
製温度を調節しながらグルー成形する方法等が知られて
いる。
JP-A-54-133563, JP-A-54-137
A method of manufacturing a container by heating a blown gold layer to a high temperature as described in Publication No. 060 etc.: I! # Kaisho 56-1040
As stated in Publication No. 32 +? A method is known in which glue molding is performed using a special liquid while controlling the temperature of the metal.

これらの方法は、ポリエチレンテレフタレート容器の耐
熱収縮性を改善するが、充分な耐熱性を得るのに長時間
を要し、その結果、容器が白濁する等の外観的な欠点が
生じるなどの欠陥を有しており、また熱処理時間等を短
くした場合には、耐熱性の向上が十分でないこと、戚い
は得られる容器の内容量が一定とならないこと、操作が
煩雑であること等の欠点を有している。
Although these methods improve the heat shrinkage resistance of polyethylene terephthalate containers, it takes a long time to obtain sufficient heat resistance, resulting in defects such as appearance defects such as cloudy appearance of the container. Moreover, when the heat treatment time is shortened, there are disadvantages such as insufficient improvement in heat resistance, the content of the container obtained is not constant, and the operation is complicated. have.

本発明者は、かかる欠点のない耐熱収縮性の良好なポリ
エステル容器のIl造方法及びその装置について検討な
重ねた結果、特定な条件で、また特定の構造を有する吹
込金型を用いて容器を製造すると効率良く目的とする容
器を製造し得ることを見出し、本発明に到達した。
As a result of repeated studies on a method and apparatus for manufacturing polyester containers with good heat shrinkage resistance and without such drawbacks, the present inventors have discovered that containers can be manufactured under specific conditions and using a blowing mold having a specific structure. It has been discovered that the desired container can be efficiently manufactured by manufacturing the container, and the present invention has been achieved.

即ち、本発明は、 1 エチレンテレフタレートを主たる繰り返し単位とす
るポリエステル樹脂よりなる1減予備成形体を蔦伸可能
な範囲の温度で軸方向に燵伸しかつ横方向に吹込膨張さ
せて容器14部の少なくとも一部が2軸的に配゛向した
ポリエステル容器を製造する方法において、容器胴部を
賦形する金層部分に設けた流路内に加圧水蒸気を導入し
て当該金製部分の表面温度を100℃以上に加熱し、こ
の温度に保った状態で吹込成形を行い、次いf上記流路
内へ冷却水を導入して当該金製部分の表面温度を80℃
以下に冷却してから容器内の圧力を減じ、金型な開き、
容器を取り出すことを**とするポリエステル容器の製
造法、並びに2、容器胴部を賦形する金型彫込部の嵌置
温度を調節し得る吹込成形用金型を備えた吹込成形輪W
tにおいて、該彫込部と金型取付部との間に断熱層を設
け、誼断熱層と彫込部との間に表面温度調節媒体の流路
な設け、#流路の表面積(A)と断熱層の厚さく丁)、
断熱層の熱伝導度(K)、断熱層と彫込部との間の金型
重量(ロ)及び金型材質の比熱(C)とが下記式I及び
■を泗足する金型を備えていることを%像とする吹込成
形装置である。
That is, the present invention provides 14 parts of containers by stretching a 1-reduced preform made of a polyester resin containing ethylene terephthalate as a main repeating unit in the axial direction at a temperature within the range that allows for stretching and blowing it in the lateral direction. In a method for manufacturing a polyester container in which at least a portion of the polyester container is biaxially oriented, pressurized steam is introduced into a flow path provided in a gold layer portion that shapes the container body, and the surface of the gold layer portion is oriented biaxially. Heat the temperature to 100°C or higher, perform blow molding while maintaining this temperature, and then introduce cooling water into the flow path to raise the surface temperature of the metal part to 80°C.
After cooling down, reduce the pressure inside the container, open the mold,
2. A method for manufacturing a polyester container that involves taking out the container, and 2. A blow molding wheel W equipped with a blow mold that can adjust the temperature at which the mold engraving part that shapes the container body is fitted.
At t, a heat insulating layer is provided between the carved part and the mold attachment part, a flow path for a surface temperature regulating medium is provided between the heat insulating layer and the carved part, #surface area of the flow path (A) and the thickness of the insulation layer),
Equipped with a mold in which the thermal conductivity (K) of the heat insulation layer, the weight of the mold between the heat insulation layer and the carved part (B), and the specific heat (C) of the mold material satisfy the following formulas I and ■. This is a blow molding device that measures the percentage of

A≧0.3XWXC・・・・・・・・−IK/テ ≦ 
200                  ・・・・
・・・・−■但しA:真面温度調節媒体の流路の表面積
(aj) W:断熱層と彫込部間の胴部金型重量 CI+) C:咳金型を構成する材質の比熱 (at/11 ”C) (尚、A、Wは容器1本当り牛割金型 片側当りの数値) T:断熱層の厚さ 〔懺〕 K:断熱層の熱伝導度(K”/*−br・’C)本発明
におけるポリエステル樹脂はポリエチレンテレフタレー
トのホモポリマーを主たる対象とするが、テレフタル酸
成分の一部を例★ばインフタル駿、ナフタリンジカルボ
ン*、  ジフェニルジカルボン酸、ジフェノキシエタ
ンジカルボンWIl  ジフェニルエーテルジカルポン
WIlジフェニルスルホンジカルボン酸等の如き芳香族
ジカルボン酸;ヘキサヒドロイン7タル酸。
A≧0.3XWXC・・・・・・−IK/TE≦
200...
......-■ However, A: Surface area of the flow path of the direct temperature control medium (aj) W: Weight of the body mold between the heat insulation layer and the carved part CI+) C: Specific heat of the material constituting the cough mold (at/11 ”C) (A and W are values per container and one side of the beef splitting mold) T: Thickness of the heat insulation layer [Rin] K: Thermal conductivity of the heat insulation layer (K”/* -br・'C) The polyester resin in the present invention is mainly a homopolymer of polyethylene terephthalate, but some of the terephthalic acid components are, for example, inphthalic acid, naphthalene dicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethane dicarboxylic acid, etc. Aromatic dicarboxylic acids such as diphenyl ether dicarpon WIl diphenyl sulfone dicarboxylic acid; hexahydroin heptatalic acid.

ヘキサヒドロイン7タル酸等の如を脂環族ジヵルボ/@
、アジピン酸、セパチン酸、アゼライン酸等の如き脂肪
族ジカルボン酸;P−β−ヒドロキシエトキシ安息香酸
、ξ−オキシカプロン酸等の如きオキシ酸等の他の二官
能性カルボン酸の1種以上で、及び/又はエチレングリ
コール成分の一部を例えばトリメチレングリコール、テ
トラメチレングリコール、ヘキサメ牛レンゲリコール、
デカメチレングリコール、ネオベンチレングリフール、
ジエチレングリコール。
Alicyclic dicarboxylic acid such as hexahydroin 7-talic acid/@
, adipic acid, sepatic acid, azelaic acid, etc.; other difunctional carboxylic acids such as oxyacids such as P-β-hydroxyethoxybenzoic acid, ξ-oxycaproic acid, etc. , and/or a part of the ethylene glycol component, for example, trimethylene glycol, tetramethylene glycol, hexamelene glycol,
decamethylene glycol, neoventilene glycol,
Diethylene glycol.

1.1−−:/クロヘキサンジメ千l’ −#、  1
.4− シクロヘキサンジメチロール、2.2−ビス(
41−!−ヒトpキシエトキシフェニル)プロパン。
1.1--:/Chlohexane dime 1,000 l'-#, 1
.. 4-Cyclohexanedimethylol, 2,2-bis(
41-! -human p-xyethoxyphenyl)propane.

ビス(4’−/−ヒドロキシエトキシフェニル)スルホ
ン酸畔の他のグリコール及びこれらの機能的誘導体の多
官能化合物の1種以上で、3重量−以内の範囲内に、置
換して共重合せしめたコポリマーであっても負い。
Bis(4'-/-hydroxyethoxyphenyl)sulfonic acid is substituted and copolymerized with one or more polyfunctional compounds of other glycols and functional derivatives thereof within a range of 3 weight. Negative even if it is a copolymer.

かかるポリエステル樹脂の極限粘度(tV)は、容器の
外観及び耐熱性付与のし易さ等を考慮して定めるのが望
ましいが、O,S〜l、更にはO,フ〜0.85の範囲
にあることが好ましい。また、コポリマーの場合には、
共重合成分の重量割合(P : wt’% )との関係
で極限粘度を定めることが望ましく、例えば共重合成分
の重量割合(P : wt% )が1〜3.特K 1−
2の場合、コポリマーの極限粘度(IT)は下記式■乃
至■0.6≦!V≦1        ・・・・・・・
・・m−0,IXP+ 1.2≧Iv≧−0,IXP+
0.8−・−Piを満足すること、更には下記式璽′乃
至■′O,フ ≦ 1v≦ 0.85        
  ・・・・・・・・・ ■′−0,IXP+1.0≧
IV≧−〇、IXP+0.85 ・−−−−−=−mV
’を満足することが好ましい。極限粘度(!V)が低す
ぎると容器の白化或いはくもりが著しくなり、また高す
ぎると耐熱性付与に長時間を要するようKなり、成形性
が悪くなる。更に共重合成分の重合割合(P)が3重量
−より多くなると、耐熱性付与に長時間を要するように
なる。
The intrinsic viscosity (tV) of such polyester resin is desirably determined in consideration of the appearance of the container and the ease of imparting heat resistance, but it is preferably in the range of O,S~1, and more preferably in the range of O,F~0.85. It is preferable that the In addition, in the case of copolymers,
It is desirable to determine the intrinsic viscosity in relation to the weight ratio (P: wt'%) of the copolymer component; for example, when the weight ratio (P: wt%) of the copolymer component is 1 to 3. Special K 1-
In the case of 2, the intrinsic viscosity (IT) of the copolymer is expressed by the following formula ■ to ■ 0.6≦! V≦1・・・・・・・・・
・・m-0, IXP+ 1.2≧Iv≧-0, IXP+
0.8-・-Pi, and furthermore, the following formula:
...... ■'-0, IXP+1.0≧
IV≧−〇, IXP+0.85 ・−−−−−=−mV
It is preferable to satisfy '. If the intrinsic viscosity (!V) is too low, whitening or clouding of the container will be noticeable, and if it is too high, it will take a long time to impart heat resistance, resulting in poor moldability. Furthermore, if the polymerization ratio (P) of the copolymer components is more than 3 weight, it will take a long time to impart heat resistance.

本発明では、かかるポリエステル樹脂よりなる有底予備
成形体な吹込金型内において鷺伸可能な範囲の温度で軸
方向に鷺伸しかつ横方向に吹込膨張させて、容li!l
I411の少なくとも一部が2軸的に配向した容器を製
造するが、この有底予備成形体は実質的に非晶の有底予
備成形体(以下プリフォームと称することがある)であ
り、このプリフォームは例えば慣用の射出成形で得るこ
とができる。その際、金型は十分に冷却されたものであ
ることが好ましい。また、このプリフォームは押出成形
によっても得ることができる。ここで、前記1延伸可能
な範囲の温度”とはプリフォームの外表面温度が誼プリ
フォームを構成するポリエステル樹脂のガラス転移温度
(7g)から(7g+100)”Cの範囲、好ましくは
(7g+20)’C乃至(7g+50)”Cの範囲にあ
る温度である。1C実質的に非晶なプリフォーム”とは
、外観的に透明性の曳好なプリフォームのことであり、
例、えばその一部の光線透過率が50−以上のものであ
る。
In the present invention, the polyester resin is stretched in the axial direction and blown in the lateral direction at a temperature within the range that allows stretching in a blowing mold that is a preformed body with a bottom. l
A container in which at least a portion of I411 is biaxially oriented is manufactured, and this bottomed preform is a substantially amorphous bottomed preform (hereinafter sometimes referred to as a preform). The preform can be obtained, for example, by conventional injection molding. At that time, it is preferable that the mold be sufficiently cooled. This preform can also be obtained by extrusion molding. Here, the above-mentioned "temperature within a range that allows stretching" refers to a range in which the outer surface temperature of the preform is from the glass transition temperature (7g) of the polyester resin constituting the preform to (7g+100)C, preferably (7g+20C). The temperature is in the range of 'C to (7g + 50)'C. 1C "Substantially amorphous preform" refers to a preform that is transparent in appearance and has a smooth appearance.
For example, a part thereof has a light transmittance of 50- or more.

上述の延伸可能な範囲の温度に加熱(予熱)されたプリ
フォームは、先ず加圧水蒸気により容器胴部を賦形する
金型部分の表面が100’C以上に加熱されている吹込
金製内にて延伸吹込成形し、吹込成形体とする。この吹
込金型の容器胴部を賦形する部分(以下、胴部金型と称
することがある)の六面温度は、100’C以上、特に
140℃以上であることが好ましい。これにより容器へ
の耐熱性付与が短時間に実施できる・この胴部会屋費面
温度が100℃より低い温度の場合には容器の耐熱性が
不十分となる。
The preform heated (preheated) to a temperature in the above-mentioned stretchable range is first placed in a blow mold mold where the surface of the mold part that shapes the container body is heated to 100'C or higher using pressurized steam. Then stretch blow molding is performed to obtain a blow molded product. It is preferable that the six-sided temperature of the part of the blowing mold that shapes the container body (hereinafter sometimes referred to as the body mold) is 100'C or higher, particularly 140°C or higher. This allows heat resistance to be imparted to the container in a short time. If the body surface temperature is lower than 100°C, the heat resistance of the container will be insufficient.

該胴部金型の加熱は、通常金型内に設けた波路内に、加
圧水蒸気を導入することにより行うが、水蒸気の温度を
できるだけ高flAKすればそれだけ金型の昇温速度を
速くすることができるので好まL<、例えば3 klF
/cjc (温度約135℃’) 、  6kl?/s
lG (温度約1g o”c ) 、 to1g/aj
c(温度約190℃)等の加圧水蒸気を用いるのが好ま
しい。
Heating of the body mold is usually done by introducing pressurized steam into a wave path provided in the mold, but if the temperature of the steam is made as high as possible, the rate of temperature rise of the mold can be increased accordingly. It is preferable because L<, for example, 3 klF
/cjc (temperature approx. 135℃'), 6kl? /s
lG (temperature approx. 1g o”c), to1g/aj
It is preferable to use pressurized steam, such as at a temperature of about 190°C.

吹込成形において成形品を熱固定する時間は、金型表面
温度により異なるが、例えば温度が140℃以上の場合
には笑質的に金型を80°C以下迄降温する間に熱固定
が十分に進むため、吹込を開始する以前に水蒸気の導入
を停止しても良い。本発明では、水蒸気の導入を停止し
たのち、同じ流路内に冷却水を導入し、金型温度を80
”C以下としてから容器を取り出す。この金型温度が8
0°C迄低下する前に容器を破り出すと、取り出しi!
、 %l K容器の収縮及び変形が起こり、均一な内容
積及び形状を有する容器な得ることが#Lい。容器を取
り出す際の好ましい金型温度は65℃以下である。
The time to heat set the molded product in blow molding varies depending on the mold surface temperature, but for example, if the temperature is 140°C or higher, heat setting may be sufficient while cooling the mold to 80°C or lower. In order to proceed to the next step, the introduction of water vapor may be stopped before starting the blowing. In the present invention, after stopping the introduction of water vapor, cooling water is introduced into the same flow path to raise the mold temperature to 80°C.
Take out the container after the temperature is below 8°C.
If you break the container before the temperature drops to 0°C, you can remove it!
, %l K Shrinkage and deformation of the container occurs, and it is impossible to obtain a container with uniform internal volume and shape. The preferred mold temperature when taking out the container is 65° C. or lower.

吹込膨張は通常加圧流体例えば圧縮空気が用いられ、そ
の手段は従来公知の手段を用いることができる。
A pressurized fluid such as compressed air is normally used for the blowing expansion, and conventionally known means can be used for this purpose.

延伸(軸方向及び横方向)の程度は、2軸配向後の容器
の胴の部分(即ち円柱状の部分)の厚さ方向の屈折率が
1.48〜1.53あるいは延伸の面積倍率が4倍ない
し16倍になるようにするのが好ましい。その際、横方
向の斌伸倍率ヲ1.2倍ないし4倍、横取向の倍率を2
倍ないし10倍にするのが好ましい。
The degree of stretching (in the axial and lateral directions) is such that the refractive index in the thickness direction of the container body portion (i.e., cylindrical portion) after biaxial orientation is 1.48 to 1.53 or the area magnification of stretching is 1.48 to 1.53. It is preferable to increase the amount by 4 to 16 times. At that time, the horizontal direction magnification is 1.2 to 4 times, and the horizontal direction magnification is 2 times.
It is preferable to increase the amount by a factor of 10 to 10 times.

容器を成形する際の肩部及び/又は底部を賦形する部分
の金型温度は、この部分の延伸の籠度が上記胴部と同程
度であれば胴部の型温と同様にするのが良い。しかしな
がら、容器の肩部及び/又は底部は通常、胴部程に延伸
されて(・ない部分を含むため、胴部とは異なる温度と
するのが好ましい。このため、蚊部分の金型内には別途
設けた金型温度調節媒体、すなわち熱線(%に加熱水蒸
気)又は冷媒(特に水)の流路(熱媒と冷媒の流路は同
じである〕Kより温度調節を行う。本発明では該部分の
吹込成形時の温度を90℃以上とし、%に95℃〜11
0’Cの範囲にするのが好ましい。この温度範囲よりも
高温にすると、白濁などのため外観が急くなること、機
械的強度が低下すること等のため好ましくなく、また該
温度範囲よりも低温にすると得られた容器の耐熱性が劣
るため好ましくない。また、容器を取り出す際の紋温度
は100℃以下であり、好ましくは8G’C以下である
When molding a container, the mold temperature for the part that shapes the shoulder and/or bottom should be the same as the mold temperature for the body if the tightness of the stretching in this part is similar to that of the body. is good. However, the shoulders and/or bottom of the container usually include parts that are not as stretched (or not) as the body, and are therefore preferably at a different temperature than the body. The temperature is controlled by a separately provided mold temperature control medium, that is, a heat wire (heated steam) or a coolant (especially water) flow path (the heat medium and coolant flow paths are the same).In the present invention, The temperature during blow molding of the part is 90°C or higher, and the percentage is 95°C to 11°C.
It is preferable to set it in the range of 0'C. If the temperature is set higher than this range, the appearance will become cloudy and the mechanical strength will decrease, which is undesirable. If the temperature is set lower than this range, the resulting container will have poor heat resistance. Therefore, it is undesirable. Further, the temperature at which the container is taken out is 100° C. or lower, preferably 8 G'C or lower.

上記温度範囲よりも高い111度であると、容器の形状
が変形するため好ましくな(・。肩部の金型の温度−節
は、通常胴部金型からの伝熱を受けるため両部の関に設
けた断熱層の厚さの調節によりその伝熱量の調節を行え
ば、放冷の状態で行っても良いが、好ましくは冷却水等
の冷媒を微量、金型内の流路に導入することKよって行
う。肩部の金型の温度調節は、蚊肩部が胴部金型と接続
した構造をとるのであれば上記肩部と同様の温度論陣法
によって実施すれば良いが、胴部金型と独立した構造の
場合は胴部金型のときと同様の加熱及び冷却を実施する
方法、或いは、加熱媒体を連続的に導入する方法等によ
り調節することができる。
If the temperature is 111 degrees higher than the above temperature range, the shape of the container will be deformed, which is undesirable. If the amount of heat transfer is adjusted by adjusting the thickness of the heat insulating layer provided at the mold, it may be allowed to cool, but preferably a small amount of refrigerant such as cooling water is introduced into the flow path in the mold. The temperature of the mold for the shoulder part can be adjusted by the same temperature theory as for the shoulder part if the mosquito shoulder part is connected to the body part mold. In the case of a structure independent from the body mold, adjustment can be made by heating and cooling the same way as in the case of the body mold, or by continuously introducing a heating medium.

本発明の方法の温度に、金型を冷却するのに畳する時間
は、金層構造上許容される範囲内で頬くすることが容器
の生産性を向上するため好ましく、通常1分以内、好ま
しくは30秒以内である。
The time for cooling the mold to the temperature of the method of the present invention is preferably kept within the allowable range for the gold layer structure in order to improve the productivity of the container, and is usually within 1 minute. Preferably it is within 30 seconds.

本発明の装置に使用する吹込成形金型の構造は、胴部彫
込部と金型取付部との間に断熱層を有しており、該断熱
層は厚み51111以上、熱伝導度がI Kmlg・h
r・℃以下の材質のものが好ましく、例えばアスベスト
の如き無機材料、フェノール樹脂の如き熱硬化性樹脂、
4−フッ化エチレンの如きフッ素樹脂尋を使用する。金
型彫込部と取付部との閣は取付用のボルト或いは間隔を
規制するための金属部分等必要最少限の高熱伝導度部分
があっても良く、この場合は該高熱伝導度部と断熱層部
との面積北本は1/4以内が好ましく、また断熱層とし
て空気があっても良(・。
The structure of the blow molding mold used in the apparatus of the present invention has a heat insulating layer between the body carved part and the mold attachment part, and the heat insulating layer has a thickness of 51111 or more and a thermal conductivity of I. Kmlg・h
Materials with a temperature below r°C are preferable, such as inorganic materials such as asbestos, thermosetting resins such as phenolic resin,
A fluororesin resin such as 4-fluoroethylene is used. The space between the mold engraving part and the mounting part may have a minimum necessary high thermal conductivity part such as a bolt for mounting or a metal part for regulating the spacing, and in this case, the high thermal conductivity part and the insulation It is preferable that the area between the layers is within 1/4, and there may be air as a heat insulating layer (・.

彫込部分を構成する材質としては、熱伝導度の良好な金
属が好ましく使用されるが、特に熱伝導度がs o K
−/a、hr、’c以上の、例えばU金属及びMとMn
、 Mg+ 81 + C−勢の金属との合金或いはC
u金属及びCuとZn * Pbn 8tb8i + 
Ni 、 Be等の金属との合金が好ましい。また該部
分の材質の密度はAJ系材質の如き4 II/−以下の
ものが好ま耐熱性の優れたポリエステル容器を効率良く
生産し得る。
As the material constituting the carved portion, metals with good thermal conductivity are preferably used, and in particular, metals with good thermal conductivity are used.
−/a, hr, 'c or more, e.g. U metal and M and Mn
, Mg+ 81 + C- alloy or C
u metal and Cu and Zn * Pbn 8tb8i +
An alloy with metals such as Ni and Be is preferred. The density of the material of this part is preferably 4 II/- or less, such as AJ-based material, so that a polyester container with excellent heat resistance can be efficiently produced.

本発明の吹込金型では、金製胴部に設けた熱媒及び冷媒
流路の豪爾積A−)、断熱層の厚さT (*) 、断熱
層の熱伝導度K (Ktxl/m−br−”C)、断熱
層と彫込郷関の金蓋胴部重量W Ot> 、該金型を構
成する材質の比熱C(m79℃)とが下記式%式% 上記範囲以外であると、ポリエステル容器に耐熱性を付
与することが因麹であったり、容器を効率良く生産する
ことが困難となる。またwxc≦2 Km/℃の範囲が
好ましい。
In the blow mold of the present invention, the dimensions A-) of the heat medium and coolant flow paths provided in the metal body, the thickness T (*) of the heat insulating layer, and the thermal conductivity K (Ktxl/m -br-"C), the weight of the heat insulating layer and the body of the metal lid W Ot> of the mold, and the specific heat C (m79℃) of the material constituting the mold are expressed by the following formula % formula % If it is outside the above range In this case, it becomes difficult to impart heat resistance to the polyester container, and it becomes difficult to efficiently produce the container.Furthermore, the range of wxc≦2 Km/°C is preferable.

吹込金型の肩部は、胴部と断熱層により熱的に隔離され
ていることが好ましく、熱媒又は冷媒の流路も胴部とは
別であることが好ましい。
The shoulder of the blowing mold is preferably thermally isolated from the body by a heat insulating layer, and the flow path for the heating medium or coolant is also preferably separate from the body.

吹込金型の底部は、胴部と接続された構造であれば肩部
と同様にかつ胴部とは別途に温度制御されることが好ま
しく、胴部とは独立して作動する構造である場合も同様
である。但し、容器の肩部及び/又は底部の鷺伸の程度
が胴部と同程度で、厚さ方向の屈折率が1.48〜1.
53の範囲であれば、胴部と共通した温度制御であって
も良い。
If the bottom of the blowing mold has a structure connected to the body, it is preferable that the temperature is controlled in the same way as the shoulder and separately from the body, and if it has a structure that operates independently from the body. The same is true. However, the degree of elongation of the shoulder and/or bottom of the container is the same as that of the body, and the refractive index in the thickness direction is 1.48 to 1.
As long as the temperature is within the range of 53, the temperature control may be common to that of the body.

本発明によれば、耐熱収縮性、容量均一性等の優れた容
器を効率良く得ることができる。
According to the present invention, a container with excellent heat shrinkage resistance, capacity uniformity, etc. can be efficiently obtained.

以下、実施例により本発明を詳述する。なお主な特性値
の測定条件は次の通りである。
Hereinafter, the present invention will be explained in detail with reference to Examples. The measurement conditions for the main characteristic values are as follows.

ガラス転移温度(〒g): 290℃で溶融したのち0℃まで急冷したサンプルを示
差熱量計(パーキンエルマー社製DSC−1型を使用)
により10℃/Uの昇温速度で測定。
Glass transition temperature (〒g): A sample that was melted at 290°C and then rapidly cooled to 0°C was measured using a differential calorimeter (using PerkinElmer's DSC-1 model).
Measured at a heating rate of 10°C/U.

極限粘度(TV): 0−クロロフェノールを溶媒トシて35℃で測定。Intrinsic viscosity (TV): Measured at 35°C using 0-chlorophenol as a solvent.

配向度(z’n): アツベ屈折率計に偏光板を装置し、容器から切り象った
サンプルの厚さ方向及び平面方向の屈折率を温度25℃
でナトリウムのDllAを用〜・て一定し、両者の値の
差を計算により求めた。
Orientation degree (z'n): A polarizing plate is installed in an Atsube refractometer, and the refractive index in the thickness direction and plane direction of a sample cut from a container is measured at a temperature of 25°C.
Sodium DllA was kept constant at ~, and the difference between the two values was determined by calculation.

共重合成分の重量制置((C) vts ) :ポリマ
ーをメタノールで分解したのちガスクルマドグラフィー
により測定。
Weight control of copolymerized components ((C) vts): Measured by gas chromatography after decomposing the polymer with methanol.

に示す。第1図は、金型が開いている際に胴部金型をス
チームで加熱している状態を示し、菖2図は、金型が閉
じている際K111部金型を冷却水で冷却している状態
を示す、断面概略図である。
Shown below. Figure 1 shows that the body mold is heated with steam when the mold is open, and Figure 2 shows that the K111 part mold is cooled with cooling water when the mold is closed. FIG.

第1図及び第2図において、1は胴部金型。In FIGS. 1 and 2, 1 is a body mold.

2は肩部金型、3は底部金型、4は胴部と肩部との間の
断熱材、5はスチームを金型に導入するための弁、6は
冷却水を排出するための弁。
2 is a shoulder mold, 3 is a bottom mold, 4 is a heat insulator between the body and the shoulder, 5 is a valve for introducing steam into the mold, and 6 is a valve for discharging cooling water. .

7は冷却水を導入するための弁、8はスチームドレンを
排出するための弁、9は肩S金型に冷却水を導入する際
の流量14節弁、10は底部金WK熱媒を導入する際の
流量111節弁、11.12゜13はそれぞれ胴部、肩
部、底部の金型に設けられたスチーム及び/又は冷媒水
の流路を簡略して図示したものである。
7 is a valve for introducing cooling water, 8 is a valve for discharging steam drain, 9 is a 14-section valve for flow rate when introducing cooling water into the shoulder S mold, 10 is for introducing the bottom gold WK heat medium The flow rates 111, 11, 12 and 13 are simplified diagrams of the steam and/or refrigerant water flow paths provided in the body, shoulder and bottom molds, respectively.

弁5乃至8はいずれも電気的シーケンスにより所定の時
期に開閉可能な電磁弁を使用しである。
Valves 5 to 8 are all electromagnetic valves that can be opened and closed at predetermined times according to an electrical sequence.

吹込41tmをより奸しく説明した図な第3図乃至麩1
3図に丞す。
Figures 3 to 1 are diagrams that explain blowing 41tm in more detail.
See Figure 3.

の間の断熱材、+1は胴部の、12は肩部の。Insulation between, +1 on the torso and 12 on the shoulders.

13は底部の熱媒及び/又は冷媒の流路の一部。13 is a part of the heat medium and/or coolant flow path at the bottom.

14は金型取付部、15はその接続部、16は金m%部
と取付部の間の又番;金型取付部とその接続部の間に設
けた断熱層、17は金i誓部と金型を何部への接続部と
の間に設けた断熱層をそれぞれ示す。
14 is the mold attachment part, 15 is the connection part thereof, 16 is the number between the gold part and the attachment part; a heat insulating layer provided between the mold attachment part and the connection part, 17 is the gold part and the connection part of the mold to the other parts.

断熱層4の厚さは1■、断熱層16,17の厚さはそれ
ぞれ10■であり、断熱材には熱伝導度Q、22 Ka
t/*−br−”Cの4−フッ化エチレン樹脂を使用し
た。
The thickness of the heat insulating layer 4 is 1 cm, the thickness of the heat insulating layers 16 and 17 is each 10 cm, and the heat insulating material has a thermal conductivity of Q and 22 Ka.
A 4-fluoroethylene resin of t/*-br-''C was used.

また金型の胴部、肩部、底部及び金型取付部への接続部
の材質は、密度2.74 g/d 、比熱0.23m/
fi、熱伝導度10 s Km/lbr”CのU合金を
使用し、金型取付部は545Cの鋼材を使用した。
In addition, the material of the body, shoulder, and bottom of the mold, as well as the connection to the mold attachment part, has a density of 2.74 g/d and a specific heat of 0.23 m/d.
fi, a U alloy with a thermal conductivity of 10 s Km/lbr''C was used, and the mold attachment part was made of 545C steel.

熱媒及び冷媒の流路は(・ずれもlO簡直径とした。The heat medium and coolant flow paths (both have a simple diameter of lO).

rV= 0.71.  Tg= 77℃、  75p=
 259℃であるポリエチレンテレフタレートを除湿乾
燥機にて160℃で4時間乾燥し、チップ中の水分が0
.01 %以下の乾チップを得た。この乾チップを用い
て、8オンスの射出成形機(名機製作所製M−100型
機)及びホットランナ一式zgA取り金型により、直胴
部外径25簡、長さ130 tll r肉厚3.5g及
び重量40 grの有底プリフォームを成形した。成形
条件はシリンダー設定温度265〜270℃(ノズル部
での樹脂温度285℃)、射出圧力soo〜フooky
/d。
rV=0.71. Tg=77℃, 75p=
Polyethylene terephthalate at 259°C was dried at 160°C for 4 hours in a dehumidifying dryer until the moisture in the chips was 0.
.. Dry chips of less than 0.01% were obtained. Using this dry chip, an 8-ounce injection molding machine (M-100 model manufactured by Meiki Seisakusho) and a hot runner set zgA mold were used to mold the straight body with an outer diameter of 25 mm, a length of 130 tll, and a wall thickness of 3. .5 g and weight 40 gr were molded. The molding conditions are cylinder set temperature 265-270℃ (resin temperature at nozzle 285℃), injection pressure soo~hooky.
/d.

成形サイクル35秒、金層冷却水温度10〜20℃、射
出成形機シリンダー内での樹脂の滞留時間約2分とした
。得られたプリフォームは透明性の良好な実質的に非晶
のものであった。このプリフォームを用いて、風神吹込
成形機により、第14図乃至第16図に示す如き高さ2
75g。
The molding cycle was 35 seconds, the temperature of the gold layer cooling water was 10 to 20°C, and the residence time of the resin in the cylinder of the injection molding machine was about 2 minutes. The obtained preform was substantially amorphous with good transparency. Using this preform, the height 2 as shown in Fig. 14 to Fig.
75g.

胴部の直径75乃至80mの角柱ボトル状の形状を有す
る成形体を成形した。この時のブロー成形装置、成形条
件及び容器性能は我−1及び表−2の通りであった。
A molded body having a prismatic bottle-like shape with a body diameter of 75 to 80 m was molded. The blow molding equipment, molding conditions, and container performance at this time were as shown in I-1 and Table-2.

尚、肩部金型温度は20℃冷却水を微量流通するととに
より実施例1〜8及び比較例2〜4においては胴部金型
加熱完了時には105〜110℃、容器取り出し時には
70〜90℃となるよう調節した。比較例1及び5にお
いては成形を通じ60〜80℃であった。
In addition, the temperature of the shoulder mold was 105 to 110 °C when heating of the body mold was completed, and 70 to 90 °C when the container was taken out in Examples 1 to 8 and Comparative Examples 2 to 4 due to the passage of a small amount of 20 °C cooling water. It was adjusted so that In Comparative Examples 1 and 5, the temperature was 60 to 80°C throughout the molding.

実施例1〜5及び比較例1〜2の結果より、胴部金型の
吹込時温度が100℃以下の場合は容器の耐熱性が悪く
、また容器堆り出し時温度が80℃よりも高い温度であ
ると、成形収縮率が悪くなることが判る。また、実施例
6〜8及び比較例3〜Sの結果より、吹込金型が本発明
の範囲外では、成形サイクルが長くなること、容器の外
観又は耐熱性の良好なものの得j1(・ことがわかる。
From the results of Examples 1 to 5 and Comparative Examples 1 to 2, the heat resistance of the container is poor when the temperature at the time of blowing the body mold is 100°C or less, and the temperature at the time of unloading the container is higher than 80°C. It can be seen that the molding shrinkage rate worsens when the temperature increases. Furthermore, from the results of Examples 6 to 8 and Comparative Examples 3 to S, it is clear that if the blowing mold is outside the scope of the present invention, the molding cycle will be longer, and the benefits of the container having good appearance or heat resistance will be reduced. I understand.

また底部金型温度は100℃の液状熱媒体を流通するこ
とにより、肩部の温度とほぼ同等もしくは約5℃低い温
度となるよう調節した。
Furthermore, the temperature of the bottom mold was adjusted to be approximately equal to or about 5° C. lower than the temperature of the shoulder portion by flowing a 100° C. liquid heat medium.

比較例6 肩部に冷却水を通さない池は実施例1と同様に容器を成
形した。容器散り出し時の肩部金型温度は110℃であ
った。得られた容器は肩部が変形しており、成形収縮率
は約!−であった。
Comparative Example 6 A container was molded in the same manner as in Example 1, except for a pond in which cooling water was not allowed to pass through the shoulder. The temperature of the shoulder mold at the time of discharging the container was 110°C. The resulting container has deformed shoulders and a molding shrinkage rate of approx. -It was.

比較例7 底部に熱媒を流通しない他は実施例1と同様に容器を成
形した。この場合吹込成形時の底部金型温度は約80℃
、容器堆り出し時には約60℃であった。得られた容器
に9S’Cの熱水を充填したところ、底部に変形が生じ
て、容器の自立性が悪くなった。
Comparative Example 7 A container was molded in the same manner as in Example 1, except that no heat medium was passed through the bottom. In this case, the bottom mold temperature during blow molding is approximately 80℃.
The temperature was approximately 60° C. when the container was unloaded. When the obtained container was filled with hot water of 9 S'C, the bottom part was deformed and the container became less self-supporting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び館2図は本発明の吹込金製加熱及び/又は冷
却を行う際の1例を示す断拘図である。 第3図は本発明の吹込金製加熱及び肩部の正面図%第4
図は第3図の側面断面図、第6図は肩部の平面図、第6
図〜第8図は@S図のムームZ B−ぎ、c−c’部の
水平断面図をそれぞれ示す図であり、第9図、第10図
は底部金層の正面図及び断面図である、第11図は本発
明の他の1例を示す第3図のB−1′部に相当する金m
(胴部)の水平断面図であり、第12図、第13図は本
発明との比較を示した第11図と同様の断面図である。 第14図は本発明による容器の1例を示す半玉・面図及
び半断面図であり、第15図及び第16図はそれぞれ第
14図の各器胴部り、E部の水平断面の形状を示す断面
図である。 第6図 篇q図 第9図  第10図 第11図 第1z図
FIG. 1 and FIG. 2 are diagrams showing an example of heating and/or cooling of the blown metal according to the present invention. Figure 3 is a front view of the blown metal heating and shoulder portion of the present invention.
The figure is a side sectional view of Fig. 3, Fig. 6 is a plan view of the shoulder, and Fig. 6 is a plan view of the shoulder.
Figures to Figures 8 are diagrams showing horizontal cross-sectional views of the Moum Z B-g and c-c' portions of the @S diagram, respectively, and Figures 9 and 10 are front views and cross-sectional views of the bottom gold layer. Fig. 11 shows a gold plate corresponding to part B-1' in Fig. 3 showing another example of the present invention.
FIG. 12 and FIG. 13 are cross-sectional views similar to FIG. 11 showing a comparison with the present invention. FIG. 14 is a half-face view and a half-sectional view showing an example of a container according to the present invention, and FIGS. 15 and 16 are horizontal cross-sectional shapes of each container body and E section in FIG. 14, respectively. FIG. Figure 6 Figure q Figure 9 Figure 10 Figure 11 Figure 1z

Claims (1)

【特許請求の範囲】 1、エチレンテレフタレートを主たる繰り返し単位とす
るポリエステル樹脂よりなる有底予備成形体を、鷺伸可
能な範囲の温度で吹込成形金型内にて軸方向に蔦伸しか
つ横方向に吹込膨張させて、綱部の少なくとも一部が2
軸的に配向したポリエステル容器を製造する方法におい
て、容器胴部を賦形する金型部分に設けた流路内に加圧
水蒸気を導入して当該金m部分のam温度を100”C
以上に加熱し、この温度に保った状態で吹込成形を行い
、次いで上記流路内へ冷却水を導入して当該金型部分の
表面温度をlIo”c以下に冷却してから容器内の圧力
を減じ、金型を開き、容器を取り出すことを4I像とす
るポリエステル容器の製造法。 2、容器の肩部及び/又は底部を賦形する金型部分の表
面温度を、吹込成形時には90℃以上の温度としかつ容
器ik取り出すときには100℃以下の温度に保つこと
を特徴とする特許請求の範囲第1項記載のポリエステル
容器の製造法。 3、容器胴部を賦形する金朦彫込部の表面温度を調節し
得る吹込成形用金型を備えた吹込成形装置において、皺
彫込部と全1j1取付部との間に断熱層を設け、蚊断熱
服と彫込部との−に嵌向温度−節媒体の流路を設け、骸
流路の表面積(ム)と断熱層の厚さく劉、断熱層の熱伝
導度(幻、断熱層と彫込部との間の金型重量(ロ)及び
金型材質の比熱(C)とが下記式■及び■を満足する金
型を備えていることを特徴とする吹込成形装置。 A≧o、a x w x c      ・川−−−I
V丁 ≦ 200                 
 ・・・・・・・・・  ■促しA二表璽温度調節媒体
の流路の表面積(aj) T:断熱層の厚さ〔霞〕 K:断熱層の熱伝導度(i−/@・hr・℃〕W:断熱
層と彫込部間の胴部金型重量 〔l〕 C;骸金屋を構成する材質の比熱 (at/#’C) (崗、上記人、Wは容器1本当り、半割金朦片側当りの
数値)
[Claims] 1. A bottomed preform made of a polyester resin containing ethylene terephthalate as a main repeating unit is axially stretched and transversely stretched in a blow mold at a temperature within a range that allows stretching. By blowing in the direction, at least a part of the rope becomes 2
In a method for manufacturing an axially oriented polyester container, pressurized steam is introduced into a flow path provided in a mold section that shapes the container body to raise the am temperature of the gold section to 100"C.
Blow molding is performed while maintaining this temperature, and then cooling water is introduced into the flow path to cool the surface temperature of the mold part to below lIo"c, and then the pressure inside the container is A method for manufacturing polyester containers that involves reducing the temperature, opening the mold, and taking out the container. 2. The surface temperature of the mold part that shapes the shoulder and/or bottom of the container is 90°C during blow molding. A method for manufacturing a polyester container according to claim 1, characterized in that the temperature is maintained at a temperature above 100° C. or below when the container is taken out. 3. A metal carving portion that shapes the container body. In a blow molding device equipped with a blow molding mold that can adjust the surface temperature of A temperature-directing medium flow path is provided, and the surface area of the body flow path (mu), the thickness of the heat insulation layer, the thermal conductivity of the heat insulation layer (phantom), and the weight of the mold between the heat insulation layer and the carved part ( B) and specific heat (C) of the mold material satisfy the following formulas (1) and (2).A≧o, axwxc・kawa I
V-cho ≦ 200
・・・・・・・・・ ■Prompt A Double surface area of flow path of temperature control medium (aj) T: Thickness of heat insulating layer [haze] K: Thermal conductivity of heat insulating layer (i-/@・hr・℃】W: Body mold weight between the insulation layer and the carved part [l] C: Specific heat of the material that makes up the metalwork (at/#'C) (Gang, the above person, W is one container Hit, value per half of Kinshu one side)
JP57055482A 1982-04-05 1982-04-05 Method and apparatus for preparation of polyester container Pending JPS58173627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055482A JPS58173627A (en) 1982-04-05 1982-04-05 Method and apparatus for preparation of polyester container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055482A JPS58173627A (en) 1982-04-05 1982-04-05 Method and apparatus for preparation of polyester container

Publications (1)

Publication Number Publication Date
JPS58173627A true JPS58173627A (en) 1983-10-12

Family

ID=12999833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055482A Pending JPS58173627A (en) 1982-04-05 1982-04-05 Method and apparatus for preparation of polyester container

Country Status (1)

Country Link
JP (1) JPS58173627A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228989A (en) * 1992-02-21 1993-09-07 Nissei Asb Mach Co Ltd Blow cavity die
WO1997045245A1 (en) * 1996-05-30 1997-12-04 Yoshino Kogyosho Co., Ltd. Extrusion blow molded container having cylindrical drum portion and mold for shaping the container
WO2000074925A1 (en) * 1999-06-05 2000-12-14 Krupp Corpoplast Maschinenbau Gmbh Method and device for blow-moulding containers, using a star-shaped, cooled base insert
WO2014157447A1 (en) * 2013-03-27 2014-10-02 大日本印刷株式会社 Plastic bottle blow molding die
JP2014208434A (en) * 2013-03-27 2014-11-06 大日本印刷株式会社 Blow molding mold for plastic bottle
JP2014240179A (en) * 2013-05-17 2014-12-25 大日本印刷株式会社 Blow molding mold for plastic bottle
JP2018138330A (en) * 2017-02-24 2018-09-06 東洋製罐株式会社 Manufacturing method of synthetic resin container and blow molding mold
JP2021008124A (en) * 2019-03-20 2021-01-28 日精エー・エス・ビー機械株式会社 Method for manufacturing resin container and blow molding device
JP2022009856A (en) * 2019-11-21 2022-01-14 大日本印刷株式会社 Sterility filling method and sterility filling machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128A (en) * 1979-06-18 1981-01-06 Mitsubishi Plastics Ind Ltd Fixing heat of blow-molded parts
JPS5720329A (en) * 1980-07-10 1982-02-02 Dainippon Printing Co Ltd Production of heat-treated elongated hollow molded vessel
JPS57212033A (en) * 1981-06-25 1982-12-27 Yoshino Kogyosho Co Ltd Biaxial orientation blow molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128A (en) * 1979-06-18 1981-01-06 Mitsubishi Plastics Ind Ltd Fixing heat of blow-molded parts
JPS5720329A (en) * 1980-07-10 1982-02-02 Dainippon Printing Co Ltd Production of heat-treated elongated hollow molded vessel
JPS57212033A (en) * 1981-06-25 1982-12-27 Yoshino Kogyosho Co Ltd Biaxial orientation blow molding method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228989A (en) * 1992-02-21 1993-09-07 Nissei Asb Mach Co Ltd Blow cavity die
WO1997045245A1 (en) * 1996-05-30 1997-12-04 Yoshino Kogyosho Co., Ltd. Extrusion blow molded container having cylindrical drum portion and mold for shaping the container
WO2000074925A1 (en) * 1999-06-05 2000-12-14 Krupp Corpoplast Maschinenbau Gmbh Method and device for blow-moulding containers, using a star-shaped, cooled base insert
WO2014157447A1 (en) * 2013-03-27 2014-10-02 大日本印刷株式会社 Plastic bottle blow molding die
JP2014208434A (en) * 2013-03-27 2014-11-06 大日本印刷株式会社 Blow molding mold for plastic bottle
EP2979842A4 (en) * 2013-03-27 2016-12-07 Dainippon Printing Co Ltd Plastic bottle blow molding die
US9573316B2 (en) 2013-03-27 2017-02-21 Dai Nippon Printing Co., Ltd. Blow molding mold for plastic bottle
EP2979842B1 (en) 2013-03-27 2018-07-25 Dai Nippon Printing Co., Ltd. Plastic bottle blow molding die
JP2014240179A (en) * 2013-05-17 2014-12-25 大日本印刷株式会社 Blow molding mold for plastic bottle
JP2018138330A (en) * 2017-02-24 2018-09-06 東洋製罐株式会社 Manufacturing method of synthetic resin container and blow molding mold
JP2021008124A (en) * 2019-03-20 2021-01-28 日精エー・エス・ビー機械株式会社 Method for manufacturing resin container and blow molding device
JP2022009856A (en) * 2019-11-21 2022-01-14 大日本印刷株式会社 Sterility filling method and sterility filling machine

Similar Documents

Publication Publication Date Title
US4512948A (en) Method for making poly(ethylene terephthalate) article
US4476170A (en) Poly(ethylene terephthalate) articles and method
US4044086A (en) Method for making a blow molded oriented plastic bottle
US3934743A (en) Blow molded, oriented plastic bottle and method for making same
GB1604203A (en) Process for the production of oriented hollow body from a thermoplastics material
US5384354A (en) Polyester film for lamination onto metal sheet for processing of said sheet, and use thereof
DK158144B (en) PROCEDURE FOR THE PREPARATION OF A PREMIUM RESISTANT BOTTLE CARTRIDGE
JPH0351568B2 (en)
US4582665A (en) Method of making poly(ethylene terephthalate) articles
FI93850C (en) Heat-moldable polyaryl ether ketone discs
CN101808801B (en) Polyester bottle with resistance to heat and pressure and process for producing the same
JPS58173627A (en) Method and apparatus for preparation of polyester container
CA1197961A (en) Poly(ethylene terephthalate) articles and method
RU2479425C2 (en) Modified systems of hot pouring heads for injection blow moulding
JPS596216B2 (en) Method for manufacturing stretch-molded containers with excellent heat resistance
US4235837A (en) Method of making oriented containers
EP1468810B1 (en) Biaxial orientation blow molding process
JPS59103832A (en) Polyester vessel
JPS6218339B2 (en)
JPS60201909A (en) Manufacture of multilayer stretch blown bottle
JPH0462028A (en) Manufacture of high-stretch-blow-molded container
JPS5935333B2 (en) Method for manufacturing polyester containers
JPS6410329B2 (en)
JPH0678094B2 (en) Heat-resistant bottle made of synthetic resin and method for producing the same
JP2632960B2 (en) Biaxial stretch blow molding method and apparatus