JPS58170515A - Apparatus for collecting dust and recovering heat from converter waste gas - Google Patents

Apparatus for collecting dust and recovering heat from converter waste gas

Info

Publication number
JPS58170515A
JPS58170515A JP57054520A JP5452082A JPS58170515A JP S58170515 A JPS58170515 A JP S58170515A JP 57054520 A JP57054520 A JP 57054520A JP 5452082 A JP5452082 A JP 5452082A JP S58170515 A JPS58170515 A JP S58170515A
Authority
JP
Japan
Prior art keywords
gas
heat recovery
heat
dust
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57054520A
Other languages
Japanese (ja)
Inventor
Shigenori Onizuka
鬼塚 重則
Takanobu Watanabe
渡辺 高延
Katsumasa Yano
矢野 勝正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57054520A priority Critical patent/JPS58170515A/en
Publication of JPS58170515A publication Critical patent/JPS58170515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To carry out dust collection and heat recovery of a converter waste gas, by supplying the gas at 800 deg.C to a moving bed type gas colling high temp. dust collecting part in which one end part of a heat pipe group is embedded to obtain a clean gas in a high heat recovery ratio and in a reduced waste water treating amount. CONSTITUTION:A waste gas from a converter 1 is directly subjected to heat recovery in a high temp. heat recovery part 4 in a high concn. state to lower the temp. thereof from about 1,450 deg.C to about 800 deg.C. In the next step, the treated gas is supplied to a moving bed type gas cooling high temp. dust collecting part 10 in which one end part of a heat pipe group 27 is embedded to carry out heat recovery as well as to lower the temp. thereof from about 800 deg.C to 300-350 deg.C while molten dust therein is collected in a stickiness free solidified state to enable the use thereof in a low temp. heat recovery part 14 comprising a usual heat exchanger. In addition, heat recovery from 300-350 deg.C to 100-150 deg.C is carried out in this low temp. heat recovery part 14. As the result, recovered energy becomes large and the sensible heat of the waste gas can be recovered within a range from about 1,450 deg.C to 100-150 deg.C while various apparatuses in the low temp. part are miniaturized to be made economical.

Description

【発明の詳細な説明】 本発明は転炉から排出される高温の保有熱を有効に1収
し、そのガス中に含まれる浴融鉄粒、鉄粉、スラグなど
のダストを除去し、もってl々沖な燃料ガスとして回収
する転炉排ガスの集塵・熱回収装置に関するものである
[Detailed Description of the Invention] The present invention effectively collects the high-temperature retained heat discharged from the converter, removes dust such as bath molten iron grains, iron powder, and slag contained in the gas. This invention relates to a dust collection and heat recovery device for converter exhaust gas, which is recovered as fuel gas.

周知のとおシ、転炉排ガスは1460℃前後の高温であ
る上に、溶融鉄粒、鉄粉、スラグなどのダストを含んで
いる。しかし、そのガスは水素、−酸化炭素を多く含ん
でいるため、従来からある程度の熱回収を行なったのち
、除塵、冷却を行なって燃料ガスとして回収する非燃焼
処理方式が採用されている。特に最近においては、省エ
ネルギーの観点から、この熱回収、有効ガスの回収が積
極的に行なわれている。
As is well known, converter exhaust gas has a high temperature of around 1460° C. and also contains dust such as molten iron particles, iron powder, and slag. However, since the gas contains a large amount of hydrogen and carbon oxides, a non-combustion treatment method has traditionally been adopted in which a certain amount of heat is recovered, followed by dust removal and cooling, and the gas is recovered as fuel gas. Particularly recently, from the viewpoint of energy conservation, this heat recovery and effective gas recovery have been actively carried out.

また極く最近においては、転炉に酸素と同時に石炭と水
蒸気を吹き込み、鉄の精製と同時に石炭のガス化を行な
い、積極的に一酸化炭素、水素を製造するプロセスが開
発されている。このような場合には、格別その熱回収お
よび肴浄な有効ガスの回収が効率よく行なわれることが
望まれる。
More recently, a process has been developed that actively produces carbon monoxide and hydrogen by injecting coal and steam into a converter at the same time as oxygen and gasifying the coal at the same time as iron refining. In such a case, it is desired that the heat recovery and the recovery of the useful gas be carried out particularly efficiently.

従来の処理方式の一例を述べると以下のとおりで、こ口
は働く一般的に行なわれているものである。すなわち、
転炉ガスダクトに廃熱ボイラのような高湿圓収部を設け
、1450℃の温度レベルから約800℃の温度レベル
まで熱回収がなされる。なお、ここでさらに低い温度レ
ベルまでガス温度を下げるように熱回収することは、飛
散してくるダスト、特に6Mした鉄、スラッゾが固形化
することによって廃熱ボイラの閉塞を生じるため現実的
には不可能とされている。つまシ、溶融鉄、スラッゾが
固化しないで、スラッギング状態で流下する温度までし
か、この部分での熱回収は行なわれ得ない訳である。廃
熱ボイラからのガスはクエンチャ−に直接導入され散水
冷却される。この時同時に溶融鉄、鉄粉、スラグ類など
の大部分のダストも除去される。そして、その後必要に
応じて湿式集塵器を通すなどの浄化処理を行なって燃料
ガスとしてガスホルダーに貯える。以上のように、従来
の処理方式は熱の回収率が極めて悪く、しかも冷却のた
めのクエンチ水が多量になシ、また転炉ガス中のダスト
は多量でクエンチするまではほとんどII!塵されてい
ないため、集塵効率を上ける観点からもクエンチ水を多
く必要とした。このため排水量も当然大きくなり、排水
処理部が大型化するなどの欠点を有していた。
An example of a conventional processing method is as follows, and is a commonly used method. That is,
A high humidity collection section such as a waste heat boiler is provided in the converter gas duct, and heat is recovered from a temperature level of 1450°C to a temperature level of about 800°C. Note that it is not practical to recover heat to lower the gas temperature to a lower temperature level because the scattered dust, especially 6M iron and slazo, solidifies and causes blockage of the waste heat boiler. is considered impossible. Heat recovery in this part can only be performed up to a temperature at which the pickle, molten iron, and sludzo flow down in a slagging state without solidifying. Gas from the waste heat boiler is introduced directly into the quencher and cooled by water spray. At this time, most of the dust such as molten iron, iron powder, and slag is also removed. Then, if necessary, the gas is purified by passing it through a wet dust collector, etc., and then stored in a gas holder as fuel gas. As mentioned above, the conventional treatment method has an extremely poor heat recovery rate, does not require a large amount of quench water for cooling, and there is a large amount of dust in the converter gas, which can hardly be used until it is quenched. Since no dust was collected, a large amount of quench water was required to improve dust collection efficiency. As a result, the amount of wastewater naturally increases, and the wastewater treatment section has the disadvantage of becoming larger.

さて、上記の欠点を生じる最大の原因は、約800℃で
各楠の多量のダストを含む廃熱ボイラ出口ガスを処理し
て理想的には100℃以下まで熱回収できる有効な乾式
の熱交換器が存在しないことにある。すなわち、このガ
ス中には単に多量のダストが含ま口るというだけでなく
、温度が下がると粘着性を帯びて固形化する溶―状論の
鉄、スラッゾなどを含んでいるため、その問題解決を困
難にしている訳である。
Now, the biggest cause of the above-mentioned drawbacks is the effective dry heat exchange that can process waste heat boiler outlet gas containing a large amount of dust from each camphor tree at approximately 800°C and recover heat ideally to below 100°C. The reason lies in the fact that the vessel does not exist. In other words, this gas not only contains a large amount of dust, but also contains dissolved iron and slazo, which become sticky and solidify when the temperature drops, so it is difficult to solve this problem. This makes it difficult.

本発明は上記の欠点を解決するためになされたもので、
転炉排ガスダクトに高温熱回収部を設け、この尚温熱回
収部の下流側にヒートパイプ群の一端部が埋設されたム
ライトあるいはシリカもしくはアルミナなどの球状ろ過
材からなる移動床式のガス冷却扁温染asigを接続し
、ヒートパイプ群の他端部には被加熱用気体流を流すよ
うになし、前記移動床式のガス冷却高温集塵部の下流ダ
クトに低温熱同収部を設け、この低温熱同収部の下流に
水洗冷却集塵塔を接続し、さらに誘引送風機を介して転
炉生成ガス圓収部を接続するように構成したものである
。こnにより、熱回収率が高く、しかも清浄なガスを得
て、排水処理量の少ない転炉ガスの集塵熱回収装置を提
供することができるものである。
The present invention has been made to solve the above-mentioned drawbacks.
A high-temperature heat recovery section is provided in the converter exhaust gas duct, and a moving bed type gas cooling plate made of spherical filter material such as mullite, silica, or alumina is installed downstream of this high-temperature heat recovery section, with one end of a group of heat pipes buried. A hot-dyed ASIG is connected, the other end of the heat pipe group is configured to flow a gas flow to be heated, and a low-temperature heat absorption section is provided in the downstream duct of the moving bed type gas-cooled high-temperature dust collection section, A water-washing cooling dust collection tower is connected downstream of this low-temperature heat absorption section, and further connected to a converter produced gas collection section via an induced blower. As a result, it is possible to provide a converter gas dust collecting and heat recovery device that has a high heat recovery rate, obtains clean gas, and requires a small amount of waste water to be treated.

以下、本発明の構成を内面に示す一実施態様に基づいて
説明する。第1図は本発明の全構成を示し、第2図は本
発明の主要部分をなすガス冷却(熱回収)・集塵部を取
シ出して示したものである。
Hereinafter, the structure of the present invention will be explained based on an embodiment shown inside. FIG. 1 shows the entire structure of the present invention, and FIG. 2 shows a gas cooling (heat recovery)/dust collection section which is the main part of the present invention.

なお、第1図ではこのガス冷却・集塵部の全体は示すが
、その構成の詳細は示さず、第2図に詳細を示している
Although FIG. 1 shows the entirety of this gas cooling/dust collecting section, the details of its construction are not shown, and the details are shown in FIG. 2.

(1)は溶融した銑鉄に酸素または空気を吹き込み精製
する製鋼用転炉である。なお、この転炉(1)に微粉〆
石炭およびスチームをランス(図示せず)から吹き込め
ば、gl鉄床石炭ガス化炉の原形を構成することになる
。すなわち、製銅用転炉(1)の運転では、水素および
一酸化炭素を含む燃料ガスが生成されるが、上述の石炭
を追加投入することによって、より長期的に多重の水素
および一酸化炭素が生成される訳である。この転炉(1
)の上部にフードケース(2)を介して転炉排ガスダク
ト(3)を接続し、この転炉排ガスダクト(3)の熱放
射部に廃熱ボイラである高温熱回収部(4)を形成する
。なお、(5)は必要に応じて設置される蒸気ドラムで
あシ、(6)はその蒸気取り出し管である。
(1) is a steelmaking converter that purifies molten pig iron by blowing oxygen or air into it. Incidentally, if pulverized coal and steam are blown into this converter (1) through a lance (not shown), the original form of a GL anvil coal gasifier will be constructed. In other words, when operating the copper converter (1), fuel gas containing hydrogen and carbon monoxide is produced, but by adding the above-mentioned coal, multiple hydrogen and carbon monoxide gases are produced over a longer period of time. is generated. This converter (1
) is connected to the converter exhaust gas duct (3) via the hood case (2), and a high-temperature heat recovery section (4), which is a waste heat boiler, is formed in the heat radiation section of the converter exhaust gas duct (3). do. In addition, (5) is a steam drum installed as needed, and (6) is its steam extraction pipe.

高温熱回収部(4)の下流に、ホッパー(7)から投入
されたムライトあるいはシリカもしくはアルミナなどの
耐火物で作らnたボールの球状ろ過材(8)をルーバ支
持体(9)の闇に層状に移動可能に充填して形成1〜た
果聾層を有する移動床式の乾式ガス冷却高温集崇部α0
を接続する。ここで、このガス冷却A温集壷部αqは乾
式ガス冷却の性能を持ちかつその熱の回収が可能なよう
に第2図に示した構成罠なっている。なお、第2図は第
1図の視舒方向と90°の角をなす方向から見たもので
ある。ここでは、球状ろ過材(8)によって形成される
移動層内に乾式のヒートパイプ群(財)の一端部が埋設
され、そのヒートパイプ群(財)の隔壁(2)で支持さ
れて放熱部四に他端部を露出している。曽は熱回収用の
熱媒体で、通常は燃焼用の空気などの気体媒体である。
Downstream of the high-temperature heat recovery section (4), a spherical filter material (8) made of refractory material such as mullite, silica, or alumina is charged from the hopper (7) into the darkness of the louver support (9). A movable bed type dry gas cooling high temperature collecting section α0 having a laminar layer formed by being movably filled in a layered manner.
Connect. Here, this gas cooling A temperature collection pot αq has the configuration shown in FIG. 2 so as to have the performance of dry gas cooling and to be able to recover its heat. Note that FIG. 2 is viewed from a direction making a 90° angle with the viewing direction of FIG. 1. Here, one end of a dry heat pipe group is buried in a moving layer formed by a spherical filter material (8), and is supported by a partition wall (2) of the heat pipe group to form a heat dissipation section. The other end is exposed on the fourth side. A heat carrier is a heat transfer medium for heat recovery, usually a gaseous medium such as air for combustion.

なお、第1図、第2図において、Qυはダスト分離機(
篩)、υはダスト取シ出し管である。
In addition, in Figures 1 and 2, Qυ is the dust separator (
sieve), υ is the dust removal pipe.

上記ガス冷却高温集塵部α呻の下流側ダクトに通常の熱
交換器よシなる低温熱回収部α4を設置する。
A low-temperature heat recovery section α4, such as a normal heat exchanger, is installed in the downstream duct of the gas-cooled high-temperature dust collection section α.

この低温熱回収部04は第1図ではチューブアンドセル
の熱交換器で構成され、水供給パイプ(至)からの供給
水を予熱し、温水供給パイプ(ト)を通して前記高温熱
回収部(4)へ温水を供給するようにしているが、必ら
ずしも、このような熱交換器でなくと本よく、回転蓄熱
型の熱交換器を採用してもよい上記低湿熱回収部αくの
下流に水クエンチ方式の冷却集塵塔(ロ)を接続する。
This low-temperature heat recovery section 04 is composed of a tube-and-cell heat exchanger in FIG. ), but it is not necessary to use such a heat exchanger, and a rotary heat storage type heat exchanger may also be used. A water quench type cooling dust collection tower (b) is connected downstream.

ここで(へ)は冷却集塾塔(17)の散水管(ト)に冷
却水を供給する水供給パイプでToシ、(ホ)は廃水取
シ出し管である。(2)は冷却蛤参塔αηの出口側に接
続さnたミストセパレータ、(ハ)は排ガス誘引送風機
、(財)は切り換え弁、四はahガスホルダー、(ホ)
はフレアスタックである。
Here, (f) is a water supply pipe that supplies cooling water to the water sprinkler pipe (g) of the cooling collection tower (17), and (e) is a waste water outlet pipe. (2) is a mist separator connected to the outlet side of the cooling clam tower αη, (c) is an exhaust gas induced blower, (F) is a switching valve, (4) is an ah gas holder, (e)
is a flare stack.

以上のように構成された装置において、転炉(1)から
排出されるガスは1450℃にも達する高温で、1QQ
f/Hw1以上の高濃度のダストを含む、Co、 %e
 co!。
In the apparatus configured as above, the gas discharged from the converter (1) is at a high temperature of 1450°C, and the temperature is 1QQ.
Co, %e, including dust with high concentration of f/Hw1 or more
co! .

馬などから構成されるガスである。そして、特徴的なこ
とはそのダストがほとんど溶融状態にあることで、しか
もダスト成分が鉄あるいはスラップなど神々雑多である
ことである。このようなガスがダクト(3)を通り高温
熱回収部(4)に導入され熱回収される。ただし、ここ
での熱回収は約800′ctでであシ、それ以下の温度
までの熱回収は現実的には困難である。何故ならばSO
O℃以下では上記の溶融したダストが固形化する温度で
あシ、熱交換器内で固まり、補足さnlその機能を停止
させる現象を起すからである。800℃以上の運転状態
ではダストはスラッギング状態で管壁にそって流下する
状況下にて運転さnているので大きな問題はない。
It is a gas made up of things like horses. What is characteristic is that the dust is mostly in a molten state, and the dust components are made up of iron, slap, and other miscellaneous materials. Such gas passes through the duct (3) and is introduced into the high temperature heat recovery section (4) where the heat is recovered. However, the heat recovery here is limited to about 800'ct, and it is practically difficult to recover heat to a temperature lower than that. Because S.O.
This is because at temperatures below 0°C, the above-mentioned molten dust solidifies, solidifying inside the heat exchanger and causing a phenomenon in which the function of the heat exchanger is stopped. When the temperature is 800° C. or higher, the dust flows down along the pipe wall in a slagging state, so there is no major problem.

従来では、この溶融ダストが固形化しても何らの患影譬
を及はさず、低温度域たとえば800℃〜400 ′c
まででも熱回収し、集塵する能力を有するものがなかっ
たので、大きな熱損失と多大の水処理の負担が存在する
ことを承知の上で800℃のガスを直接水クエンチ方式
の冷却集塵塔へ導入処理していたわけである。本発明で
は、SOO℃のガスをと一ドパイブ群匈の一端部が埋設
された移動床式のガス冷却高温集塵部αQに供給して従
来の欠点を解消し、大きな損失をなくしている。すなわ
ち、ルーバ支持体(9)を横切り、ヒートパイプ群(財
)の埋め込まれた球状ろ過材(8)で構成される移動層
に導入された排ガスは、ヒートバイブW#翰を介して熱
謀体曽へ伝熱さn1熱回収される。この時、排ガスは当
然冷却され、移動層出口では800〜850℃になる。
Conventionally, even if this molten dust solidifies, it does not cause any adverse effects, and it has been used in low temperature ranges such as 800°C to 400'c.
Until now, there was no equipment that had the ability to recover heat and collect dust, so we decided to use a direct water quench method to cool the 800°C gas and collect dust, knowing that there would be a large heat loss and a large burden of water treatment. They were introducing it into the tower and processing it. In the present invention, gas at SOO° C. is supplied to a moving bed type gas-cooled high-temperature dust collection section αQ in which one end of a pipe group is buried, thereby solving the conventional drawbacks and eliminating large losses. In other words, the exhaust gas that crosses the louver support (9) and is introduced into the moving layer composed of the spherical filter material (8) in which the heat pipe group is embedded is heated by the heat vibrator W#. The n1 heat transferred to the body is recovered. At this time, the exhaust gas is naturally cooled and reaches a temperature of 800 to 850°C at the exit of the moving bed.

この間の冷却によって、排ガス中に存在した溶融ダスト
は固形化するが、このダストは球状ろ過材(8ンに付着
捕捉さnてろ過され、出口側では数2カーにまで減少す
る。
By cooling during this time, the molten dust present in the exhaust gas solidifies, but this dust adheres to and is captured by a spherical filter material (8 mm) and is filtered, reducing to a few 2 particles on the exit side.

ここで、球状ろ過材(8月よムライトあるいはシリカも
しくはアルミナなとの耐火材を成型して球状にしたもの
が良く、一般に移動層集塵装櫨では使用することが提案
されているようなコークス、石炭、砂などの不定形の破
砕品は好ましくない。何故ならは、これらは確かにダス
トの捕捉率の点からは効率的かもし口ないが、ここでの
ダストは溶融鉄、#I融ススラッグ固形化しながら捕捉
されるものであるので、このようなろ過材ではろ過後、
これらを分離することがほとんど不可能であるためであ
る。そ口に対して、本発明で使用する耐火材を成型した
球状ろ過材tは、ダストの付着状部、・がゆるやかであ
シ、振動篩などのダスト分離機(ロ)によって容易に分
離される。従って、分離後のろ過材はパケットエレベー
タ(至)などの適当な手段でホッパー(7)へ戻すこと
によって繰返し使用することができ、撫めて経済的であ
る。
Here, a spherical filter material (a spherical filter material made by molding a refractory material such as mullite, silica, or alumina) is preferable, and coke, which is generally proposed to be used in a moving bed dust collector, is recommended. Irregularly shaped crushed products such as , coal, and sand are not preferable, because although these are certainly efficient in terms of dust capture rate, the dust here is molten iron, #I molten slag, etc. Since it is captured while solidifying, with such filter media, after filtration,
This is because it is almost impossible to separate these. On the other hand, the spherical filter material t molded from the refractory material used in the present invention has a loose dust-adhesive part, and is easily separated by a dust separator (b) such as a vibrating sieve. Ru. Therefore, the filter material after separation can be repeatedly used by returning it to the hopper (7) by an appropriate means such as a packet elevator (toward), which is economical.

上記ガス冷却高温集塵部(ト)を出たガス中のダスト量
は前述のように数y/Mdであるが、同時にガス温度が
800〜860℃までに低下させられているので、この
ダストはもはや完全に固形化しておシ、溶融状態のとき
のような粘着性を消失してしまっている。従って、この
ガス冷却高温集塵部(至)の下流に設置される低温熱同
収部(ロ)は従来から一般に用いらnているチューブア
ンドセル形式、回転蓄熱型の熱交換器などが使用できる
訳である。この低温熱回収部α◆で800〜850℃の
温度から100〜150 ’Cまで熱回収がなされる。
The amount of dust in the gas that exits the gas cooling high temperature dust collection section (G) is several y/Md as mentioned above, but at the same time the gas temperature is lowered to 800-860°C, so this dust It has completely solidified and lost its viscous properties as in the molten state. Therefore, the low-temperature heat collection section (B) installed downstream of this gas-cooled high-temperature dust collection section (B) uses commonly used tube-and-cell type heat exchangers, rotary heat storage type heat exchangers, etc. It is possible. Heat is recovered from a temperature of 800 to 850°C to 100 to 150'C in this low temperature heat recovery section α◆.

そして、最終的に水クエンチ方式の冷却集塵塔αηに導
入処理されて、数十mV″M−までの除聾と60℃前後
までの冷却がなされ、ミストセパレータ(2)で水滴が
除去され、清浄な%、Coを含むガスになる。このガス
は排ガス誘引送風機磐を介して直接使用されるか、ガス
ホルダー(ホ)に貯蔵される。なお、運転開始時など、
十分高濃度のii、、coを含まない場合は切シ換え弁
■を操作してフレアスタック(ホ)から燃焼放出される
。なお、水クエンチ方式の冷却集塵塔(財)の廃水取少
出し管翰から排出される排水は必要に応じて冷却、除塵
などの処理をしたのち、水供給バイブQ呻から供給され
る冷却水として循環させるようにしてもよい。
Finally, it is introduced into a water quench type cooling dust collection tower αη, where it is deafened to several tens of mV″M- and cooled to around 60°C, and water droplets are removed by a mist separator (2). , a clean gas containing % and Co. This gas is used directly via the exhaust gas induced blower or stored in the gas holder (E). In addition, at the start of operation, etc.
If it does not contain sufficiently high concentrations of ii, , and co, operate the switching valve ① to burn and release it from the flare stack (e). In addition, the wastewater discharged from the wastewater collection pipe of the water quench type cooling dust collection tower (Foundation) is cooled and treated as necessary to remove dust, and then cooled by being supplied from the water supply Vibe Q. It may also be circulated as water.

以上峰細に述べたように、本発明の転炉排ガスの集畢・
熱回収装置は転炉排ガスを高濃度のまま高温熱回収部に
おいて熱回収しく約1450℃から約800℃)、次い
でヒートパイプ群の一端部が坤するとともに(約800
℃から80(h850℃)、溶拳ダストを固形化し補集
してダストの粘青性を解消し、通常の熱交換器よりなる
低温熱同収部の使用を可能ならしめ、この低温熱回収部
で80 ()−850℃から100〜150℃までの熱
回収を行なうように構成されているので、回収エネルギ
ーが大きいhに、排ガスの顕熱を約1450℃から10
0〜150℃まで回収でき、低温部での諸装置が小型化
され経済的である。特に、水洗冷却集塵塔での使用水量
の減少、必要排水処理量の減少は極めて大きい。
As described above in detail, the converter exhaust gas collection and
The heat recovery device recovers heat from the converter exhaust gas in a high-temperature heat recovery section while keeping it at a high concentration (approximately 1450℃ to approximately 800℃), and then one end of the heat pipe group is removed (approximately 800℃).
℃ to 80℃ (h850℃), the molten dust is solidified and collected to eliminate the viscosity of the dust, making it possible to use a low-temperature heat collection section consisting of an ordinary heat exchanger, and to recover the low-temperature heat. The unit is configured to recover heat from 80 () -850℃ to 100 to 150℃, so the sensible heat of the exhaust gas is recovered from approximately 1450℃ to 10
It can be recovered up to 0 to 150°C, and the various devices in the low-temperature section are miniaturized, making it economical. In particular, the reduction in the amount of water used in the water-cooled dust collection tower and the amount of wastewater treatment required are extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図はその全体構成
図、第2図は要部の構成図である。 (1)・・・製鋼用転炉、(3)・・・転炉排ガスダク
ト、(4)・・・高温熱同収部、(8)−・球状ろ過材
、(9し・ルーバ支持体、0Q・・・ガス冷却高温集率
部、α◆・・・低温熱同収部、αη・・・水洗冷却集塵
塔、す・・・排ガス誘引送風機、(ハ)・・・ガスホル
ダー、(支)・・・ヒートバイブ群、翰・・・放熱部
The drawings show an embodiment of the present invention; FIG. 1 is a diagram of its overall configuration, and FIG. 2 is a diagram of its essential parts. (1)...Converter for steelmaking, (3)...Converter exhaust gas duct, (4)...High temperature heat absorption section, (8)--Spherical filter material, (9--Louver support , 0Q...Gas cooling high temperature collection section, α◆...Low temperature heat collection section, αη...Water cooling dust collection tower, Su...Exhaust gas induced blower, (c)...Gas holder, (Support)...Heat vibrator group, Han...Heat dissipation part

Claims (1)

【特許請求の範囲】[Claims] 1、 転炉排ガスダクトに高温熱回収部を設け、この高
温熱回収部の下流側にヒートバイブ群の一端部が埋設さ
口たムライトあるいはシリカもしくはアルミナなどの球
状ろ過材からなる移動床式のガス冷却藁温集塵部を接続
し、ヒートバイブ群の他端部には被加熱用気体流を流す
ようになし、前記移動床式のガス冷却高温集#に都の下
流ダクトに低温熱回収部を設け、この低温熱回収部の下
流に水洗冷却集塵塔を接続し、芒らに誘引送風機を介し
て転炉生成ガス回収部を接続してなることを特徴とする
転炉排ガスの東部・熱回収装置。
1. A high-temperature heat recovery section is installed in the converter exhaust gas duct, and one end of the heat vibrator group is buried downstream of this high-temperature heat recovery section. A gas-cooled straw-warming dust collection section is connected, and a heated gas flow is made to flow through the other end of the heat vibe group, and low-temperature heat is recovered to the downstream duct of the moving bed type gas-cooled high-temperature collector. A water-cooled dust collection tower is connected downstream of the low-temperature heat recovery section, and a converter generated gas recovery section is connected to the awn via an induced blower.・Heat recovery equipment.
JP57054520A 1982-03-31 1982-03-31 Apparatus for collecting dust and recovering heat from converter waste gas Pending JPS58170515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054520A JPS58170515A (en) 1982-03-31 1982-03-31 Apparatus for collecting dust and recovering heat from converter waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054520A JPS58170515A (en) 1982-03-31 1982-03-31 Apparatus for collecting dust and recovering heat from converter waste gas

Publications (1)

Publication Number Publication Date
JPS58170515A true JPS58170515A (en) 1983-10-07

Family

ID=12972926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054520A Pending JPS58170515A (en) 1982-03-31 1982-03-31 Apparatus for collecting dust and recovering heat from converter waste gas

Country Status (1)

Country Link
JP (1) JPS58170515A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011089A1 (en) * 2011-07-21 2013-01-24 Siemens Vai Metals Technologies Gmbh Method and device for the dust removal and cooling of converter gas
RU2495135C1 (en) * 2012-05-15 2013-10-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ МЭИ") Device for recovery of heat of effluent converter gases
RU2637439C1 (en) * 2016-07-21 2017-12-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method for converter gases utilisation for hydrogen production
CN107477551A (en) * 2017-08-22 2017-12-15 上海驰春节能科技有限公司 A kind of dry slag waste heat boiler of quenching
RU2703012C1 (en) * 2018-12-29 2019-10-15 АО "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") Method and system for utilization of converter steam
WO2021018030A1 (en) * 2019-07-30 2021-02-04 中国科学院力学研究所 Converter gas aftertreatment and waste heat recovery device
CN112342337A (en) * 2020-11-04 2021-02-09 中国科学院力学研究所 Dry type waste heat recovery and dust removal device and method for converter flue gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011089A1 (en) * 2011-07-21 2013-01-24 Siemens Vai Metals Technologies Gmbh Method and device for the dust removal and cooling of converter gas
RU2495135C1 (en) * 2012-05-15 2013-10-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ МЭИ") Device for recovery of heat of effluent converter gases
RU2637439C1 (en) * 2016-07-21 2017-12-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method for converter gases utilisation for hydrogen production
CN107477551A (en) * 2017-08-22 2017-12-15 上海驰春节能科技有限公司 A kind of dry slag waste heat boiler of quenching
CN107477551B (en) * 2017-08-22 2019-06-04 上海驰春节能科技有限公司 A kind of dry slag waste heat boiler of quenching
RU2703012C1 (en) * 2018-12-29 2019-10-15 АО "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") Method and system for utilization of converter steam
WO2021018030A1 (en) * 2019-07-30 2021-02-04 中国科学院力学研究所 Converter gas aftertreatment and waste heat recovery device
CN112342337A (en) * 2020-11-04 2021-02-09 中国科学院力学研究所 Dry type waste heat recovery and dust removal device and method for converter flue gas
CN112342337B (en) * 2020-11-04 2023-09-12 中国科学院力学研究所 Dry type waste heat recovery and dust removal device and method for converter flue gas

Similar Documents

Publication Publication Date Title
CN102424867B (en) Slag granulating and waste heat recovery device
CN104593085A (en) Coal gasifier for slag granulation and coal gas preparation process
TW201020020A (en) Method for scrubbing a flue gas of a metallurgical plant and flue gas scrubbing apparatus
JP2010019525A (en) Exhaust gas treatment facility and dust recovery method by exhaust gas treatment facility
JPS58170515A (en) Apparatus for collecting dust and recovering heat from converter waste gas
CN101864504B (en) Method for raising air temperature of hot blast stove by recovering sensible heat of blast furnace slag
JP2011206696A (en) Deposit drying device using waste heat
CN201825962U (en) Dry-type metallurgical molten slag treating device
CN103088213B (en) A kind of device and method cooling direct-reduction iron block
JP4137266B2 (en) Reduced iron production method
CN204848782U (en) Slag granulation coal gasifier
CN210030754U (en) Heat recovery and solidification device for molten blast furnace slag fluidized bed
JP2001311588A (en) Exhaust gas treatment method and apparatus
CN101914642B (en) Waste heat recovery device for expanded slag balls
JPH04232217A (en) Method for cleaning waste gas in secondary aluminum melting plant and cleaning apparatus used for this method
JP2004163034A (en) Molten slag cooling device and method, and gasification melting system using molten slag cooling device
JPS6274009A (en) Method for generating electric power by recovery of pressure from top of blast furnace
CN204737924U (en) Device of desorption gasifier synthetic gas flying dust
KR20100110220A (en) Method for treating slag and apparatus used by the same
JP3848029B2 (en) Power generation equipment using coal gasification gas
JP3980427B2 (en) Waste plastic gasification gas cooling method and apparatus
JPH1036850A (en) Dry-process coke quencher
JPH11246243A (en) Thermal conversion method and thermal conversion apparatus for residue
JPS6040574Y2 (en) Dry dust collection and heat recovery equipment for converter exhaust gas
JPH0138844B2 (en)