JP3848029B2 - Power generation equipment using coal gasification gas - Google Patents

Power generation equipment using coal gasification gas Download PDF

Info

Publication number
JP3848029B2
JP3848029B2 JP28829199A JP28829199A JP3848029B2 JP 3848029 B2 JP3848029 B2 JP 3848029B2 JP 28829199 A JP28829199 A JP 28829199A JP 28829199 A JP28829199 A JP 28829199A JP 3848029 B2 JP3848029 B2 JP 3848029B2
Authority
JP
Japan
Prior art keywords
gas
temperature
heat storage
heat
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28829199A
Other languages
Japanese (ja)
Other versions
JP2001107062A (en
Inventor
輝雄 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP28829199A priority Critical patent/JP3848029B2/en
Publication of JP2001107062A publication Critical patent/JP2001107062A/en
Application granted granted Critical
Publication of JP3848029B2 publication Critical patent/JP3848029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electric power generation equipment by coal-gasifying gas which can be supplied to the gas turbine equipment at the almost same temperature of clean fuel gas removing sulfur and impurities being supplied for a gas turbine as the gas temperature generating from a gasifying furnace. SOLUTION: Electric power generation equipment is equipped with: high temperature desulfurization equipment 2 for desulfurizing coal-gasifying gas generating from a coal-gasifying furnace 1 at a high temperature; water scrubber equipment 4 washing the coal-gasifying gas at the downstream side; and a heat regenerator 3 supplying a fuel gas recovered up to a temperature of a high temperature gas from the high temperature desulfurization equipment to a gas turbine equipment 5, carrying out alternately heat regeneration action regenerating heat by a high temperature gas from the high temperature desulfurization equipment 2 and heat radiation action radiating heat into gas from the water scrubber equipment.

Description

【0001】
【発明の属する技術分野】
本発明は、石炭ガス化ガスによる発電装置、特に、石炭を高温高圧下で酸素若しくは空気(酸素富化空気を含む)により部分酸化してガス化する石炭ガス化炉と、発生した石炭ガスを精製するガス精製装置と、ガスタービンを含む複合発電装置により発電を行なう発電装置に関するものである。
【0002】
【従来の技術】
石炭ガス化炉で発生したガスは、硫黄分(H2S、COS)やアンモニア、ガス状金属物質等の不純物を含むためガスタービン燃料とする前にガス精製装置によりガス中の不純物を除去する必要がある。
【0003】
従来技術として、図7に示す湿式ガス精製装置を用いたものが知られている。石炭ガス化炉71は石炭を酸素若しくは空気の酸化剤により部分酸化して石炭ガス化する。ガス化炉71から発生する石炭ガスは約400°C以上で、この石炭ガス温度を間接熱交換装置(シェルアンドチューブ型、プレート型等)72を経て、常温以下に低下させ水スクラバ装置73等でアンモニア分の除去及びガス中不純物の除去を行い、その後湿式脱硫装置74で脱硫液による硫黄分の除去を行い、ガスタービン装置75へ供給するシステムである。間接熱交換装置72により湿式脱硫装置74で脱硫された脱硫後のガス温度の回復を図っても、装置サイズ及び経済性の観点からガスタービン75へ供給できるガス温度は、約300°C程度である。
【0004】
図8は、乾式ガス精製装置を用いる方式を示し、石炭ガス化炉81から発生する石炭ガスは約400°C以上で、この高温状態で高温脱硫装置82に通すことにより脱硫剤(酸化鉄、酸化亜鉛、チタン−亜鉛化合物等)に接触させ、硫黄分の除去を行ないガスタービン装置83へ供給するシステムである。この場合は、石炭ガス化炉81の出口温度(400°C以上)とほゞ同程度の温度でガスタービン83へ燃料ガスを供給できるが、高温脱硫装置82ではガス中のアンモニア分、ガス状金属物質等の不純物が除去できない。
【0005】
図9は、前記図8で説明した乾式ガス精製装置92の後流側に間接熱交換装置(シェルアンドチューブ型、プレート型等)93及び水スクラバ装置94を設置し、アンモニア分の除去及びガス中不純物の除去を行う機能を付加したシステムである。間接熱交換装置93により水スクラバ装置94でアンモニア分及びガス中不純物を除去した後のガス温度の回復を図るが、間接熱交換装置93の機能及び装置サイズ並びに経済性の観点からガスタービン装置95へ供給できるガス温度は、約300°C程度である。
【0006】
【発明が解決しようとする課題】
石炭ガス化による発電装置においては、燃料ガスのガスタービンの入口温度が高い程、システム全体の熱効率が向上する。このため、上記図8の高温ガス精製システムが提案されている。この装置の作動温度は約400°C以上であるが、ガス状の不純物が除去できない。燃料ガス中に不純物質が含まれると、ガスタービン翼の損傷、ガスタービン排ガスによる環境への影響などの問題がある。
【0007】
また、ガス中不純物を除去するにあたって、上記図7または図9で採用されている水スクラバを用いた場合、水スクラバ動作温度は最高220°C以下となるため、間接熱交換器を使ってガスタービンへ供給する燃料ガスの温度を回復させるようにしているが、高々300°C程度が現実的な温度であり、石炭ガス化炉の出口温度(400°C以上)まで回復させることはできない。
【0008】
また、前記間接型熱交換器では、ガス温度が低下する過程で熱交換器内にガスの不純物の析出現象(塩化アンモニウム等)が発生するため、連続的に装置の運転を行なうことができない。またガスタービンへの供給ガス温度を上昇させるためには間接熱交換器の大きさを著しく増加させなければならない。
【0009】
本発明の目的は、上記問題点を解決するため、脱硫及び不純物除去したクリーンなガスタービン供給燃料ガスの温度を石炭ガス化炉から発生する石炭ガス化ガス温度とほゞ同等な温度でガスタービンへ供給できる石炭ガス化ガスによる発電装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的は、石炭ガス化炉から発生する石炭ガス化ガスを高温状態で脱硫する高温脱硫装置と、前記石炭ガス化ガスを下流側で水洗する水スクラバ装置と、前記高温脱硫装置からの高温ガスを直接流すことにより蓄熱する蓄熱動作と、前記水スクラバ装置からのガスを直接流すことによりガスに放熱する放熱動作を交互に行い、前記高温脱硫装置からの高温ガス温度まで回復させた燃料ガスをガスタービン装置へ供給する蓄熱型熱交換装置とを設けた、ことによって達成される。
【0011】
また、上記目的は、前記蓄熱型熱交換装置は、複数の蓄熱体と、各蓄熱体を蓄熱動作と放熱動作と待機中とに切り替えを行う制御手段とを備えた、ことによって達成される。
【0012】
また、上記目的は、前記蓄熱型熱交換装置は、蓄熱体出口温度が蓄熱動作終了時点で前記高温脱硫装置からの高温ガス温度とほゞ同等になるよう動作させるものである、ことによって達成される。
【0013】
上記手段によれば、石炭ガス化ガスは高温状態(約400°C以上)で高温脱硫装置により脱硫剤と接触することにより硫黄分の除去が行なわれる。高温脱硫装置で脱硫された高温ガス(約400°C以上)は、蓄熱型熱交換装置の蓄熱体を直接流れることにより蓄熱しながら下流側水スクラバ装置に至り水洗されてガス中のアンモニア分の除去及びガス中不純物の除去が行なわれる。蓄熱型熱交換装置の蓄熱体の蓄熱は、蓄熱体出口温度が高温脱硫装置からの高温ガス温度と同等(約400°C以上)程度になるまで続けられる。前記下流側の水スクラバ装置で不純物除去が行なわれたクリーンガスは水洗処理で温度が低下しているが、前記高温ガス温度と同等(約400°C以上)まで蓄熱加熱した蓄熱体を直接流れ、蓄熱体の放熱によりガス温度の回復を図る。この蓄熱体の放熱によりガス温度は、高効率で高温脱硫装置からの高温ガス温度と同等(約400°C以上)程度まで容易に回復し高温状態でガスタービン装置へ供給される。
【0014】
蓄熱型熱交換装置の蓄熱体は複数並設し、それを切り換えることにより蓄熱動作と放熱動作を交互に繰り返し、蓄熱は蓄熱動作終了時点で蓄熱体出口温度が高温脱硫装置からの高温ガス温度と同等程度まで蓄熱昇温し、また、この蓄熱体の放熱によって水スクラバ装置からのガス温度を高温脱硫装置からの高温ガス温度と同等程度にまで回復させて、ガスタービンに高温(約400°C以上)のクリーンな燃料ガスとして供給することができる。複数の蓄熱体を切り替え動作させることより、一方が蓄熱動作中、他方が放熱動作中、また必要により待機中とするように切り替えることにより蓄熱と放熱を互いに独立に連続的に制御できる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0016】
図1は、本発明の一実施形態の石炭ガス化ガスによる発電装置の構成を示すブロック図である。
【0017】
図において、1は石炭と酸化剤を反応させて高温可燃ガスを発生させるガス化炉で、この石炭ガス化炉1で発生したガスは、硫黄分(H2S、COS)やアンモニア、ガス状金属物質等の不純物を含むため、ガスタービン燃料とする前にガス精製装置によりガス中不純物を除去する必要がある。高温ガス脱硫装置2は、ガス化炉1から発生する高温の石炭ガス化ガスを高温状態(約400°C以上)で脱硫剤(酸化鉄、酸化亜鉛、チタン−亜鉛化合物等)と接触させ硫黄分を除去する。
【0018】
更に石炭ガス化ガスは蓄熱型熱交換装置3を経て下流側に配置された水スクラバ装置4で処理される。この水スクラバ装置4は、導入ガスに水洗をしてガス中のアンモニア分の除去及びガス状金属物質等の不純物の除去を行なう。水洗処理によって温度が低下したガスは、蓄熱型熱交換装置3を通りガス温度を前記高温脱硫装置2の高温ガス温度(約400°C以上)とほゞ同程度の温度にまで回復させ、クリーンな高温燃料ガスとしてガスタービン装置5に供給され、複合発電に供される。
【0019】
図2は、前記石炭ガス化複合発電装置の詳細構成図である。ガス化炉1では、供給された石炭11を高温高圧下で酸化剤12として供給される酸素、空気若しくは酸素富化空気と反応させて高温の可燃性ガスを発生させる。反応過程で、石炭中の灰分の大半は溶融灰13としてガス化炉より系外に排出される。一方発生した石炭ガス化ガスは高温(約1000°C)であるためシンガスクーラ(CGC)6により蒸気として熱回収され、高温脱硫装置2の動作温度(約380°C〜640°C)程度まで冷却される。
【0020】
シンガスクーラ6によって発生した蒸気は、複合発電装置の排熱回収ボイラ(HRSG)7で発生した蒸気と合流し、蒸気タービン8により発電を行う。
【0021】
発生した石炭ガス化ガス中には、チャー(未反応の炭素、水素及び石炭に含まれる灰分等)が固体として含まれているため、サイクロンフィルタ9によりガスとチャーとの分離を行い、回収されたチャーはガス化炉1に再投入される。固体分が除去された石炭ガス化ガス中の可燃成分は、CO,H2,CH4等であるが、石炭に起因する不純物質(H2S,COS,NH3,Cl、その他)を含有する。チャー分離後のガスは高温脱硫装置2に導かれ、高温状態でガス中の硫黄分(H2S,COS)が除去される。除去された硫黄分は石膏吸収塔10で回収される。高温脱硫装置2の出口ガス温度は約400°C以上を維持する。
【0022】
高温脱硫装置2の出口ガス中には、硫黄分以外の不純物(NH3,Cl,その他ガス状金属物質等)が含まれ、これを除去する必要があるが、その前に高温ガスを蓄熱型熱交換装置3に導入する。蓄熱型熱交換装置3では、蓄熱、放熱、待機と切り替えられる複数の蓄熱塔を具備し、切り替えられた蓄熱塔は脱硫後の石炭ガスが塔内を流れ、蓄熱体(セラミック等)と直接接触することにより熱交換を行い、蓄熱材を加熱蓄熱する。蓄熱塔を流出する出口ガス温度は、蓄熱体の蓄熱状態によって初め70°C程度から最終的には高温脱硫装置2の高温ガス温度の約420°C程度の範囲まで変化する。
【0023】
蓄熱型熱交換装置3を通過した石炭ガス化ガスは、水スクラバ装置(水洗塔)4に送られ水洗され、ガス中不純物(NH3,Cl,その他)が除去される。水スクラバ装置4を通過したクリーンな石炭ガス化ガスは、再度蓄熱型熱交換装置3に流され、切り替えられた放熱塔内の蓄熱された蓄熱体と直接接触して放熱により熱交換して加熱され、蓄熱体が加熱されたほゞ高温脱硫装置2の出口温度(約400°C以上)と同程度に加熱されその高温ガスがガスタービン5へ送られる。
【0024】
このようにして、ガスタービン装置5では、不純物が取り除かれたクリーンな高温石炭ガス化ガスが供給され、この燃料ガスにより運転が行われ発電が行われる。またガスタービン装置5からの排気はHRSG7に送られ、蒸気の発生を行った後、煙突14から系外に排出される。HRSG7で発生した蒸気はシンガスクーラ6で発生した蒸気と合流し蒸気タービン8を駆動して発電を行う。
【0025】
図3乃至6は、蓄熱型熱交換装置の機能の説明図であり、蓄熱体が第1塔から第4塔までの複数の場合の実施形態を示す。第1塔から第4塔まで並列的に配設され、各塔がバルブ切り替えにより下記(1)から(4)までの蓄熱、放熱及び待機の動作を交互に行う。
【0026】
(1)高温脱硫装置2からの高温ガスと熱交換(蓄熱体の蓄熱動作)し出口ガスを水スクラバ装置4へ導入する動作中
(2)蓄熱体が高温脱硫装置の高温ガス温度にまで加熱された状態で待機中
(3)水スクラバ装置4からの温度低下ガスと熱交換(蓄熱体の放熱動作)し、高温脱硫装置2の高温ガスとほゞ同温度に加熱したクリーン石炭ガス化ガスを出口からガスタービン装置5へ供給する動作中
(4)蓄熱体が加熱されない状態で待機中
図3は、第1塔がバルブA,Dを開き(1)の蓄熱動作中、第2塔が(2)の待機中、第3塔がバルブJ,Kを開き(3)の放熱動作中、第4塔は(4)の待機中を示す。
【0027】
蓄熱動作中の第1塔は高温脱硫装置2からの高温ガスによって入口側は高温(図で白色部分)になるが流れるガスは次第に温度を下げ出口から水スクラバ装置4に導入される。時間経過にしたがって蓄熱体の蓄熱高温状態は徐々に出口側に広がって行き、第1塔全体が高温脱硫装置2からの高温ガスと同程度の温度(約400°C以上)にまで蓄熱される。また放熱動作中の第3塔は水スクラバ装置からの温度低下ガスによって入口側は温度低下するが、高温加熱された蓄熱体を流れるガスは次第に加熱されて出口側では高温状態(約400°C以上)を回復し高温クリーンガスになってガスタービン装置5に供給される。しかし、この第3の塔も時間経過にしたがって温度低下(図で黒色部分)が徐々に出口側に広がって行き蓄熱体の放熱が進んで行く。
【0028】
図4は、第1塔の蓄熱体の蓄熱終了を示し出口ガス温度が高温脱硫装置2からの高温ガス温度とほゞ同温度(約400°C以上)になった段階(水スクラバ装置4の入口ガス温度で検知)を蓄熱動作終了時点とする。この段階まで高温脱硫装置2から高温ガスを導入して蓄熱することにより、石炭ガス化ガス中の不純物は塩化アンモニウム等となって蓄熱体に一旦析出(析出温度は300°C以下)するが、蓄熱体全体が図4の第1塔の状態に加熱(高温脱硫装置の高温ガス温、約400°C以上)されることによって、塩化アンモニウムの昇華温度以上に達することにより、析出していた塩化アンモニウム等の不純物は蒸発して下流側の水スクラバ装置4に送られ、そこで水洗により水中に溶解し除去されるので、石炭ガス化ガスはクリーンなものとされる。
【0029】
一方、高温脱硫装置2から高温ガスを導入して熱交換する蓄熱動作中の第1塔の蓄熱体は、蓄熱動作の最終段階で蓄熱体の温度を不純物質の昇華温度以上にすることで蓄熱体上の不純物沈着が無くなるため、蓄熱体の不純物の析出による多孔質閉塞が防止され、また放熱動作時の水スクラバ装置4からのクリーンガスへの蓄熱体上の析出物の飛散が防止され、ガスタービン装置5へは高温のクリーンガス供給が可能となる。
【0030】
さらに、図4においては、第3塔の蓄熱体温度も低下して出口側温度も高温脱硫装置2からの高温ガス温度を維持できなくなるので、ガスタービン装置5への高温ガス(約400°C以上)の供給が不可能となる放熱動作終了時期となっている。
【0031】
図5では、ガスの流れを停止させずに蓄熱する塔の切り替えを第1塔から第4塔へ行うため、バルブQ,T,M,Pを徐々に開き、それにつれてバルブA,D,W,Xを徐々に閉じる。また放熱する塔の切り替えを第3塔から第2塔へ切り替えを行なうため、バルブR,F,Gを徐々に開き、バルブJ,K,Vを徐々に閉じる。
【0032】
図6は蓄熱動作を第4塔へ、放熱動作を第2塔へと切り替えを完了し、第4塔に高温脱硫装置2から高温ガスを流して蓄熱しながら水スクラバ装置4に供給し、第2塔に水スクラバ装置4からクリーンガスを流して蓄熱体の放熱により加熱して高温ガスとしてガスタービン装置5へ供給する。このとき第1塔は蓄熱体が高温加熱された状態で待機中となり、第3塔は蓄熱体が加熱されない状態で待機中とされる。
【0033】
蓄熱動作中の第4塔は高温脱硫装置2からの高温ガスによって入口側は高温になるが流れるガスは次第に温度を下げて出口側は温度低下状態にある。しかし時間経過にしたがって蓄熱体の蓄熱による高温状態は徐々に出口側に広がって行く。一方放熱動作中の第2塔は水スクラバ装置4からの温度低下ガスによって入口側は温度低下するが流れるガスは次第に高温の蓄熱体の放熱によって加熱されて出口側では高温状態を回復して高温ガスになってガスタービン装置5へ供給される。しかし、時間経過にしたがって蓄熱体の温度低下部分が徐々に出口側に広がって行く。
【0034】
前記蓄熱動作中の第4塔の蓄熱動作終了時点で、蓄熱動作を第4塔から第3塔へ切り替え、また放熱動作中の第2塔は第1塔へ切り替えるようにする。なお、放熱動作の塔の切り替えは、ガスタービン装置5へ高温ガスを供給するために、放熱動作中の第2塔の出口ガス温度を検出して、それが高温脱硫装置2の高温ガス温度まで回復できない状態になる前の時点で切り替えを行う必要がある。蓄熱動作と放熱動作の切り替えは互いに独立して切り替え操作させてもよい。
【0035】
蓄熱動作も放熱動作も切り替えられた蓄熱体に高温ガス及び温度低下ガスを直接流して熱交換させるものであるから極めて効率のよい熱交換を行なうことができ、ガスタービン装置へは常に高温状態のクリーンな燃料ガスを供給し効率の高い発電を行なうことができる。
【0036】
【発明の効果】
以上のように本発明によれば、ガスタービン装置へはクリーンで高温の石炭ガス化ガスを供給でき、高温ガス精製を用いた石炭ガスによる発電装置とほゞ同様な高い効率が得られ、不純物質によるガスタービン翼の損傷、ガスタービン排気ガス中の環境影響物質の低減がはかれると共に、管形、プレート形、拡大伝熱面型熱交換器を用いたシステムに比較し設備費の低減が図れる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態のブロック構成図。
【図2】本発明の一実施形態複合発電装置の詳細構成図。
【図3】蓄熱型熱交換装置の機能説明図。
【図4】蓄熱型熱交換装置の機能説明図。
【図5】蓄熱型熱交換装置の機能説明図。
【図6】蓄熱型熱交換装置の機能説明図。
【図7】従来の発電装置のブロック図。
【図8】従来の発電装置のブロック図。
【図9】従来の発電装置のブロック図。
【符号の説明】
1…ガス化炉、2…高温脱硫装置、3…蓄熱型熱交換装置、4…水スクラバ装置、5…ガスタービン発電装置、6…シンガスクーラ、7…HRSG、8…蒸気タービン発電装置、9…サイクロ・フィルタ、10…石膏吸収塔、11…微粉炭供給、12…ガス化剤供給、13…スラグ、14…煙突。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation apparatus using coal gasification gas, in particular, a coal gasification furnace that gasifies coal by partial oxidation with oxygen or air (including oxygen-enriched air) under high temperature and high pressure, and generated coal gas. The present invention relates to a gas purification device to be purified and a power generation device that generates power by a combined power generation device including a gas turbine.
[0002]
[Prior art]
Since the gas generated in the coal gasification furnace contains impurities such as sulfur (H 2 S, COS), ammonia, and gaseous metal substances, impurities in the gas are removed by a gas purifier before using it as a gas turbine fuel. There is a need.
[0003]
As a prior art, one using a wet gas purification apparatus shown in FIG. 7 is known. The coal gasification furnace 71 partially oxidizes coal with an oxidizing agent of oxygen or air to gasify the coal. The coal gas generated from the gasification furnace 71 is about 400 ° C. or higher, and this coal gas temperature is lowered to a normal temperature or lower through an indirect heat exchange device (shell-and-tube type, plate type, etc.) 72, and a water scrubber device 73 etc. In this system, ammonia is removed and impurities in the gas are removed, and then the wet desulfurization device 74 is used to remove the sulfur content using the desulfurization liquid, which is then supplied to the gas turbine device 75. Even if the gas temperature after desulfurization desulfurized by the wet desulfurization device 74 by the indirect heat exchange device 72 is recovered, the gas temperature that can be supplied to the gas turbine 75 is about 300 ° C. from the viewpoint of device size and economy. is there.
[0004]
FIG. 8 shows a system using a dry gas refining device. The coal gas generated from the coal gasification furnace 81 is about 400 ° C. or higher, and is passed through a high-temperature desulfurization device 82 in this high temperature state to obtain a desulfurizing agent (iron oxide, Zinc oxide, titanium-zinc compound, etc.), and the sulfur content is removed and supplied to the gas turbine device 83. In this case, the fuel gas can be supplied to the gas turbine 83 at a temperature approximately the same as the outlet temperature of the coal gasification furnace 81 (400 ° C. or higher). Impurities such as metal substances cannot be removed.
[0005]
9 shows that an indirect heat exchange device (shell and tube type, plate type, etc.) 93 and a water scrubber device 94 are installed on the downstream side of the dry gas purification device 92 described in FIG. This system adds a function to remove medium impurities. The indirect heat exchange device 93 attempts to recover the gas temperature after removing the ammonia component and the impurities in the gas by the water scrubber device 94. From the viewpoint of the function, device size, and economy of the indirect heat exchange device 93, the gas turbine device 95 is used. The gas temperature that can be supplied to is about 300 ° C.
[0006]
[Problems to be solved by the invention]
In a power generation apparatus using coal gasification, the higher the inlet temperature of the fuel gas gas turbine, the higher the thermal efficiency of the entire system. For this reason, the hot gas purification system of FIG. 8 has been proposed. Although the operating temperature of this apparatus is about 400 ° C. or higher, gaseous impurities cannot be removed. When impurities are included in the fuel gas, there are problems such as damage to the gas turbine blades and the environmental impact of the gas turbine exhaust gas.
[0007]
In addition, when removing the impurities in the gas, when the water scrubber employed in FIG. 7 or FIG. 9 is used, the water scrubber operating temperature is a maximum of 220 ° C. or less, so an indirect heat exchanger is used. Although the temperature of the fuel gas supplied to the turbine is recovered, a practical temperature is about 300 ° C., and it cannot be recovered to the coal gasification furnace outlet temperature (400 ° C. or more).
[0008]
Further, in the indirect heat exchanger, a gas impurity precipitation phenomenon (ammonium chloride or the like) occurs in the heat exchanger in the process of lowering the gas temperature, so that the apparatus cannot be operated continuously. In order to raise the temperature of the gas supplied to the gas turbine, the size of the indirect heat exchanger must be increased significantly.
[0009]
In order to solve the above problems, the object of the present invention is to provide a gas turbine at a temperature approximately equal to the temperature of a coal gasification gas generated from a coal gasification furnace by using a clean gas turbine supply fuel gas desulfurized and impurities removed. It is to provide a power generation apparatus using coal gasification gas that can be supplied to the plant.
[0010]
[Means for Solving the Problems]
The above objects are a high temperature desulfurization device for desulfurizing coal gasification gas generated from a coal gasification furnace at a high temperature, a water scrubber device for washing the coal gasification gas downstream, and a high temperature gas from the high temperature desulfurization device. The heat storage operation for storing heat by directly flowing the gas and the heat release operation for dissipating heat to the gas by directly flowing the gas from the water scrubber device are alternately performed to recover the fuel gas recovered to the high temperature gas temperature from the high temperature desulfurization device. This is achieved by providing a heat storage type heat exchange device that supplies the gas turbine device.
[0011]
Moreover, the said objective is achieved by the said heat storage type heat exchange apparatus being provided with the several heat storage body and the control means which switches each heat storage body to heat storage operation | movement, thermal radiation operation | movement, and standby.
[0012]
The above-mentioned object is achieved by operating the heat storage type heat exchange device so that the outlet temperature of the heat storage body is substantially equal to the high temperature gas temperature from the high temperature desulfurization device at the end of the heat storage operation. The
[0013]
According to the above means, the coal gasification gas is removed from the sulfur content by contacting the coal gasification gas with a desulfurization agent by a high temperature desulfurization apparatus in a high temperature state (about 400 ° C. or more). The high-temperature gas (approximately 400 ° C or higher) desulfurized by the high-temperature desulfurization device is washed directly with the heat storage body of the heat storage type heat exchange device and stored in the downstream water scrubber device, and is washed with water. Removal and removal of impurities in the gas are performed. The heat storage of the heat storage body of the heat storage type heat exchange device is continued until the temperature of the heat storage body outlet becomes equal to the high temperature gas temperature from the high temperature desulfurization device (about 400 ° C. or higher). The clean gas from which impurities have been removed by the downstream water scrubber device has its temperature lowered by the water washing treatment, but directly flows through the heat storage body that has been heated and stored up to the same temperature as the high-temperature gas (approximately 400 ° C. or higher). The gas temperature is recovered by releasing heat from the heat storage body. Due to the heat dissipation of the heat accumulator, the gas temperature is easily recovered to a high efficiency (approximately 400 ° C. or higher) and is supplied to the gas turbine apparatus in a high temperature state with high efficiency.
[0014]
A plurality of heat storage elements of the heat storage type heat exchange device are arranged side by side, and by switching between them, the heat storage operation and the heat radiation operation are repeated alternately, and at the end of the heat storage operation, the heat storage body outlet temperature becomes the high temperature gas temperature from the high temperature desulfurization device. The temperature of the heat storage is increased to the same level, and the gas temperature from the water scrubber device is recovered to the same level as the high temperature gas temperature from the high temperature desulfurization device by the heat radiation of the heat storage body, and the gas turbine is heated to a high temperature (about 400 ° C). The above can be supplied as clean fuel gas. By switching between a plurality of heat storage bodies, one can be controlled continuously and independently from each other by switching so that one is in the heat storage operation, the other is in the heat dissipation operation, and is in standby if necessary.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a block diagram showing a configuration of a power generation apparatus using coal gasification gas according to an embodiment of the present invention.
[0017]
In the figure, 1 is a gasification furnace that reacts coal with an oxidant to generate a high-temperature combustible gas. The gas generated in the coal gasification furnace 1 is sulfur (H 2 S, COS), ammonia, gaseous Since impurities such as metal substances are included, it is necessary to remove impurities in the gas with a gas purifier before using the gas turbine fuel. The high-temperature gas desulfurization apparatus 2 is made by contacting the high-temperature coal gasification gas generated from the gasification furnace 1 with a desulfurization agent (iron oxide, zinc oxide, titanium-zinc compound, etc.) in a high temperature state (about 400 ° C. or higher). Remove minutes.
[0018]
Further, the coal gasification gas is processed by the water scrubber device 4 disposed on the downstream side through the heat storage type heat exchange device 3. The water scrubber device 4 rinses the introduced gas to remove ammonia in the gas and impurities such as gaseous metal substances. The gas whose temperature has been lowered by the water washing treatment passes through the regenerative heat exchange device 3 and recovers the gas temperature to a temperature approximately equal to the high temperature gas temperature (about 400 ° C. or more) of the high temperature desulfurization device 2, and is clean. As a high-temperature fuel gas, it is supplied to the gas turbine device 5 and used for combined power generation.
[0019]
FIG. 2 is a detailed configuration diagram of the coal gasification combined power generation device. In the gasification furnace 1, the supplied coal 11 is reacted with oxygen, air, or oxygen-enriched air supplied as the oxidant 12 under high temperature and high pressure to generate high temperature combustible gas. During the reaction process, most of the ash content in the coal is discharged out of the system from the gasifier as molten ash 13. On the other hand, since the generated coal gasification gas has a high temperature (about 1000 ° C.), it is recovered as steam by the syngas cooler (CGC) 6 and reaches the operating temperature of the high-temperature desulfurization apparatus 2 (about 380 ° C. to 640 ° C.). To be cooled.
[0020]
The steam generated by the syngas cooler 6 merges with the steam generated in the exhaust heat recovery boiler (HRSG) 7 of the combined power generation apparatus, and generates power by the steam turbine 8.
[0021]
Since the generated coal gasification gas contains char (unreacted carbon, hydrogen, ash contained in coal, etc.) as a solid, the cyclone filter 9 separates the gas and char and collects them. The char is re-entered into the gasifier 1. The combustible components in the coal gasification gas from which the solid content has been removed are CO, H 2 , CH 4, etc., but contain impurities (H 2 S, COS, NH 3 , Cl, etc.) originating from the coal. To do. The gas after the char separation is guided to the high-temperature desulfurization apparatus 2, and the sulfur content (H 2 S, COS) in the gas is removed at a high temperature. The removed sulfur content is recovered by the gypsum absorption tower 10. The outlet gas temperature of the high temperature desulfurization apparatus 2 is maintained at about 400 ° C. or higher.
[0022]
Impurities other than sulfur (NH 3 , Cl, other gaseous metal substances, etc.) are contained in the exit gas of the high temperature desulfurization device 2 and must be removed. It introduces into the heat exchange device 3. The heat storage type heat exchange device 3 includes a plurality of heat storage towers that can be switched between heat storage, heat dissipation, and standby, and the switched heat storage tower is in direct contact with a heat storage body (such as ceramic) through which desulfurized coal gas flows in the tower. By doing so, heat is exchanged and the heat storage material is heated and stored. The outlet gas temperature flowing out of the heat storage tower changes from about 70 ° C. to about 420 ° C. of the high-temperature gas temperature of the high-temperature desulfurization device 2 depending on the heat storage state of the heat storage body.
[0023]
The coal gasification gas that has passed through the heat storage type heat exchange device 3 is sent to a water scrubber device (water washing tower) 4 to be washed with water, and impurities (NH 3 , Cl, etc.) in the gas are removed. The clean coal gasification gas that has passed through the water scrubber device 4 flows again into the heat storage type heat exchange device 3 and directly contacts the heat storage body in the switched radiating tower and exchanges heat by heat dissipation and heats it. The high-temperature gas is sent to the gas turbine 5 after being heated to the same temperature as the outlet temperature (about 400 ° C. or higher) of the high-temperature desulfurization apparatus 2 where the heat storage body is heated.
[0024]
In this way, the gas turbine device 5 is supplied with clean high-temperature coal gasification gas from which impurities have been removed, and the fuel gas is operated to generate power. Exhaust gas from the gas turbine device 5 is sent to the HRSG 7 to generate steam and then discharged from the chimney 14 to the outside of the system. The steam generated by the HRSG 7 merges with the steam generated by the syngas cooler 6 to drive the steam turbine 8 to generate power.
[0025]
3-6 is explanatory drawing of the function of a thermal storage type heat exchange apparatus, and shows embodiment in the case where there are several thermal storage bodies from the 1st tower to the 4th tower. The first tower to the fourth tower are arranged in parallel, and each tower alternately performs heat storage, heat radiation and standby operations from (1) to (4) below by switching valves.
[0026]
(1) During the operation of exchanging heat with the high-temperature gas from the high-temperature desulfurization device 2 (heat storage operation of the heat storage body) and introducing the outlet gas to the water scrubber device 4 (2) The heat storage body is heated to the high-temperature gas temperature of the high-temperature desulfurization device (3) Clean coal gasification gas heated to the same temperature as the high temperature gas of the high temperature desulfurization device 2 by heat exchange with the temperature lowering gas from the water scrubber device 4 (heat dissipation operation of the heat storage body) (4) Waiting in a state where the heat storage body is not heated FIG. 3 shows that the first tower opens the valves A and D, and the second tower is in the heat storage operation of (1). During the standby of (2), the third tower opens the valves J and K, during the heat radiation operation of (3), and the fourth tower shows the standby of (4).
[0027]
In the first tower during the heat storage operation, the inlet side becomes hot (white portion in the figure) due to the high temperature gas from the high temperature desulfurization apparatus 2, but the flowing gas is gradually lowered in temperature and introduced into the water scrubber apparatus 4 from the outlet. As the time elapses, the heat storage high temperature state of the heat storage body gradually spreads to the outlet side, and the entire first tower is stored to a temperature similar to the high temperature gas from the high temperature desulfurization apparatus 2 (about 400 ° C. or higher). . In addition, the temperature of the third tower during the heat radiation operation is lowered on the inlet side by the temperature lowering gas from the water scrubber device, but the gas flowing through the heat storage body heated at a high temperature is gradually heated, and the outlet side is in a high temperature state (about 400 ° C). The above is recovered and converted into a high-temperature clean gas and supplied to the gas turbine device 5. However, in this third tower, the temperature drop (black portion in the figure) gradually spreads toward the outlet side with the passage of time, and the heat dissipation of the heat storage body proceeds.
[0028]
FIG. 4 shows the end of the heat storage of the heat storage body of the first tower, and the outlet gas temperature is at the same temperature (about 400 ° C. or higher) as the high temperature gas temperature from the high temperature desulfurization device 2 (of the water scrubber device 4). (Detected by inlet gas temperature) is the end point of the heat storage operation. By introducing high temperature gas from the high temperature desulfurization apparatus 2 and storing heat up to this stage, impurities in the coal gasification gas become ammonium chloride and the like, and are once deposited on the heat storage body (precipitation temperature is 300 ° C. or less). The entire heat storage body is heated to the state of the first column in FIG. 4 (high-temperature gas temperature of the high-temperature desulfurization apparatus, about 400 ° C. or higher). Impurities such as ammonium are evaporated and sent to the downstream water scrubber device 4 where they are dissolved and removed by washing with water, so that the coal gasification gas is clean.
[0029]
On the other hand, the heat storage body of the first tower in the heat storage operation in which high-temperature gas is introduced from the high-temperature desulfurization apparatus 2 to perform heat exchange is stored by setting the temperature of the heat storage body to the impurity sublimation temperature or higher in the final stage of the heat storage operation. Since there is no impurity deposition on the body, porous clogging due to precipitation of impurities in the heat storage body is prevented, and scattering of precipitates on the heat storage body to the clean gas from the water scrubber device 4 during heat radiation operation is prevented, A high temperature clean gas can be supplied to the gas turbine device 5.
[0030]
Further, in FIG. 4, the temperature of the heat storage body in the third tower is also lowered, and the outlet side temperature cannot maintain the high temperature gas temperature from the high temperature desulfurization apparatus 2, so that the high temperature gas (about 400 ° C.) to the gas turbine apparatus 5 can be maintained. This is the end time of the heat dissipation operation where supply of the above is impossible.
[0031]
In FIG. 5, in order to switch the tower for storing heat without stopping the gas flow from the first tower to the fourth tower, the valves Q, T, M, P are gradually opened, and the valves A, D, W are accordingly opened. , X gradually close. Further, in order to switch the tower for radiating heat from the third tower to the second tower, the valves R, F and G are gradually opened, and the valves J, K and V are gradually closed.
[0032]
FIG. 6 shows that the heat storage operation has been switched to the fourth tower and the heat radiation operation has been switched to the second tower, and the high temperature gas is supplied from the high temperature desulfurization apparatus 2 to the fourth tower and supplied to the water scrubber apparatus 4 while storing heat. Clean gas is supplied from the water scrubber device 4 to the two towers, heated by heat radiation from the heat storage body, and supplied to the gas turbine device 5 as high-temperature gas. At this time, the first tower is on standby with the heat storage body heated to a high temperature, and the third tower is on standby with the heat storage body not heated.
[0033]
In the fourth tower during the heat storage operation, the inlet side becomes hot due to the high-temperature gas from the high-temperature desulfurization apparatus 2, but the flowing gas gradually decreases in temperature and the outlet side is in a temperature-decreasing state. However, the high temperature state due to heat storage of the heat storage body gradually spreads to the outlet side as time passes. On the other hand, in the second tower during the heat radiation operation, the temperature on the inlet side is lowered by the temperature lowering gas from the water scrubber device 4, but the flowing gas is gradually heated by the heat radiation of the high-temperature heat accumulator and the high temperature state is recovered on the outlet side. The gas is supplied to the gas turbine device 5. However, the temperature-decreasing part of the heat storage body gradually spreads toward the outlet side as time elapses.
[0034]
At the end of the heat storage operation of the fourth tower during the heat storage operation, the heat storage operation is switched from the fourth tower to the third tower, and the second tower during the heat dissipation operation is switched to the first tower. Note that switching of the tower for the heat radiation operation is performed by detecting the outlet gas temperature of the second tower during the heat radiation operation to supply the high-temperature gas to the gas turbine device 5, until it reaches the high-temperature gas temperature of the high-temperature desulfurization apparatus 2. It is necessary to switch at a point before it becomes unrecoverable. Switching between the heat storage operation and the heat radiation operation may be performed independently of each other.
[0035]
Since heat exchange is performed by directly flowing high-temperature gas and low-temperature gas to a heat storage body that has been switched between heat storage operation and heat dissipation operation, extremely efficient heat exchange can be performed, and the gas turbine device is always in a high-temperature state. By supplying clean fuel gas, it is possible to perform highly efficient power generation.
[0036]
【The invention's effect】
As described above, according to the present invention, clean and high-temperature coal gasification gas can be supplied to the gas turbine device, and high efficiency similar to that of a power generation device using coal gas using high-temperature gas refining can be obtained. Gas turbine blade damage due to quality and environmental impact substances in gas turbine exhaust gas can be reduced, and equipment costs can be reduced compared to systems using tube-type, plate-type, and heat transfer surface type heat exchangers. effective.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a detailed configuration diagram of a combined power generation apparatus according to an embodiment of the present invention.
FIG. 3 is a functional explanatory diagram of a heat storage type heat exchange device.
FIG. 4 is a functional explanatory diagram of a heat storage type heat exchange device.
FIG. 5 is a functional explanatory diagram of a heat storage type heat exchange device.
FIG. 6 is a functional explanatory diagram of a heat storage type heat exchange device.
FIG. 7 is a block diagram of a conventional power generator.
FIG. 8 is a block diagram of a conventional power generator.
FIG. 9 is a block diagram of a conventional power generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gasification furnace, 2 ... High temperature desulfurization apparatus, 3 ... Thermal storage type heat exchange apparatus, 4 ... Water scrubber apparatus, 5 ... Gas turbine power generation apparatus, 6 ... Syngas cooler, 7 ... HRSG, 8 ... Steam turbine power generation apparatus, 9 ... cyclofilter, 10 ... gypsum absorption tower, 11 ... pulverized coal supply, 12 ... gasification agent supply, 13 ... slag, 14 ... chimney.

Claims (5)

ガス化炉から発生した石炭ガス化ガスを精製しガスタービンに供給して複合発電を行う発電装置において、ガス化炉から発生する石炭ガス化ガスを高温状態で脱硫する高温脱硫装置と、前記石炭ガス化ガスを下流側で水洗する水スクラバ装置と、前記高温脱硫装置からの高温ガスを直接流すことにより蓄熱する蓄熱動作と、前記水スクラバ装置からのガスを直接流すことによりガスに放熱する放熱動作とを交互に行い、前記水スクラバ装置からのガスを前記高温脱硫装置からの高温ガス温度とほゞ同温度に回復させたガスを前記ガスタービン装置へ供給する蓄熱型熱交換装置とを設けたことを特徴とする石炭ガス化ガスによる発電装置。In a power generation apparatus that performs combined power generation by purifying coal gasification gas generated from a gasification furnace and supplying it to a gas turbine, a high-temperature desulfurization apparatus that desulfurizes the coal gasification gas generated from the gasification furnace in a high temperature state, and the coal A water scrubber device that flushes the gasified gas downstream, a heat storage operation that stores heat by directly flowing the high-temperature gas from the high-temperature desulfurization device, and a heat release that dissipates heat to the gas by directly flowing the gas from the water scrubber device. And a regenerative heat exchanger that supplies the gas turbine device with a gas that is alternately operated and that has recovered the gas from the water scrubber device to a temperature that is approximately the same as the high-temperature gas temperature from the high-temperature desulfurization device. A power generation apparatus using coal gasification gas. 請求項1記載の石炭ガス化ガスによる発電装置において、前記蓄熱型熱交換装置は、複数の蓄熱体と、各蓄熱体を蓄熱動作と放熱動作と待機中とに切り替えを行う制御手段とを備えたことを特徴とする石炭ガス化ガスによる発電装置。The power generation apparatus using coal gasification gas according to claim 1, wherein the heat storage type heat exchange device includes a plurality of heat storage bodies and a control unit that switches each heat storage body between a heat storage operation, a heat radiation operation, and standby. A power generation apparatus using coal gasification gas. 請求項2記載の石炭ガス化ガスによる発電装置において、前記蓄熱型熱交換装置の蓄熱体の待機中は、蓄熱体が高温脱硫装置の高温ガス温度まで加熱された状態での待機中と、蓄熱体が加熱されない状態での待機中が存在するものであることを特徴とする石炭ガス化ガスによる発電装置。3. The power generation apparatus using coal gasification gas according to claim 2, wherein the heat storage body of the heat storage heat exchanger is on standby while the heat storage body is heated to the high temperature gas temperature of the high temperature desulfurization apparatus, A power generation apparatus using coal gasification gas, wherein there is a waiting state in which the body is not heated. 請求項1から3のいずれかに記載の石炭ガス化ガスによる発電装置において、前記蓄熱型熱交換装置は、蓄熱動作中の蓄熱体の出口温度が蓄熱動作終了時点で前記高温脱硫装置からの高温ガス温度とほゞ同等温度になるよう動作させるものであることを特徴とする石炭ガス化ガスによる発電装置。The power generation apparatus using coal gasification gas according to any one of claims 1 to 3, wherein the heat storage type heat exchange device has a high temperature from the high-temperature desulfurization device when an outlet temperature of the heat storage body during the heat storage operation ends. A power generation apparatus using coal gasification gas, which is operated so as to have a temperature substantially equal to a gas temperature. 請求項1から3のいずれかに記載の石炭ガス化ガスによる発電装置において、前記蓄熱型熱交換装置は、放熱動作中の蓄熱体の出口温度が放熱動作終了時点で前記高温脱硫装置からの高温ガス温度以下にならないよう動作させるものであることを特徴とする石炭ガス化ガスによる発電装置。The power generation apparatus using coal gasification gas according to any one of claims 1 to 3, wherein the heat storage type heat exchange device has a high temperature from the high-temperature desulfurization device when the outlet temperature of the heat storage body during the heat dissipation operation ends. A power generation apparatus using coal gasification gas, which is operated so as not to be below a gas temperature.
JP28829199A 1999-10-08 1999-10-08 Power generation equipment using coal gasification gas Expired - Fee Related JP3848029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28829199A JP3848029B2 (en) 1999-10-08 1999-10-08 Power generation equipment using coal gasification gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28829199A JP3848029B2 (en) 1999-10-08 1999-10-08 Power generation equipment using coal gasification gas

Publications (2)

Publication Number Publication Date
JP2001107062A JP2001107062A (en) 2001-04-17
JP3848029B2 true JP3848029B2 (en) 2006-11-22

Family

ID=17728264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28829199A Expired - Fee Related JP3848029B2 (en) 1999-10-08 1999-10-08 Power generation equipment using coal gasification gas

Country Status (1)

Country Link
JP (1) JP3848029B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752331B1 (en) 2006-05-02 2007-08-30 오석인 Apparatus for removing white plume using ceramic regenerator

Also Published As

Publication number Publication date
JP2001107062A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
WO2001004045A1 (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
US20100077767A1 (en) Emission free integrated gasification combined cycle
SK281101B6 (en) Process of partial oxidation of hydrocarbonaceous fuel
JP2003500518A (en) Gasification power generation system
JP2004079495A (en) Fuel cell power generation system using gasified refuse gas
JPS61155606A (en) Cooling of partially oxidized gas containing dust like impurities
EP1649217A1 (en) Gasification system
JP4744971B2 (en) Low quality waste heat recovery system
BR112019022352A2 (en) soot removal process in or inside a gas generating device
JP5217295B2 (en) Coal gasification gas purification method and apparatus
US20160365593A1 (en) System for gasification of solid waste and method of operation
JP3848029B2 (en) Power generation equipment using coal gasification gas
JP6139845B2 (en) Carbon fuel gasification system
JP2000048844A (en) Integrated coal gasification fuel cell combined cycle power plant
WO2011105176A1 (en) Chemical loop reaction system and power generation system using same
JPH10235128A (en) Dry desulfurization device and electric power plant with the same
JP3700072B2 (en) Coal gasification desulfurization apparatus and coal gas desulfurization method
JP2870929B2 (en) Integrated coal gasification combined cycle power plant
US4825638A (en) Method of and device for recovering heat energy of hot raw gas gererated a coal gasification arrangement of an electric energy generating plant
KR100194555B1 (en) High reliability and high efficiency coal gasification combined cycle system and power generation method
WO2000043658A1 (en) Gas turbine generating method and generator
JP3615878B2 (en) Gasification combined power generation facility
JPH1182057A (en) Gasification-integrated combined power plant
JPH09268904A (en) Coal gasification complex power generating device
JP3935349B2 (en) Waste treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140901

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees