JPS58169977A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS58169977A
JPS58169977A JP5353982A JP5353982A JPS58169977A JP S58169977 A JPS58169977 A JP S58169977A JP 5353982 A JP5353982 A JP 5353982A JP 5353982 A JP5353982 A JP 5353982A JP S58169977 A JPS58169977 A JP S58169977A
Authority
JP
Japan
Prior art keywords
layer
thin film
source
layers
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5353982A
Other languages
Japanese (ja)
Other versions
JPH0544184B2 (en
Inventor
Masaki Fukaya
深谷 正樹
Osamu Takamatsu
修 高松
Mitsutoshi Kuno
久野 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5353982A priority Critical patent/JPS58169977A/en
Publication of JPS58169977A publication Critical patent/JPS58169977A/en
Publication of JPH0544184B2 publication Critical patent/JPH0544184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a transistor without strains in the curve of voltage and current between a source and a drain by a method wherein N<+> layers of unnecessary parts are removed by a lift-off method, when the source region and the drain region constituted of the N<+> layers are formed. CONSTITUTION:A thin films Si layer 102 is grown on a substrate 101 constituted of glass, ceramic, etc., than an Mo layer 103 is adhered thereon, and unnecessary parts thereof are removed by a photo etching, accordingly the remnant layers 103 are turned as the mask for lift-off. Next, the N<+> layers 104-2 and 104-1 are grown while breaking off on and between the masks, then the masks are lifted off with the N<+> layers 104-2 thereon, and accordingly the N<+> layers 104 at a fixed interval are made to remain on the Si layer 102. Thereafter, the source electrode 106 and the drain electrode 107 constituted of Mo are formed on the N<+> layers 104-1, and a gate electrode 113 is provided therebetween via a gate insulation layer 109.

Description

【発明の詳細な説明】 本発明は、シリコンを母体とする薄膜状の半導体層を有
する薄膜トランジスタの製造方法に関する0     
        を 基板上に設けられたシリコ今母体とする薄膜状の半導体
層の基板とは反対軸の表向上にゲート絶縁層が設けられ
ているPjTlITk1上ゲートコプレナー型の構造を
有する薄膜トランジスタは、ゲート電極に一定電圧(V
s )を印加し、ソース電極とドレイン電極との間の電
圧(VD)t−変化させた際のソ−スミ極とドレイン電
極との間を流れる電流(l o )は、■0が小さい傾
城で#i妬んと変らす、増加する傾向を示さない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film transistor having a thin film semiconductor layer based on silicon.
A thin film transistor having a gate coplanar type structure has a gate insulating layer provided on the surface opposite to the substrate of a thin film-like semiconductor layer having a silicon matrix provided on a substrate. at a constant voltage (V
s) is applied and the voltage (VD) between the source and drain electrodes is varied (t-), the current (l o ) flowing between the source and drain electrodes is #i changes into envy, but shows no tendency to increase.

詰り、所、1*Vo−1o特性が■0の小さい鎖酸にお
いて勝型的にならずにVo −1o’%性曲糾がφんだ
ものと成り好ましいトランジスタ特性を示さない。
However, the 1*Vo-1o characteristic does not become a winning type in the case of a small chain acid with 0, but the Vo-1o'% characteristic distortion becomes φ, and the transistor does not exhibit favorable transistor characteristics.

とれは、薄膜シリコンから成る半導体1曽と電極との間
に充分なるオーミック接触が形IJkされていない事に
起因している。
The cracking is caused by insufficient ohmic contact between the semiconductor layer made of thin silicon and the electrode.

このことを解決する試みとして、+4!J記の半4体層
と111m1の(極(ソース電極、ドレイン″1τ−)
との間に、シリコンを母体とする+ r−金井在させる
ことが提案されている。
+4 in an attempt to resolve this! J half-4 body layer and 111m1 (pole (source electrode, drain ″1τ−)
It has been proposed that +r-Kanai, which uses silicon as a matrix, be present between the two.

n層を形成するには、シリコンを母体とする層中Kn型
不糾物をドーピングしてや71は浪い。
In order to form the n-layer, it is necessary to dope a Kn-type impurity into the silicon-based layer (71).

面乍ら・このシリコン中に、、否純%Jをドーピングす
る方法として、所d¥、単結晶シリコンウェハを用いる
MOS−1(、’の作成・プロセスにおいて広(用いら
れている熱拡散やイオンイングランチージョンを採用し
様とすると、共に900℃以上の蘭温における熱処理を
必要とする為に、ガラス基板を用いることや、比較的低
温で膜形成を行なっている一′)理由により薄II&′
す°′トラ2ジ3タ0製造プロセスには不適である。
However, as a method of doping unpure %J into this silicon, the thermal diffusion and If ion immersion irradiation is used, both require heat treatment at a temperature of 900°C or higher, so glass substrates are used, and films are formed at relatively low temperatures. II&'
It is unsuitable for the 2D and 3T manufacturing process.

この為、従来においては、グロー放電(GD)法、ハイ
バキエームデポジション(HVD)法、不l!部の1層
を除去し、ソース電極及びドレイン電極と半導体層との
界面にのみn層を残存させることが通常の方法として提
案されているが、この方法を実塊するにはn層と半導体
層との選択エツチングが必要となる。しかし、n層、半
導体層共にシリコンを母体とするため、選択エツチング
比を大きくすること社ウェットエツチング、ドライエツ
チングのいづれの手法を用いても今のところ非常に困難
であ木。結り、選択エツチング比が大きくない為にn層
のエツチングの際に下地である半導体層の一11向もエ
ツチングされ、荒れを生じた多#!面のエツチング量を
制御するのが難しい。
For this reason, in the past, glow discharge (GD) method, Hibachième deposition (HVD) method, I! It has been proposed as a normal method to remove one layer of the semiconductor layer and leave the n-layer only at the interface between the source and drain electrodes and the semiconductor layer. Selective etching with layers is required. However, since both the n-layer and the semiconductor layer are based on silicon, it is currently extremely difficult to increase the selective etching ratio using either wet etching or dry etching. As a result, since the selective etching ratio was not large, when etching the n-layer, the underlying semiconductor layer was also etched in all directions, causing roughness. It is difficult to control the amount of etching on the surface.

七の結果、安定した特性を有する薄膜トランジスタを再
現性良く作成するのが極めて困難であった。
As a result of the above, it has been extremely difficult to produce thin film transistors with stable characteristics with good reproducibility.

本発明の目的はn層と半導体層との選択エツチングをせ
ずに不要部のn層を除去することにより、上記従来法の
欠点を解消し得る前記の構造を有する薄膜゛トランジス
タの製造方法を提案することである。
The object of the present invention is to provide a method for manufacturing a thin film transistor having the above-described structure, which eliminates the drawbacks of the conventional method by removing unnecessary portions of the n-layer without selectively etching the n-layer and the semiconductor layer. It is to make a proposal.

本発明の薄膜トランジスタの製造方法は、基板上に設け
られたシリコンを舟体とする薄膜状の半導体層、該半導
体層上に設けられ、シリコンを母体とする1層で構成さ
れたソース領域層及びドレイン領域層、該ソース領域層
と該ドレイン領域層との間の部分の前記半導体層上に般
けられたゲート絶縁層、該ゲート絶縁層上に設けられた
ゲート電極、前記ソース領域層上に8けられたソース電
極、及び前記ドレイン領域層上に設けちれたドレイン電
極、とを有する構成の薄膜トランジスタの製造方法にお
いてn層をパターニングして、前′記ソース領−及び前
記ドレイン領域を形成する際リフトオフ法によって不4
1Isf)n層を除去する事を4I徴とする。
A method for manufacturing a thin film transistor according to the present invention includes: a thin film-like semiconductor layer provided on a substrate and having a silicon body; a source region layer provided on the semiconductor layer and composed of a single layer made of silicon; a drain region layer, a gate insulating layer disposed on the semiconductor layer in a portion between the source region layer and the drain region layer, a gate electrode provided on the gate insulating layer, and a gate electrode provided on the source region layer. In a method for manufacturing a thin film transistor having a structure including a source electrode with 8 digits and a drain electrode provided on the drain region layer, the n-layer is patterned to form the source region and the drain region. When using the lift-off method,
1Isf) Removal of the n layer is considered a 4I feature.

本発明の方法によって作成された薄膜トランジスタは、
かかる点に−み成されたものであって、We −to 
!性−−に袴みのない好ましいトランジスタ特性を示す
The thin film transistor produced by the method of the present invention is
Based on this point, We -to
! It exhibits favorable transistor characteristics with no compromise in performance.

以下、図1iK従って、本発明を具体的に説明す、る@ 的工程図である。Hereinafter, the present invention will be specifically explained with reference to Figure 1iK. This is a process diagram.

[1の実施廖様例においては、先ず工程−)に示す様に
ガラス、セランツクス等から成る基板101上に喪く知
られたシリコンを母体とする薄膜状の半導体層102を
形成する。しかる後、電子ビーム蒸着法等の蒸着技術に
よって半導体層102懺面上に陽を蒸着して約1声犀の
Mo層103を形成する〔工程(b)〕。続いて、動層
106の不要部を通常のホトエツチング技術によって除
去し〔工程(c) ) 、Mo層103の残部をリフト
オフ−用マスクとする。
In the first embodiment, first, as shown in step -), a thin film-like semiconductor layer 102 made of silicon, which is known in the art, is formed on a substrate 101 made of glass, ceramic, or the like. Thereafter, a Mo layer 103 having a thickness of about 100 nm is formed by vapor deposition on the surface of the semiconductor layer 102 using a vapor deposition technique such as an electron beam vapor deposition method [step (b)]. Subsequently, unnecessary portions of the moving layer 106 are removed by a normal photoetching technique (step (c)), and the remaining portion of the Mo layer 103 is used as a mask for lift-off.

次に、半導体102、及びMO層103の表面上に約0
.1声厚のn層104−1 、104−2を形成する〔
工程(d)〕。その後、リン酸(85チ水IW液)工鋼
酸(60慢水fll1%k)!氷酢酸:糾水−25!1
:5=4(容量比)から成るエツチング液(エラチャン
)1)K工程(d)で得た部材を、溶液温度50℃にし
て所銀時間浸漬させて半導体層102上Kl!存してい
る一層103を溶解させた後に、四散に浸漬させたまま
の状襲で超音波洗浄(125W、50Hz)を約10分
間行ない、その後水洗することでMO層103上に形成
されているn層104−1をリフトオフする。この様に
して半導体層102の必要な箇所にのみn層104−1
を残す【工程(C)〕。その後、貴びMoを蒸着して、
約0.1声厚にMO層105を形成し〔工程(f) )
 、前記のエッチャントIを用い+ て0階104− i上にのみMo層を残して、ソース電
極106.ドレイン電極107とする〔工程(g)〕。
Next, approximately 0
.. Form n-layers 104-1 and 104-2 with a thickness of one tone [
Step (d)]. After that, phosphoric acid (85% water IW liquid) and steelmaking acid (60% water full 1% K)! Glacial acetic acid: Dried water-25!1
:5=4 (capacity ratio) (Erachan) 1) The member obtained in step (d) was immersed in the solution at a temperature of 50° C. for a specified period of time to remove the etching solution on the semiconductor layer 102. After dissolving the existing layer 103, ultrasonic cleaning (125 W, 50 Hz) is performed for about 10 minutes while the MO layer 103 remains immersed in water, and then washed with water to form on the MO layer 103. Lift off the n-layer 104-1. In this way, the n-layer 104-1 is applied only to the necessary portions of the semiconductor layer 102.
[Step (C)]. After that, Noble Mo is evaporated,
The MO layer 105 is formed to have a thickness of about 0.1 mm [step (f)].
, using the above-mentioned etchant I, leaving the Mo layer only on the 0th floor 104-i, and forming the source electrode 106. A drain electrode 107 is formed [Step (g)].

次■ に良く知られたQD法を用いて、所望の条件にて、窒化
シリコン層108を約0.3声厚にしてゲート絶縁層1
09とする〔工程(h)〕。次いで、C八にHsを20
マ01−添加した混合ガスを使用し、平行平板型プラズ
マエツチング装置を用いて、前記窒化シリコン層108
に選択的にドライエツチング処理を施して、ソース電極
106.ドレイン電極107用のコンタクトホール11
0 、111を夫々形成する(工11(i))。その後
、電子ビーム蒸着法によって、AIを蒸着して約0.6
厚にAj層112を形成する〔エバ程(j)〕。   
          “−′  ゛次いで、このAI一
層112、約46℃に加熱されてい2+9yfl!(8
51水188):硝all(601水溶゛液):氷酢酸
工純水−16:1:2!1(容′量比)カラ族るエツチ
ング液(エッチャント厘)を用いて、ホトエツチング処
理を施し、ゲート電極116゜ソース取り出し電極11
4.ドレイン取り出し電極115を形成する〔工程(k
)〕。
Next, using the well-known QD method, under desired conditions, the silicon nitride layer 108 is made approximately 0.3 cm thick and the gate insulating layer 1 is formed.
09 [Step (h)]. Next, add 20 Hs to C8.
The silicon nitride layer 108 is etched using a parallel plate plasma etching apparatus using a mixed gas containing
A selective dry etching process is performed on the source electrode 106. Contact hole 11 for drain electrode 107
0 and 111 are formed respectively (Step 11(i)). After that, by electron beam evaporation method, AI was evaporated to approximately 0.6
The Aj layer 112 is formed to a thickness [evaporation level (j)].
"-' Next, this AI layer 112 is heated to about 46℃ and 2+9yfl! (8
51 water 188): nitrate (601 aqueous solution): glacial acetic acid engineering pure water - 16:1:2!1 (volume ratio) Photoetching treatment was performed using a Kara family etching solution (etchant). , gate electrode 116° source extraction electrode 11
4. Forming the drain extraction electrode 115 [step (k
)].

その後、約650℃2に窒素雰囲気中で熱処理した後薄
膜トランジスタとして用いた。
Thereafter, it was heat-treated at about 650° C.2 in a nitrogen atmosphere and used as a thin film transistor.

ここで半導体層“102.n層104−1.104−2
の作成にtit−IVD法を用いて電子ビームでシリコ
ンを溶融蒸着し、共に基板温度約450℃で行なった。
Here, the semiconductor layer "102.n layer 104-1.104-2
The tit-IVD method was used to melt-evaporate silicon using an electron beam, and both processes were performed at a substrate temperature of about 450°C.

又、n層形成時にはシリコンを蒸着すると同時にリンを
ルツボより加熱蒸発させた。
Further, when forming the n-layer, phosphorus was heated and evaporated from the crucible at the same time as silicon was deposited.

本実施例ではリフトオフ用のマスクとしてMo層を用い
た例を掲げたが、Mo層のかわりにCr層、酸化シリコ
ン層、窒化シリコン層郷或いはこれ等の複合層等を用い
た場合にも、n層をはとんとおかさずにり7トオフする
ことが可能であるため、最終的に同様な構造の薄膜シリ
コントランジスタが作成できる。
In this embodiment, an example is given in which a Mo layer is used as a mask for lift-off, but it is also possible to use a Cr layer, a silicon oxide layer, a silicon nitride layer, or a composite layer of these in place of the Mo layer. Since it is possible to turn off the n-layer without leaving much of it, a thin film silicon transistor with a similar structure can finally be produced.

本発明によるもう一つの実施態様例の製造方法の工程を
第2図に示す。基板201上に薄膜シリコンから成る半
導体層202を堆積する。しかる後にQD法で窒化シリ
コン層203を0.4声厚に堆積し、ひき綬き電子ビー
ム蒸着法でMo層604を0.5声厚に堆積する〔工程
(a)〕。その後ホトエツチングにより実施例1に記載
したエッチャントIを用いてMo層204をエツチング
し引き続き、フッ酸(50−水溶液);純水−1冨10
(容積比から成るエツチング液(エッチャントI)を用
いて窒化シリコン層206をエツチングする。この際、
窒化シリコy層203をジャストエツチングする時間よ
り約2C1関Jt<エツチングする。このエッチャント
鳳14hAn鳩204を腐食させないため、エツチング
された一層204及び窒化シリコン層206の断面形状
は第2−に示す様なリフトオフ法に理想的なくびれ形状
を呈している。
FIG. 2 shows the steps of a manufacturing method according to another embodiment of the present invention. A semiconductor layer 202 made of thin film silicon is deposited on a substrate 201 . Thereafter, a silicon nitride layer 203 is deposited to a thickness of 0.4 degrees by the QD method, and a Mo layer 604 is deposited to a thickness of 0.5 degrees by the drawn electron beam evaporation method [step (a)]. Thereafter, the Mo layer 204 was etched by photoetching using the etchant I described in Example 1, followed by hydrofluoric acid (50-aqueous solution); pure water-1 to 10
(The silicon nitride layer 206 is etched using an etching solution (etchant I) having a volume ratio of
The silicon nitride Y layer 203 is etched for approximately 2C1Jt. In order not to corrode the etchant 204, the cross-sectional shapes of the etched layer 204 and the silicon nitride layer 206 have a constricted shape ideal for the lift-off method as shown in FIG.

次に一層205−1 、205−2をQD法で0.1声
層に堆積させた後にエッチャント繊に浸漬し窒化シリコ
ン層203を溶解させた後超音波洗浄、水洗と行なって
Mo層204及びその上に堆積した1層205−2を剥
離する。その後実施例1に記載した工1m(・)〜(k
)と同様の工程を経て薄膜トランジスタを作成した。
Next, layers 205-1 and 205-2 were deposited to a 0.1-tone layer by the QD method, and then immersed in etchant fiber to dissolve the silicon nitride layer 203, followed by ultrasonic cleaning and water washing to form the Mo layer 204 and One layer 205-2 deposited thereon is peeled off. After that, the process described in Example 1 is
) A thin film transistor was created using the same process as in the previous step.

@2の実施ms例においては、半導体層、n層及び窒化
シリコン層をQD法で作成した。この実施例中に記載し
た様に選択エツチングが可能な21s1類以上の薄膜を
積層させ、リフトオフ用マスクとして用いると、理想的
な断面形状を形成することが出来る。従ってQD法の様
にステップカパーレツヂに優れた薄膜堆積法の場合にも
本発明による手法が可能となる。
In the example @2, the semiconductor layer, n layer, and silicon nitride layer were created by the QD method. As described in this embodiment, if thin films of 21s class 1 or higher, which can be selectively etched, are laminated and used as a lift-off mask, an ideal cross-sectional shape can be formed. Therefore, the method according to the present invention is also possible in the case of a thin film deposition method that is excellent in step couplets, such as the QD method.

更に本発明による方法では通常用いられているホトレジ
ストをリフトオフ用のiスフとして用い+ ていないために、250℃以上の基板温度でn層を堆積
することが出来る。
Furthermore, since the method according to the present invention does not use a commonly used photoresist as an i-layer for lift-off, the n-layer can be deposited at a substrate temperature of 250° C. or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社第1の実施製様NKおける作成工程を説明する
為の模式的工1図、第2−は、第2の実施態様例におけ
る作成工程を説明する為の模式的工程図、第3図祉、第
2の実施態様例を説明する為の説明図である。 101 、201・・・・・基板 102 、202・
・・・・ヤ鞄帽+  ゛ 104−1.104−2.205−1.205−2−・
・・・n層出願人 キャノン株式会社
Figure 1 is a schematic process diagram for explaining the production process in the first embodiment NK, and Figure 2- is a schematic process diagram for explaining the production process in the second embodiment example. FIG. 3 is an explanatory diagram for explaining a second embodiment example. 101, 201...Substrate 102, 202...
・・・Yabaghat+゛104-1.104-2.205-1.205-2-・
...N-tier applicant Canon Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に設けられたシリコンを母体とする薄膜状
の半導体層、蚊半導体層上に鍼けられ、シリコンを母体
とするn層で構成されたソース領域層及びドレイン領域
層、該ソース狽域l−と該ドレイン領域層との間の部分
の前記牛専体J−上に設けられたゲート絶縁層、該ゲー
ト絶縁層上に設けられたゲート4憔、前記ソース−pj
t M 1m−hに設けられたソースtIL及び削61
ドレイン穎域層上に設けられたドレイン′wL極、とを
有する構成の薄膜トランジスタの製造方法において、n
 1111をパターニングして、前記ソース鎖酸及び前
dピドレイン領域を形成する際リフトオフ法によって不
喪部のn/dを除去する事を釣機とする薄膜トランジス
タの製造方法。
(1) A thin film semiconductor layer with silicon as the base provided on the substrate, a source region layer and a drain region layer formed of n-layers with silicon as the base formed on the mosquito semiconductor layer, and the source a gate insulating layer provided on the portion between the gate region l- and the drain region layer, a gate insulating layer provided on the gate insulating layer, and the source pj;
Source tIL and cutting 61 provided at tM 1m-h
In a method for manufacturing a thin film transistor having a structure including a drain 'wL pole provided on a drain glume region layer, n
A method for manufacturing a thin film transistor in which the n/d in the undamaged portion is removed by a lift-off method when patterning 1111 to form the source chain acid and front d-drain regions.
(2)リフトオフする際に使用されるリフトオフ川マス
〉魔が異なる複数の鳩の積層嘴造を有する特許請求の範
西第1狽に6C載の薄膜トランジスタの製造方法。
(2) A method for manufacturing a thin film transistor according to claim 1, which has a laminated beak structure of a plurality of pigeons with different lift-off mass used for lift-off.
(3)リフトオフ用マ、スクが、酸化シリコン又は窒化
シリコンから成るm1層と、Cr(クロム)又iiMo
(モリブデン)から成る第2層の二り槓1−構造を有す
る特IFF請求の範囲第2項に記載の薄膜トランジスタ
の製造方法。
(3) The lift-off mask is composed of m1 layer made of silicon oxide or silicon nitride, Cr (chromium) or iiMo
The method for manufacturing a thin film transistor according to claim 2, wherein the second layer is made of (molybdenum) and has a two-layer structure.
(4)n層の比抵抗が10  Ωl以下である%許請求
の範囲第1項に記載のII!膜トランジスタの製造方法
(4) The specific resistance of the n-layer is 10 Ωl or less II! A method for manufacturing a membrane transistor.
JP5353982A 1982-03-30 1982-03-30 Manufacture of thin film transistor Granted JPS58169977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5353982A JPS58169977A (en) 1982-03-30 1982-03-30 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5353982A JPS58169977A (en) 1982-03-30 1982-03-30 Manufacture of thin film transistor

Publications (2)

Publication Number Publication Date
JPS58169977A true JPS58169977A (en) 1983-10-06
JPH0544184B2 JPH0544184B2 (en) 1993-07-05

Family

ID=12945605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5353982A Granted JPS58169977A (en) 1982-03-30 1982-03-30 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS58169977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999690A (en) * 1989-12-19 1991-03-12 Texas Instruments Incorporated Transistor
US5231296A (en) * 1989-12-19 1993-07-27 Texas Instruments Incorporated Thin film transistor structure with insulating mask
JPH06132304A (en) * 1992-03-03 1994-05-13 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687362A (en) * 1979-12-18 1981-07-15 Toshiba Corp Manufacture of semiconductor device
JPS56135968A (en) * 1980-03-27 1981-10-23 Canon Inc Amorphous silicon thin film transistor and manufacture thereof
JPS56161656A (en) * 1980-05-16 1981-12-12 Nec Kyushu Ltd Manufacture of semiconductor device
JPS5721867A (en) * 1980-06-02 1982-02-04 Xerox Corp Planar thin film transistor array and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687362A (en) * 1979-12-18 1981-07-15 Toshiba Corp Manufacture of semiconductor device
JPS56135968A (en) * 1980-03-27 1981-10-23 Canon Inc Amorphous silicon thin film transistor and manufacture thereof
JPS56161656A (en) * 1980-05-16 1981-12-12 Nec Kyushu Ltd Manufacture of semiconductor device
JPS5721867A (en) * 1980-06-02 1982-02-04 Xerox Corp Planar thin film transistor array and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999690A (en) * 1989-12-19 1991-03-12 Texas Instruments Incorporated Transistor
US5231296A (en) * 1989-12-19 1993-07-27 Texas Instruments Incorporated Thin film transistor structure with insulating mask
JPH06132304A (en) * 1992-03-03 1994-05-13 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH0544184B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
JPH0687503B2 (en) Thin film semiconductor device
JPH0785470B2 (en) Device manufacturing method
JPS58169977A (en) Manufacture of thin film transistor
JP3901460B2 (en) Thin film transistor manufacturing method
JP2644743B2 (en) Manufacturing method of liquid crystal display device
JPS59113666A (en) Manufacture of thin film transistor
JPH043469A (en) Thin film transistor and manufacture thereof
JPS5940571A (en) Semiconductor device
JPH08203880A (en) Etching method and fabrication of semiconductor device
JPH07273342A (en) Manufacture of thin film transistor
JPS622654A (en) Semiconductor device and manufacture thereof
JPH09237567A (en) Cold cathode element and its manufacture
JPH06151460A (en) Manufacture of inverted stagger type tft
JPH0247853B2 (en)
JPH0464181B2 (en)
JPH06209011A (en) Manufacture of thin film transistor
JPH04142777A (en) Forming method for gate electrode or wiring
JP3537198B2 (en) Method for manufacturing semiconductor device
JPS62108541A (en) Manufacture of semiconductor device
JPH08153728A (en) Method for processing aluminum wiring
JPS61240656A (en) Manufacture of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH03225967A (en) Manufacture of thin-film element
JPS63119269A (en) Manufacture of thin film transistor
JPS60226160A (en) Manufacture for thin film resistance device