JPS58167490A - Formation of single crystal on amorphous film - Google Patents

Formation of single crystal on amorphous film

Info

Publication number
JPS58167490A
JPS58167490A JP57046059A JP4605982A JPS58167490A JP S58167490 A JPS58167490 A JP S58167490A JP 57046059 A JP57046059 A JP 57046059A JP 4605982 A JP4605982 A JP 4605982A JP S58167490 A JPS58167490 A JP S58167490A
Authority
JP
Japan
Prior art keywords
substrate
amorphous film
film
single crystal
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57046059A
Other languages
Japanese (ja)
Other versions
JPS6041032B2 (en
Inventor
Joji Nakada
穣治 中田
Kenji Kajiyama
梶山 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57046059A priority Critical patent/JPS6041032B2/en
Publication of JPS58167490A publication Critical patent/JPS58167490A/en
Publication of JPS6041032B2 publication Critical patent/JPS6041032B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Abstract

PURPOSE:To form the titled single crystal by a simple process without causing thermal strain, by forming an amorphous film consisting of a same composition as a substrate bonded to the exposed area of the substrate, on an amorphous film consisting of a different compsn. formed on the substrate of a single crystal, irradiating the bonded area between the substrate and the amorphous film of the same compsn. with heavy ion beam. CONSTITUTION:For example, on the substrate 1 of a silicon single crystal is formed the amorphous film 2 of a different compsn. (e.g., oxidized film, nitrogen film, etc.) consisting of an atom (or melecule) different from the constituent atom (or molecule) of the substrate 1. On both the substrate 1 and the amorphous film 2 is formed the amorphous film 3 (e.g., amorphous silicon film) which is bonded through the window 2a of the amorphous film 2 to the substrate 1. The amorphous film 3 is irradiated with heavy ion beam 4 at a temperature <= the epitaxial temperature of solid phase in such a way that at least the bonded face between the amorphous film 3 and the substrate 1 is fully irradiated. The amorphous film can be recrystallized at low temperature of 200-300 deg.C, and the formation of the single crystal layer on the amorphous film can be carried out by a simplified process with preventing the occurrence of thermal strain and the redistribution of impurities.

Description

【発明の詳細な説明】 本発明は、非晶質膜上の単結晶形成法に関する。[Detailed description of the invention] The present invention relates to a method for forming a single crystal on an amorphous film.

従来、非晶質編上の単結晶形成法として、例えば808
(Silic@n on 5aphir*)のようなサ
ファイア基板上に単結晶シリコンを形成する4のがある
。しかし、ζO方法はサファイア基板とシリコンとの格
子定数が完全に一致しない丸めに金が発生する間慝、及
びシリコン中でアルミニウム汚染が発生する間亀があっ
た。また、SIMOX(8@paratl*m by 
Implant@d Oxyg@n )と称せられるよ
うなシリコンに高濃度に鍍累を注入し、置込み酸化絶縁
属を形成した後、更にエピタキシャル層を堆積させる形
成法も採用されている。しかし、この方法は、極めて高
濃度に酸素をイオン注入する丸めに、単結晶形成に長時
間を畳する欠点がある。tた、表面シリコン酸化膜上に
CVD(Cksml@al Vap@r D@poai
tlon)法などで非晶質シリ;ンを堆積し、その後レ
ーデー中電子ビームを照射して結晶化させる形成法も採
用されている・しかじ、この方法は、ビームスイツト直
下の温度な固相エピタキシャル成長温度(シリコンでは
〜600℃)、あるいは液相エピタキシャル成長温度(
シリコンでは、〜1400℃)以上にして結晶回復を施
すもので6シ、熱森が発生する等の問題がおりた。
Conventionally, as a method for forming a single crystal on an amorphous braid, for example, 808
There is a method of forming single crystal silicon on a sapphire substrate such as (Silic@n on 5aphir*). However, the ζO method has problems in that the lattice constants of the sapphire substrate and silicon do not completely match, and that gold is generated in the rounding, and that aluminum contamination occurs in the silicon. Also, SIMOX (8@paratl*m by
A method called "Implant@d Oxyg@n" has also been adopted in which a high concentration of implant is implanted into silicon to form an implanted oxide insulator, and then an epitaxial layer is further deposited. However, this method has the disadvantage that it requires a long time to form a single crystal due to the rounding of ion implantation of oxygen at an extremely high concentration. Then, CVD (Cksml@al Vap@r D@poai) was applied on the surface silicon oxide film.
A formation method has also been adopted in which amorphous silicon is deposited using a method such as tlon, and then crystallized by irradiation with an electron beam during radar.However, this method epitaxial growth temperature (~600°C for silicon) or liquid phase epitaxial growth temperature (
With silicon, crystal recovery is performed at temperatures above 1,400° C., which causes problems such as the occurrence of heat waves.

本発明は、かかる点KfIMみてなされたもので、20
0〜300℃の低温で非晶質績を丹結晶化させることが
でき、非1質農上の単結晶層の形成を簡略化された1機
で行うことができる非晶質膜上の単結晶形成法を提供す
るものである。
The present invention was made in view of such points, and 20
A monocrystalline film on an amorphous film that can crystallize an amorphous film at a low temperature of 0 to 300°C, and can form a single crystal layer on a non-solid material using a single simplified machine. A crystal formation method is provided.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図に示す如く、例えばシリコン単結晶基板1上に、
この基板1と構成原子(或は分子)の異なる原子(或は
分子)からなる異質非晶質膜2を形成する。J4質非晶
質誤1としては、例えば酸化膜、窒化膜がある0次いで
、基板1上及び異質非晶質IIJ上に、異質非晶質@2
の窓21を介して基板lに接合する同質非晶質BSを形
成する。同質非晶質@Jは、基板1の原子(或は分子)
と同じ原子(或は分子)からなる4ので617.例えば
非晶質シリコン膜がある魯この同質非晶質aso形成方
法としては、常圧CVD法、低圧cvn法、デ9 ye
 マCVD法、MBIC法(Mol@@ular B@
Bm Epliaxy法)などがある、ここで、異質非
晶質膜1及び同質非晶質膜Sは、これらを構成する原子
或は分子からなる多結晶膜を含むものとする。
As shown in FIG. 1, for example, on a silicon single crystal substrate 1,
A heterogeneous amorphous film 2 made of atoms (or molecules) different from those of the substrate 1 is formed. For example, there is an oxide film or a nitride film as the J4 amorphous layer 1. Then, on the substrate 1 and the heterogeneous amorphous IIJ, a
A homogeneous amorphous BS is formed which is bonded to the substrate l through the window 21 of the BS. Homogeneous amorphous @J is an atom (or molecule) of substrate 1
Since 4 consists of the same atoms (or molecules) as 617. For example, when there is an amorphous silicon film, methods for forming homogeneous amorphous silicon include normal pressure CVD method, low pressure CVN method, and de9ye method.
MCVD method, MBIC method (Mol@@ular B@
Here, the heterogeneous amorphous film 1 and the homogeneous amorphous film S include polycrystalline films made of atoms or molecules that constitute them.

次に、固相エビタ命シャル温度以下の温度で重イオンビ
ーふ4を、少なくとも同質非晶質膜1と基板1とO筆金
面に十分に照射されるように、同質非晶質jlJKll
I射する。こむで、同質非晶質層SO加熱温度は、その
構成原子或は分子の固相エピタキシャル温度以下で10
0℃以上の温度に設定するのが望ましい、固相エピタキ
シャル温度を越えると、同質非晶質膜1中の不純物が再
分布し九り、或は熱金が残留する。
Next, the homogeneous amorphous film 1, the substrate 1, and the metal surface of the homogeneous amorphous film 1 are sufficiently irradiated with the heavy ion beam 4 at a temperature below the solid phase Evita critical temperature.
I shoot. The homogeneous amorphous layer SO is heated at a temperature below the solid phase epitaxial temperature of its constituent atoms or molecules.
If the temperature exceeds the solid phase epitaxial temperature, which is preferably set at 0° C. or higher, impurities in the homogeneous amorphous film 1 will be redistributed or hot gold will remain.

100”OK達しない温度にすると、同質非晶質1i1
1JK後述の如く十分に単結晶化を施すことがで亀ない
、i九、重イオンビーム0照射エネルイーは、0.3 
MeV = 10 MeV O範WM テ適宜設定する
のが望ましいe O,3MeVに達しない場合は、同質
非晶質lI5に後述の如く十分に単結晶化を施すことが
で■ないe 10 MeVを越えると同質非晶質議IQ
格子間を重イオンビームが貫通して同様に単結晶成長°
を施すことが困難になる。
If the temperature does not reach 100" OK, homogeneous amorphous 1i1
1JKAs described below, it is not possible to sufficiently perform single crystallization, i9, heavy ion beam 0 irradiation energy is 0.3
MeV = 10 MeV O range WM It is desirable to set it appropriately e If O,3 MeV is not reached, homogeneous amorphous lI5 cannot be sufficiently single crystallized as described below e If it exceeds 10 MeV homogeneous amorphous IQ
A heavy ion beam penetrates between the lattices and single crystal grows in the same way.
It becomes difficult to apply

而して、このように重イオンビーム4を同質非晶質膜3
に照射すると、同質非晶質膜Sと接っしている単結晶の
基板1中に1多数の空格子点と格子間位置原子が生成さ
れる。それらの大部分は、再結合して、単結晶の基板1
中には、はとんど欠陥が形成されない、しかし、同質非
晶質IIIとの界面付近に形成された空格子点、格子間
位置原子は、再結合する前に5基板1の界面において、
同質非晶質膜Jと相互作用を行い、その働IKより同質
非晶質膜Sがエピタキシャルに結晶化する。そして、異
質非晶質績2上の同質非晶質膜JK4再結晶化が及ぶ、
このようにして、異質非晶質l[J上の単結晶膜製造が
形成される。
In this way, the heavy ion beam 4 is transferred to the homogeneous amorphous film 3.
When the irradiation is performed, a large number of vacancies and interstitial atoms are generated in the single crystal substrate 1 in contact with the homogeneous amorphous film S. Most of them recombine and form a single crystal substrate 1.
However, the vacancies and interstitial atoms formed near the interface with the homogeneous amorphous III form defects at the interface of the 5-substrate 1 before recombining.
It interacts with the homogeneous amorphous film J, and the homogeneous amorphous film S is epitaxially crystallized by the action IK. Then, the homogeneous amorphous film JK4 recrystallizes on the heterogeneous amorphous film 2,
In this way, a single crystal film fabrication on a heterogeneous amorphous l[J is formed.

このよ5に高エネルイー重イオンビーム4の照射量を増
すと、同質非晶質膜3が単結晶の基板1との接合界面か
ら順次結晶化する*@2図は、同質非晶質膜Sを結晶化
し九実施例の後方散liL法によるチャネリンダスペク
トルを示すものである。8図中、lチャネル=4に・■
、入射ヘリウムイオンOエネA−ギーは、1.54M・
■である。また、同図中、l!111ii11(4)は
、同質非晶質膜3の形成直後(10G)整軸ス(クトル
であり、単結晶の基板1上に〜1500Xの厚°さの同
質非晶質膜3が形成されている。曲−(B)は2.56
M@VOムa t 3.0 、Q/4 ms”のドース
レートで5 X l 01S/J 照射し九試料の(1
00>整軸スペクトルであ)、基板1の界面から〜33
0差厚さの単結晶膜が形成されている。曲線Cは2.5
6M・■のムIを3.5結/412のドースレートでI
 X 10 /cm照射した試料の(100>整軸スペ
クトルでア)、基板1の界面から〜730X厚さの単結
晶膜が形成されている0曲線D Id、 2.56 M
eV OAl f 3.5 JAA7’4 ex2f)
 )” −スレートで2 X l O”/32照射した
試料の<100>整軸スペクトルで単結晶スペクトルと
一致し、同質非晶質膜3が完全に結晶化している。この
場合結晶化は同質非晶質膜3の!!i[方向にも、水平
方向にも同様に行なわれるため、異質非晶質膜2上の同
質非晶質MAxが結晶化するのである。
When the irradiation dose of the high-energy heavy ion beam 4 is increased in this manner, the homogeneous amorphous film 3 crystallizes sequentially from the bonding interface with the single crystal substrate 1. *Figure 2 shows the homogeneous amorphous film S This figure shows the channel linda spectra obtained by crystallizing and using the backscattered liL method in Example 9. In Figure 8, l channel = 4・■
, the incident helium ion O energy is 1.54 M・
■It is. Also, in the same figure, l! 111ii11(4) is a well-aligned shaft immediately after the formation of the homogeneous amorphous film 3 (10G), and the homogeneous amorphous film 3 with a thickness of ~1500× is formed on the single crystal substrate 1. There is.Song-(B) is 2.56
The nine samples were irradiated with 5 X l 01S/J at a dose rate of 3.0, Q/4 ms'' and (1
00> well-axis spectrum), ~33 from the interface of substrate 1
A single crystal film with zero difference thickness is formed. Curve C is 2.5
6M・■ Mu I at a dose rate of 3.5 knots/412
For the sample irradiated with X 10 /cm (100>aligned axis spectrum a), a single crystal film with a thickness of ~730X is formed from the interface of the substrate 1.0 curve D Id, 2.56 M
eV OAl f 3.5 JAA7'4 ex2f)
The <100> aligned axis spectrum of the sample irradiated with 2 X l O''/32 with )"-slate matches the single crystal spectrum, and the homogeneous amorphous film 3 is completely crystallized. In this case, the crystallization is of the homogeneous amorphous film 3! ! Since this is done in the same manner in both the i direction and the horizontal direction, the homogeneous amorphous MAx on the heterogeneous amorphous film 2 is crystallized.

また第31囚及び(B) Fi、第1図に示す実施例で
異質非晶質pAxが膜厚〜1000Xの酸化膜であり、
その上に、堆積したシリコンからなる同質非晶質lI4
3の膜厚が〜4000Xで緻化膜・々ターンの横力向O
長さが10都の時に、高エネルギー重イオンビームアニ
ールした前(同図A)と後(同図中))の反射電子線回
折像である。ここで、同図(4)はあらかじめ600℃
−8時間の電気炉による熱処理を行い、穴開けをしであ
る、下地が単結晶シリコン基板1の同質非晶質膜3の部
分を結晶化した試料の回折像である。同図(ト))は、
その試料に更に、2.56 M@VのAsを3.5μA
/ 4m2のドースレートで、I X 10”/ls2
照射シ、高エネルギー重イオンビームアニールした試料
の回折像を示すものである。同図(B)から、非晶質特
有のハローノ々ターンが消えて、酸化膜上にも、結晶化
が及んでいることが分かる。
In addition, in the example shown in Figure 1 and (B) Fi, the heterogeneous amorphous pAx is an oxide film with a thickness of ~1000X,
On top of that, a homogeneous amorphous lI4 consisting of deposited silicon
The film thickness of 3 is ~4000X, and the lateral force direction of the densified film and each turn is O.
These are reflection electron beam diffraction images before (A in the same figure) and after (in the middle of the figure)) high-energy heavy ion beam annealing when the length was 10 mm. Here, (4) in the same figure is set at 600℃ in advance.
- This is a diffraction image of a sample in which a portion of a homogeneous amorphous film 3 of a single-crystal silicon substrate 1 is crystallized after being heat-treated in an electric furnace for 8 hours to form a hole. The same figure (g)) is
The sample was further exposed to 3.5 μA of 2.56 M@V As.
/ 4 m2 dose rate, I x 10”/ls2
This figure shows a diffraction image of a sample that was irradiated and annealed with a high-energy heavy ion beam. From FIG. 3B, it can be seen that the halo patterns characteristic of amorphous materials have disappeared, and crystallization has also spread over the oxide film.

第3図(4)及び同li2俤)に示す実施例は、照射イ
オン檀がム畠、照射エネルギーが2.56 M@V(D
@合VCついて示して−るが、照射イオン種の原子番号
が14を越える重い元本のイオンである引、G、。
In the example shown in Fig. 3 (4) and li2), the irradiation ion beam was Muhata and the irradiation energy was 2.56 M@V (D
@Although VC is shown, the irradiated ion species are heavy principal ions with an atomic number exceeding 14.

sbなと、いずれを用いても結晶化は可能でありた。な
お原子番号が大龜い程、結晶化速度が早いことが確認さ
れ九、嬉4図は、イオン注入で形成し九同質非蟲質膜I
 K H@ ’ 、B ” # As ’ζKr84を
2.56M@Vテ、3. OJIA/ 4cv<2))
’ −X レ−)(基板温度〜290℃)で5 X 1
0”/am’照射した時の再結晶化厚さを示したもので
ある。軽いH・イオンは殆んど、再結晶化せず、重いイ
オン程再結晶化厚さは大きいことが判る。
Crystallization was possible using either sb or the like. It has been confirmed that the higher the atomic number, the faster the crystallization rate.
K H@ ' , B ''# As 'ζKr84 2.56M@Vte, 3. OJIA/ 4cv<2))
'-X Ray-) (substrate temperature ~ 290℃) 5
It shows the recrystallized thickness when irradiated with 0"/am'. It can be seen that the lighter H ions are hardly recrystallized, and the heavier the ions, the larger the recrystallized thickness.

まり、高エネルギー重イオンビームスポ、ト直下の温度
は、走査速度を速< (−10’c1n/a・C)、ビ
ーム径を大きく(〜10+mφ)することにょす、ao
o℃以下にすることができた。このように結晶化温度が
低いため同質非晶質aS中の不純物分布は、結晶化によ
p殆んど影響を受けない、その!lI總例をklKJt
<示す、このことは第5図に示す爽験結果から明らかで
ある。同図中の10は、同質非晶質膜S中K 50 K
@Vの低エネルギーで5 X 1 o111/J注入シ
九ムlの分布点である。これは、視射角(glan@1
mg a!Igl* )後方散乱法によシ、分解能を約
35Xと向上させて測定したものである0図中11は、
^エネルゼー重イオンビームアニール後のAsの濃度分
布点で、界面から、エピタΦシャルに結晶化するKつれ
、若干表面側へ移動するが、殆んど変化はないことが判
る。
Therefore, to reduce the temperature directly below the high-energy heavy ion beam spot, it is recommended to increase the scanning speed <(-10'c1n/a・C) and the beam diameter (~10+mφ).
The temperature could be lowered to below 0°C. Because the crystallization temperature is low, the impurity distribution in homogeneous amorphous aS is hardly affected by crystallization. lI example klKJt
This is clear from the experimental results shown in FIG. 10 in the figure is K 50 K in the homogeneous amorphous film S.
This is the distribution point of 5 x 1 o111/J injection system at low energy of @V. This is the glancing angle (glan@1
mg a! Igl*) 11 in the figure was measured using the backscattering method with improved resolution of approximately 35X.
It can be seen that the concentration distribution point of As after energy heavy ion beam annealing moves slightly from the interface toward the surface as K crystallizes epitaxially, but there is almost no change.

以上説明した如く、本発明に係る非晶質膜上の単結晶形
成法によれば、200℃〜300°Cの低温で非晶質膜
を再結晶化させることができるので、熱歪の発生を防止
し、かつ、不純物の再分布も阻止して非晶質膜上の単結
晶層の形成を簡略化された工程で行うことができる等顕
著な効果を奏するものである。
As explained above, according to the method for forming a single crystal on an amorphous film according to the present invention, the amorphous film can be recrystallized at a low temperature of 200°C to 300°C, so that thermal strain does not occur. This has remarkable effects such as preventing the redistribution of impurities and making it possible to form a single crystal layer on an amorphous film in a simplified process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法にて異質非晶質膜上の同質非晶質
膜を単結晶化している状態を示す説明°図、第2図は、
カウント数とチャネル番号の関係を示す特性図、第3図
に)は、重イオンビーム照射前の同質非晶質膜の反射電
子線回折像を示す回折写真図、同図中)は、同質非晶質
膜の重イオンビーム照射後0灰射電子線回折像を示す回
折写真図、第4図は、再結晶化厚さと質量数の関係を示
す説明図、第5図は、基板の深さ当りのムl一度分布を
示す特性図であ為。 1・・・基板、2・・・異質非晶質膜、2d・・・宮、
3・・・同質非晶質膜、4・・・重イオンビーム、1o
・・・Asの濃度分布点、11・・・重イオンビーム照
射後のム−の濃度分布点。 出願人代理人  弁理士 鈴 江 武 彦牙3図 (へ) ■ 牙4図 (A/(C+ x 10’)cmう) vl数
FIG. 1 is an explanatory diagram showing the state in which a homogeneous amorphous film on a heterogeneous amorphous film is single-crystalized by the method of the present invention, and FIG.
Figure 3) is a characteristic diagram showing the relationship between count number and channel number. Figure 3) is a diffraction photograph diagram showing the reflected electron beam diffraction image of a homogeneous amorphous film before heavy ion beam irradiation. A diffraction photograph showing the 0-grain electron beam diffraction image of the crystalline film after heavy ion beam irradiation, Figure 4 is an explanatory diagram showing the relationship between recrystallization thickness and mass number, and Figure 5 is the depth of the substrate. This is a characteristic diagram showing the distribution of the number of hits. 1...Substrate, 2...Heterogeneous amorphous film, 2d...Miya,
3... Homogeneous amorphous film, 4... Heavy ion beam, 1o
. . . As concentration distribution point, 11 . . . Mo concentration distribution point after heavy ion beam irradiation. Applicant's agent Patent attorney Suzue Takehiko Fang 3 figure (to) ■ Fang 4 figure (A/(C+ x 10')cm) Number of vl

Claims (1)

【特許請求の範囲】[Claims] 単結晶基板上に#基板の所定領域が露出するように該基
板の構成分子或は原子と異なる分子或は原子からなる異
質非晶質績を形成し、次いで、前記基板の構成分子或は
原子と同じ分子或は原子からなシ、かつ前記基板の露出
領域と接合した同質非晶質膜を前記異質非晶質績上に形
成し、次に、前記基板の分子或は原子の固相エピタキシ
ャル温度以下の温度で少なくとも前記基板と前記同質非
晶質膜との接合面に重イオンビームを照射することを4
111とする非6質腺上の単結晶形成法。
# Forming a heterogeneous amorphous layer made of molecules or atoms different from the constituent molecules or atoms of the substrate so that a predetermined region of the substrate is exposed on the single crystal substrate, and then forming a homogeneous amorphous film on the heterogeneous amorphous film, which does not consist of the same molecules or atoms and is bonded to the exposed region of the substrate, and then solid phase epitaxial film of the molecules or atoms of the substrate; 4. Irradiating a heavy ion beam to at least the bonding surface of the substrate and the homogeneous amorphous film at a temperature equal to or lower than the above temperature.
111. Single crystal formation method on non-hexagonal glands.
JP57046059A 1982-03-23 1982-03-23 Single crystal formation method on amorphous film Expired JPS6041032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046059A JPS6041032B2 (en) 1982-03-23 1982-03-23 Single crystal formation method on amorphous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046059A JPS6041032B2 (en) 1982-03-23 1982-03-23 Single crystal formation method on amorphous film

Publications (2)

Publication Number Publication Date
JPS58167490A true JPS58167490A (en) 1983-10-03
JPS6041032B2 JPS6041032B2 (en) 1985-09-13

Family

ID=12736435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046059A Expired JPS6041032B2 (en) 1982-03-23 1982-03-23 Single crystal formation method on amorphous film

Country Status (1)

Country Link
JP (1) JPS6041032B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153114A (en) * 1984-01-20 1985-08-12 Nec Corp Forming method for single crystal semiconductor layer
JPS60246619A (en) * 1984-05-22 1985-12-06 Hitachi Ltd Manufacture of semiconductor device
JPS62230017A (en) * 1986-03-31 1987-10-08 Agency Of Ind Science & Technol Single crystal film forming method
JPS63310109A (en) * 1987-06-12 1988-12-19 Agency Of Ind Science & Technol Formation of single-crystal semiconductor thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153114A (en) * 1984-01-20 1985-08-12 Nec Corp Forming method for single crystal semiconductor layer
JPS60246619A (en) * 1984-05-22 1985-12-06 Hitachi Ltd Manufacture of semiconductor device
JPS62230017A (en) * 1986-03-31 1987-10-08 Agency Of Ind Science & Technol Single crystal film forming method
JPS63310109A (en) * 1987-06-12 1988-12-19 Agency Of Ind Science & Technol Formation of single-crystal semiconductor thin film

Also Published As

Publication number Publication date
JPS6041032B2 (en) 1985-09-13

Similar Documents

Publication Publication Date Title
White et al. Mechanisms of buried oxide formation by ion implantation
JPH0637288A (en) Soi structure, provided with deep and thin oxide layer, manufactured by high-energy ion implantation and by successive heat treatment
JPS58167490A (en) Formation of single crystal on amorphous film
JPS5918196A (en) Preparation of thin film of single crystal
JP2746606B2 (en) Method for producing large-particle polycrystalline film
Smith et al. Characterization of Si‐implanted and electron‐beam‐annealed silicon‐on‐sapphire using high‐resolution electron microscopy
Li et al. The effects of dose and target temperature on low energy SIMOX layers
JPH0810669B2 (en) Method of forming SOI film
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JP3273037B2 (en) Method for manufacturing heterostructure semiconductor multilayer thin film
JPS6360518A (en) Growing method for crystal of semiconductor layer
JPH03250728A (en) Manufacture of polycrystalline silicon
JP2615406B2 (en) Method for manufacturing silicon substrate having silicon carbide buried layer
JP7264100B2 (en) Method for controlling donor concentration in silicon single crystal substrate
JPS6164119A (en) Manufacture of semiconductor device
JPS62130519A (en) Impurity doping to semiconductor thin film
JPS6287496A (en) Production of single crystal aluminum nitride film
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JPH0254538A (en) Manufacture of p-channel thin film transistor
JPS63278217A (en) Manufacture of semiconductor substrate
JPS60153114A (en) Forming method for single crystal semiconductor layer
JP2861683B2 (en) Method of forming amorphous silicon film
JPS6028223A (en) Manufacture of semiconductor crystal thin film
JPS60235788A (en) Formation of single crystal film
JPH02185019A (en) Manufacture of polycrystalline silicon film having large crystal grain size