JPS58166985A - Treatment of waste water containing organic material - Google Patents

Treatment of waste water containing organic material

Info

Publication number
JPS58166985A
JPS58166985A JP4858782A JP4858782A JPS58166985A JP S58166985 A JPS58166985 A JP S58166985A JP 4858782 A JP4858782 A JP 4858782A JP 4858782 A JP4858782 A JP 4858782A JP S58166985 A JPS58166985 A JP S58166985A
Authority
JP
Japan
Prior art keywords
ozone
wastewater
salts
treatment
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4858782A
Other languages
Japanese (ja)
Inventor
Takanori Nanba
難波 敬典
Shigeki Nakayama
繁樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4858782A priority Critical patent/JPS58166985A/en
Publication of JPS58166985A publication Critical patent/JPS58166985A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain high efficiency of the treatment up to the final treatment by adding ozone and hydrogen peroxide to waste water contg. materials, and adding salts contg. metallic ions which form insoluble or hardly soluble salts with carbonate radical. CONSTITUTION:Waste water contg. org. materials is supplied from a raw water tank 6 to an ozone reaction tank 2 by a pump 9. Prescribed amts. of salts contg. metallic ions that form salts insoluble or hardly soluble salts with carbonate radical, hydrogen peroxide and acidic or alkaline agent is fed into the waste water supplied into the tank 2 with pumps 12, 8, 7 respectively in the mid-way of said supply. There are alkaline earth salts such as Ca, Sr and Ba as the salts cont. metallic ions which form insoluble or hardly soluble salt with carbonate radical by reacting with said radicals. The air or oxygen contg. ozone formed with an ozone generator 1 is made into fine bubble by a diffuser 3, which ascends in the water to be treated.

Description

【発明の詳細な説明】 この発明は、オゾンおよび過酸化水素による有機物含有
廃水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic matter-containing wastewater using ozone and hydrogen peroxide.

オゾンは空気または酸素を原料として、無声放電により
生成される強力な酸化剤である。大型オゾン発生機の開
発、その性能面での改良などにより、工業的にオゾンが
利用できるようになり、種々の廃水処理に実用されてい
る。オゾンは染色工場廃水の脱色、フェノール、シアン
などの除去。
Ozone is a powerful oxidizing agent produced by silent electrical discharge using air or oxygen as a raw material. With the development of large ozone generators and improvements in their performance, ozone has become available for industrial use and is now put into practical use in various wastewater treatments. Ozone is used to decolorize dye factory wastewater and remove phenol, cyan, etc.

し尿処理水の脱色などの有機物含有廃水の処理に利用さ
れている。これらは、オゾンが種々の有機物の不飽和結
合を容易に切断する化学的特性を利用したものである。
It is used to treat wastewater containing organic matter, such as decolorizing treated human waste water. These methods utilize the chemical property of ozone that easily breaks unsaturated bonds in various organic substances.

一方近年、環境保全対策の強化、廃水の再利用の必要性
が高まり、従来に増して、多様な廃水に対して高度な処
理の必要が出てきたつまたCOD (化学的酸素要求量
)総量規制に基づく有効なCOD除去技術の開発が特に
要求されている。
On the other hand, in recent years, the need for stronger environmental protection measures and the reuse of wastewater has increased, and more advanced treatment has become necessary for a variety of wastewater than ever before, as well as total COD (chemical oxygen demand) regulations. There is a particular need for the development of effective COD removal techniques based on COD.

このような状況の中で、オゾンによるCOD除去が試み
られ、一部で実用されているつじかし。
Under these circumstances, attempts have been made to remove COD using ozone, and this method is being put into practice in some cases.

COD成分の中で、オゾンとまったく、もしくはほとん
ど反応しないものも多くあり、オゾンだけでCOD除去
ができない例も多く見受けられるのは周知の通りである
It is well known that there are many COD components that do not react at all or hardly with ozone, and that there are many cases in which COD cannot be removed using ozone alone.

このようなオゾンの適用限界を除くために、過酸化水素
添加オゾン処理方法が提案されている。
In order to eliminate such application limits of ozone, a hydrogen peroxide addition ozone treatment method has been proposed.

第1図はこの種の従来の処理方法を示す系統図であり1
図において、(1)はオゾン発生機、(2)はオゾン反
応槽、(3)はオゾン分散のためのディフューザ−,+
41は一調整のための酸またはアルカリ剤貯槽。
Figure 1 is a system diagram showing this type of conventional processing method.
In the figure, (1) is an ozone generator, (2) is an ozone reaction tank, (3) is a diffuser for ozone dispersion, +
41 is an acid or alkali agent storage tank for one adjustment.

(5)は過酸化水素貯槽、(6)は原水槽、(7)は酸
またはアルカリ剤注入ポンプ、(8)は過酸化水素注入
ポンプ、(9)は原水供給ポンプ、 Qlは排気オゾン
分解器である。
(5) is hydrogen peroxide storage tank, (6) is raw water tank, (7) is acid or alkali injection pump, (8) is hydrogen peroxide injection pump, (9) is raw water supply pump, Ql is exhaust ozone decomposition It is a vessel.

第1図の処理方法においては、 原水は原水槽(6)か
らポンプ(9)でオゾン反応槽(2)に供給されるが。
In the treatment method shown in Figure 1, raw water is supplied from the raw water tank (6) to the ozone reaction tank (2) by a pump (9).

途中で、所定量の過酸化水素ならびに酸またはアルカリ
剤が、それぞれポンプ(8)および(7)で反応槽(2
)に供給される原水中に注入されろう酸またはアルカリ
剤の注入量は1反応槽(2)内の被処理水の−が6ない
し8になるように設定される。オゾン発生機(1)で生
成したオゾン含有空気または酸素(以下オゾン含有空気
とする)はディフューザー(3)で微細気泡となり、被
処理水中を上昇する。この間。
On the way, a predetermined amount of hydrogen peroxide and an acid or alkali agent are pumped into the reaction tank (2) by pumps (8) and (7), respectively.
) The amount of wax acid or alkaline agent injected into the raw water supplied to the reactor (2) is set so that - of the water to be treated in one reaction tank (2) is from 6 to 8. Ozone-containing air or oxygen (hereinafter referred to as ozone-containing air) generated by the ozone generator (1) becomes fine bubbles in the diffuser (3) and rises in the water to be treated. During this time.

気泡中のオゾンは反応により大部分消費され、一部が排
気される。排気オゾンは排気オゾン分解器Qlで除去さ
れた後、大気に放出される。オゾン反応槽(2)に連続
的に供給される原水は、上記オゾンと反応して処理され
1反応槽(2)の底部から処理水として連続的に取り出
される。以上は連続処理法であるが、この他に、まず原
水を反応槽(2)に満たし、その後過酸化水素ならびに
酸またはアルカリ剤を反応槽(2)に注入しつつ、オゾ
ン処理する半回分処理法によっても同等の効果が得られ
る。
Most of the ozone in the bubbles is consumed by the reaction, and a portion is exhausted. Exhaust ozone is removed by an exhaust ozone decomposer Ql and then released into the atmosphere. Raw water that is continuously supplied to the ozone reaction tank (2) is treated by reacting with the ozone and is continuously taken out from the bottom of the first reaction tank (2) as treated water. The above is a continuous treatment method, but in addition to this, there is also a semi-batch treatment in which raw water is first filled into the reaction tank (2), and then hydrogen peroxide and an acid or alkali agent are injected into the reaction tank (2) while being treated with ozone. The same effect can be obtained by law.

第2図は第1図の処理方法により、難酸化性物質の一つ
である酢酸ナトリウム水溶液に対して。
Figure 2 shows an aqueous solution of sodium acetate, which is one of the oxidation-resistant substances, using the treatment method shown in Figure 1.

過酸化水素添加量を0〜50雫/lの間で変化させ。The amount of hydrogen peroxide added was varied between 0 and 50 drops/l.

中性付近でオゾン処理したときのTOC(全有機性炭素
)の除去量を示した曲線図である。なお処理前のTOC
は4oq/lである。第2図より過酸化水素を添加せず
にオゾン処理すると、 TOCはほとんど除去されない
のに対して、過酸化水素を添加すると、 TOCが除去
されることがわかる。このTOCの除去量は過酸化水素
添加量の増加に応じて増している。このように、従来の
オゾン処理ではまったく除去できなかった有機物が、過
酸化水素を併用してオゾン処理することにより除去可能
となるつこの方法による処理結果の1例を表1に示す5
表1は約40Iv/lのTOC11度をもつ種々の有機
物含有水溶液に一定量の過酸化水素およびオゾンを添加
して処理した結果である。いずれの有機物に対してもT
OCは除去されており、しかも、TOCおよびTOD 
(全酸素要求量)1重量単位の除去に必要なオゾン量(
Δ03/Δ’I”oc 、ΔOs/ΔTOD)は、それ
ぞれ約10および3重量単位とオゾン利用効率が高いこ
とがわかる。また、過酸化水素消費量はオゾン消費量の
1/10程度と少量である。
It is a curve diagram showing the amount of TOC (total organic carbon) removed when ozone treatment is performed near neutrality. Furthermore, TOC before processing
is 4oq/l. From Figure 2, it can be seen that when ozone treatment is performed without adding hydrogen peroxide, almost no TOC is removed, whereas when hydrogen peroxide is added, TOC is removed. The amount of TOC removed increases as the amount of hydrogen peroxide added increases. In this way, organic substances that could not be removed at all by conventional ozone treatment can now be removed by ozone treatment combined with hydrogen peroxide.An example of the treatment results of this method is shown in Table 15.
Table 1 shows the results of treatment by adding certain amounts of hydrogen peroxide and ozone to various organic matter-containing aqueous solutions having a TOC of about 40 Iv/l and 11 degrees. T for any organic matter
OC has been removed and TOC and TOD
(Total oxygen demand) Amount of ozone required to remove 1 weight unit (
Δ03/Δ'I"oc and ΔOs/ΔTOD) are about 10 and 3 weight units, respectively, which indicates high ozone utilization efficiency. Also, hydrogen peroxide consumption is small, about 1/10 of ozone consumption. be.

過酸化水素添加オゾン処理法は、以上で説明したように
、有機物除去に極めて有効な方法であるが1次のような
欠点を有している。原廃水中に炭酸イオンあるいは重炭
酸イオン等炭酸根が多量に含まれている場合には、オゾ
ンおよび過酸化水素が無駄に消費され、前述したΔ03
/ΔTOC1Δot O! /ΔTOCの直が大きくな
り、経済的な有機物処理が行えない、fJc3図は重炭
酸イオンを重炭酸ナトリウムの形で添加した酢酸ナトリ
ウム水溶液をpH7,5の条件で過酸化水素添加オノ゛
ン処理した時の酢酸イオンの除去性能をΔ03/ΔTO
C。
As explained above, the hydrogen peroxide addition ozonation method is an extremely effective method for removing organic matter, but it has the following drawbacks. If the raw wastewater contains a large amount of carbonate radicals such as carbonate ions or bicarbonate ions, ozone and hydrogen peroxide are wasted and the above-mentioned Δ03
/ΔTOC1Δot O! /ΔTOC becomes large, making it impossible to perform economical organic matter treatment. The fJc3 diagram shows an aqueous sodium acetate solution to which bicarbonate ions have been added in the form of sodium bicarbonate, and hydrogen peroxide is added to the aqueous solution at pH 7.5. The removal performance of acetate ions when
C.

ΔHtoz/ΔTOCで評価した線図である。結果は上
記のように1重炭酸イオンの共存により、オゾンおよび
過酸化水素による有機物除去効果の悪化を如実に示して
いる。
It is a diagram evaluated by ΔHtoz/ΔTOC. The results clearly show that, as mentioned above, the coexistence of monobicarbonate ions deteriorates the organic matter removal effect of ozone and hydrogen peroxide.

さらに原廃水が炭酸根を全く含まない場合でも、高濃度
の有機物を含有する時は、有機物の酸化処理の過程で炭
酸根が生成し、同様に有機物処理の効果を損うことにな
る。
Furthermore, even if the raw wastewater does not contain any carbonate radicals, if it contains a high concentration of organic matter, carbonate radicals will be generated during the oxidation process of the organic matter, which will similarly impair the effectiveness of the organic matter treatment.

本発明は、このような従来の過酸化水素添加オゾン処理
法の欠点を排除するためになされたもので、炭酸根と不
溶もしくは難溶性塩を生成する金属イオン含有塩を原廃
水に添加すること?こより。
The present invention was made in order to eliminate such drawbacks of the conventional hydrogen peroxide addition ozonation method, and involves adding a metal ion-containing salt that forms an insoluble or poorly soluble salt with carbonate radicals to raw wastewater. ? From this.

効率的な有機物処理が行える有機物含有廃水の処理方法
を提供することを目的とするものである。
The object of the present invention is to provide a method for treating organic matter-containing wastewater that can efficiently treat organic matter.

第4図は本発明の一実施例による処理方法を示す系統図
であり1図において、(1)ないし01は第1図き同一
または相当部分を示す。011は金属塩浴液貯槽で、炭
酸根と不溶もしくは難溶性塩を生成する金属イオン含有
塩の溶液が貯えられている。02は金属塩溶液注入用ポ
ンプである。第4図の処理方法は第1図と殆んど同じで
あるが、原水中にポンプ(12によって、金属塩溶液貯
槽αl)から金属塩が添加される点が異なる。
FIG. 4 is a system diagram showing a processing method according to an embodiment of the present invention. In FIG. 1, (1) to 01 indicate the same or equivalent parts as in FIG. 1. 011 is a metal salt bath liquid storage tank in which a solution of a metal ion-containing salt that forms an insoluble or slightly soluble salt with a carbonate radical is stored. 02 is a metal salt solution injection pump. The treatment method shown in FIG. 4 is almost the same as that shown in FIG. 1, except that a metal salt is added to the raw water from a pump (12, metal salt solution storage tank αl).

原水中に含有される炭酸根はイオン形態を持っている時
は、前述したように過酸化水素添すロオゾン処理の効率
を低減するが、溶存している炭酸根を不溶性塩として懸
濁状態にすると、全く妨害作用を及ぼさない。このため
本発明では俗存炭酸根と反応して不溶もしくは難溶性塩
を形成する金輌イオン含有塩1例えばカルシウム、スト
ロンチウム、バリウムなどのアルカリ土類金属イオン含
有塩を添加することにより、炭酸根の妨害を除去して、
過酸化水素添加オゾン処理の効率を高く維持する。
When the carbonate radicals contained in the raw water have an ionic form, the efficiency of the ozonation treatment with hydrogen peroxide is reduced as described above, but the dissolved carbonate radicals become suspended as insoluble salts. Then, there will be no interference at all. Therefore, in the present invention, by adding a metal ion-containing salt 1, for example, a salt containing alkaline earth metal ions such as calcium, strontium, and barium, which reacts with existing carbonate roots to form an insoluble or poorly soluble salt, carbonate roots remove the interference of
Maintain high efficiency of hydrogen peroxide addition ozonation treatment.

汐 カルシウム、ストロチウムおよびバリウムの炭酸塩の溶
解度はそれぞれ1.5 X 10−’ mol/j (
25℃)、7.5X10−’mol/#(18℃)およ
び1.I X 10−’mol / 1(18℃)であ
る。従って第3図からも明らかなように、これらの炭酸
塩を生成することにより、残留する溶存炭酸根による妨
害は無視できる程度に低減できる。
The solubility of carbonate of Shio calcium, strotium and barium is 1.5 x 10-' mol/j (
25°C), 7.5X10-'mol/# (18°C) and 1. I x 10-'mol/1 (18°C). Therefore, as is clear from FIG. 3, by producing these carbonates, the disturbance caused by the remaining dissolved carbonate radicals can be reduced to a negligible extent.

また有機物の処理によって生成する炭酸根も、それに見
合う金属イオンが添加されていれば不溶性塩を形成する
ので、過酸化水素添加オゾン処理の効果を理想的な条件
に維持できる。また本発明を適用する時に注意しなけれ
ばならない点として。
Furthermore, the carbonate radicals produced by the treatment of organic matter will form insoluble salts if appropriate metal ions are added, so that the effects of hydrogen peroxide and ozone treatment can be maintained under ideal conditions. Also, points to be noted when applying the present invention.

金属イオンの添加量が不足した時一旦不溶性の炭酸塩を
形成しても1重炭酸塩に変化し再び可溶化することがあ
る。従って金属イオンの添加量として、原水中に含まれ
ている炭酸根と処理過程で生成する炭酸根の総量を不溶
性塩とする普が必要となる。すなわち、原水中の全炭素
量lこ匹敵する金属イオン量を注入すれば良い。
When the amount of metal ions added is insufficient, even if an insoluble carbonate is formed, it may change to monobicarbonate and become soluble again. Therefore, the amount of metal ions added must be such that the total amount of carbonate radicals contained in the raw water and carbonate radicals generated during the treatment process is the insoluble salt. That is, it is sufficient to implant an amount of metal ions equivalent to the total amount of carbon in the raw water.

このため金属イオン含有塩の添加量を、廃水に含まれる
無機性炭素および有機性炭素の総和と等モル以上と設定
することにより、過酸化水素添加オゾン処理の効率を高
く維持することができる。
Therefore, by setting the amount of the metal ion-containing salt added to be at least equimolar to the sum of inorganic carbon and organic carbon contained in the wastewater, the efficiency of the hydrogen peroxide addition ozone treatment can be maintained at a high level.

この場合、原廃水中の全炭素量を測定する手段、演算回
路および金属塩溶液注入用ポンプ(′I2を連動させ、
原廃水のTOC!1 度に対応して、金属塩含有塩溶液
の注入量を制御するように回路を構成することにより、
自動的に効率的な処理を行うことができる。
In this case, a means for measuring the total carbon content in the raw wastewater, a calculation circuit, and a metal salt solution injection pump ('I2 are interlocked,
TOC of raw wastewater! By configuring a circuit to control the amount of metal salt-containing salt solution injected at a time,
Efficient processing can be performed automatically.

なお、金属塩とり、−Ci、!ヵ7..つA、7.、。In addition, metal salt removal, -Ci,! 7. .. A, 7. ,.

各ラムおよびバリウム塩に限らず、不溶または難浴性塩
を生成する他の金属塩を使用することができる。
In addition to the respective rum and barium salts, other metal salts that produce insoluble or refractory salts can be used.

また処理方法のフローは第4図のものに限定されず、適
宜変更可能である。
Further, the flow of the processing method is not limited to that shown in FIG. 4, and can be modified as appropriate.

以上のとおり1本発明によれば、過酸化水素添加オゾン
処理において不溶性炭酸塩を形成する金属イオン含有塩
を注入するように構成したので、過酸化水素添加オゾン
処理の効率低下の原因となっていた溶存炭酸根(重炭酸
イオン、炭酸イオン)を不溶性炭酸塩として固定し、高
い処理効率を最終処理まで維持可能となる効果がある。
As described above, according to the present invention, a metal ion-containing salt that forms an insoluble carbonate is injected during the hydrogen peroxide addition ozonation treatment, which causes a decrease in the efficiency of the hydrogen peroxide addition ozonation treatment. This has the effect of fixing dissolved carbonate radicals (bicarbonate ions, carbonate ions) as insoluble carbonates, and maintaining high treatment efficiency until the final treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の過酸化水素添加オゾン処理方法を示す系
統図、第2図は過酸化水素添7JOオゾン処理の効果を
示す曲線図、第3図は過酸化水素添加オゾン処理の効率
と共存する重炭酸イオンの濃度との関係を示す線図、第
4図は本発明の一実施例による処理方法を示す系統図で
ある。 各図中、同一符号は同一または相当部分を示し、(1)
はオゾン発生機、(2)はオゾン反応槽、(3)はディ
フューザー、(4)は酸またはアルカり剤貯槽、(5)
は過酸化水X貯槽、(6)は原水槽、 C71,C81
、f9+’、 Q:15i;tポンプ、α〔は排気オゾ
ン分解器、(II+は金属塩溶液貯槽である。 代理人 葛 野 信 −(ほか1名)
Figure 1 is a system diagram showing the conventional ozone treatment method with hydrogen peroxide addition, Figure 2 is a curve diagram showing the effect of 7JO ozone treatment with hydrogen peroxide, and Figure 3 is the efficiency and coexistence of ozone treatment with hydrogen peroxide addition. FIG. 4 is a diagram showing the relationship between the concentration of bicarbonate ions and the concentration of bicarbonate ions, and FIG. 4 is a system diagram showing a treatment method according to an embodiment of the present invention. In each figure, the same reference numerals indicate the same or corresponding parts, (1)
is an ozone generator, (2) is an ozone reaction tank, (3) is a diffuser, (4) is an acid or alkali agent storage tank, (5)
is peroxide water X storage tank, (6) is raw water tank, C71, C81
, f9+', Q:15i;t pump, α[ is the exhaust ozone decomposer, (II+ is the metal salt solution storage tank. Agent: Shin Kuzuno - (1 other person)

Claims (1)

【特許請求の範囲】 (11オゾンおよび過酸化水素を併用して有機物を酸化
処理する廃水の処理方法において、炭酸根と不溶もしく
は難溶性塩を生成する金属イオン含有塩を原廃水に添加
することを特徴とする有機物含有廃水の処理方法。 (2)金属イオン含有塩はアルカリ土類金属イオン含有
塩であることを特徴とする特許請求の範囲第1項記載の
有機物含有廃水の処理方法。 (3)金属イオン含有塩の添加量を、廃水に含まれる無
機性炭素および有機性炭素の総和と等モル以上に設定す
ることを特徴とする特許請求の範囲第1項または第2項
記載の有機物含有廃水の処理方法。 (4)原廃水中の全炭素量を測定する手段、演算回路お
よび金属イオン含有塩注入ポンプを連動させ。 原廃水のTOCll[に対応して、金属イオン含有塩の
注入量を制御することを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の有機物含有廃水の処
理方法つ
[Claims] (11) In a wastewater treatment method in which organic substances are oxidized using ozone and hydrogen peroxide, a metal ion-containing salt that forms insoluble or poorly soluble salts with carbonate radicals is added to raw wastewater. (2) A method for treating organic matter-containing wastewater according to claim 1, characterized in that the metal ion-containing salt is an alkaline earth metal ion-containing salt. ( 3) The organic substance according to claim 1 or 2, wherein the amount of the metal ion-containing salt added is set to be equal to or more than the sum of inorganic carbon and organic carbon contained in the wastewater. A method for treating wastewater containing metal ions. (4) A means for measuring the total carbon content in raw wastewater, a calculation circuit, and a metal ion-containing salt injection pump are linked. Injection of metal ion-containing salt in response to TOCll of raw wastewater Claim 1 characterized in that the amount is controlled.
A method for treating organic matter-containing wastewater according to any one of paragraphs 1 to 3.
JP4858782A 1982-03-26 1982-03-26 Treatment of waste water containing organic material Pending JPS58166985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4858782A JPS58166985A (en) 1982-03-26 1982-03-26 Treatment of waste water containing organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4858782A JPS58166985A (en) 1982-03-26 1982-03-26 Treatment of waste water containing organic material

Publications (1)

Publication Number Publication Date
JPS58166985A true JPS58166985A (en) 1983-10-03

Family

ID=12807525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4858782A Pending JPS58166985A (en) 1982-03-26 1982-03-26 Treatment of waste water containing organic material

Country Status (1)

Country Link
JP (1) JPS58166985A (en)

Similar Documents

Publication Publication Date Title
US8562828B2 (en) Wastewater treatment apparatus
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
JP2873578B1 (en) Method and apparatus for treating electroless nickel plating waste liquid
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JP3700846B2 (en) Method and apparatus for removing ammoniacal nitrogen from wastewater
JPS58166985A (en) Treatment of waste water containing organic material
JPS62176595A (en) Method for removing organic substance in waste water
JP5215199B2 (en) Method and apparatus for treating persistent organic compounds
JP3362840B2 (en) Treatment method and treatment device for wastewater containing hydrogen peroxide
JPS58166986A (en) Treatment of waste water containing organic material in high concentration
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JP3537995B2 (en) Wastewater treatment method
JPH10216697A (en) Deodorant
JPH0699181A (en) Method for treating waste liquid containing decomposition-resistant organic substance
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
JPH06335688A (en) Treatment of ammonia-containing water
JPH02222798A (en) Pretreatment of sludge
JPS58166987A (en) Treatment of waste water containing organic material
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JPS58137492A (en) Method for removing color of water
JP2003024991A (en) Treatment system for wastewater containing formalin
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP2003145177A (en) Deoxidation treatment method and deoxidation treatment apparatus
JPH081167A (en) Water treatment apparatus
JPH0824914B2 (en) Method and apparatus for treating reducing agent-containing wastewater