JPS5816624B2 - Printed wiring manufacturing method - Google Patents

Printed wiring manufacturing method

Info

Publication number
JPS5816624B2
JPS5816624B2 JP52121199A JP12119977A JPS5816624B2 JP S5816624 B2 JPS5816624 B2 JP S5816624B2 JP 52121199 A JP52121199 A JP 52121199A JP 12119977 A JP12119977 A JP 12119977A JP S5816624 B2 JPS5816624 B2 JP S5816624B2
Authority
JP
Japan
Prior art keywords
film
metal
printed wiring
metal film
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52121199A
Other languages
Japanese (ja)
Other versions
JPS5454276A (en
Inventor
佐藤潤一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP52121199A priority Critical patent/JPS5816624B2/en
Publication of JPS5454276A publication Critical patent/JPS5454276A/en
Publication of JPS5816624B2 publication Critical patent/JPS5816624B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はプリント配線、殊に孔開き両面プリント配線の
製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing printed wiring, particularly perforated double-sided printed wiring.

従来、回路の高密度化及び高信頼化に応えるためにいわ
ゆるサイドエツチングの少い銅箔即ち厚みを35μから
18μへと薄くしたものが出現した。
Conventionally, in order to meet the demands for higher density and higher reliability of circuits, copper foils with less side etching, that is, copper foils whose thickness has been reduced from 35 .mu.m to 18 .mu.m, have appeared.

更にこれを進めた方法としてはアルミニウム箔に5μ又
は8μ程度の銅箔を折着させた箔を用いた次の様な方法
がとられている。
As a further improvement, the following method is used in which a copper foil of about 5 or 8 microns is folded onto an aluminum foil.

即ち、公知の孔開き両面プリント配線の製造方法として
は絶縁性基板両面にアルミニウム箔をキャリアーとする
銅導電膜を接着し打抜き加工により孔開は加工を施した
後アルミニウム箔を剥離又は溶解し、その後鍋を無電解
メッキして、或いは無電解メッキしたあと導電膜を厚く
するため電気メッキすることにより、孔内表面に導電膜
を形成する方法がある。
That is, as a known method for manufacturing double-sided printed wiring with holes, a copper conductive film using aluminum foil as a carrier is bonded to both sides of an insulating substrate, holes are formed by punching, and then the aluminum foil is peeled off or melted. After that, there is a method of forming a conductive film on the inner surface of the hole by electroless plating the pot, or by electroplating after electroless plating to thicken the conductive film.

この後に基板両面に夫々必要な回路をエツチング処理し
てプリント配線とする。
Thereafter, necessary circuits are etched on both sides of the board to form printed wiring.

この従来法のアルミニウム箔キャリアーは、例えば、約
50μであり、このキャリアーに5〜8μの銅導電膜を
通常電解形成し該銅膜面を絶縁基板に接着する。
This conventional aluminum foil carrier has a thickness of, for example, about 50 microns, and a 5-8 micron copper conductive film is usually electrolytically formed on this carrier, and the surface of the copper film is bonded to an insulating substrate.

この従来法においては、銅とアルミニウムは同じく金属
であり、途中工程の処理のためにはかなり強固に付着す
る必要がある。
In this conventional method, copper and aluminum are both metals, and must be adhered fairly firmly for intermediate processing.

そのためその後のアルミニウム剥離は容易でなく、また
機械的剥離に際してはアルミニウムキャリアーは引張り
に対して強度がなく破断し易い。
Therefore, subsequent peeling of the aluminum is not easy, and when mechanically peeled off, the aluminum carrier has no tensile strength and is easily broken.

このために銅膜の厚さ、及びアルミニウムキャリアーの
厚さはより薄くすることは困難であるし、剥離工程は迅
速にはなしえないという欠点を従来法は有する。
For this reason, it is difficult to reduce the thickness of the copper film and the thickness of the aluminum carrier, and the conventional method has the disadvantage that the peeling process cannot be performed quickly.

アルミニウムキャリアーは軟かく強度も余り強くないの
で取扱いが難しくかつ破断の危険によりさらに基板へ接
着の工程においても、高張力を印加して行い得ないので
、しわ、暇がつき易く迅速処理困難である。
Aluminum carriers are soft and not very strong, so they are difficult to handle, and there is a risk of breakage.Furthermore, high tension cannot be applied during the bonding process to the substrate, making it easy to wrinkle and crack, making it difficult to process quickly. .

また、前記の機械的剥離に代り、化学的処理によりアル
ミニウムキャリアーを除去する方法も公知であるが、こ
の場合も導電膜たる銅膜を浸蝕しないように細心の注意
が必要であり、迅速には行いえず、さらに導電膜たる銅
膜厚さは浸蝕の危険を考慮するとやはり余り薄くするこ
とは困難であるし、アルミニウム除去に際して発生する
アルミニウムイオンを含む排水を処理する必要がある等
の欠点を有する。
In addition, instead of the mechanical peeling described above, a method of removing the aluminum carrier by chemical treatment is also known, but in this case too, great care is required so as not to corrode the copper film, which is a conductive film, and it is not possible to remove the aluminum carrier quickly. Furthermore, it is difficult to reduce the thickness of the copper film, which is a conductive film, considering the risk of corrosion, and there are drawbacks such as the need to treat wastewater containing aluminum ions generated when removing aluminum. have

本発明は従来法のこれらの欠点を除去することを目的と
し新規なプリント配線の製造方法を提供するものである
The present invention aims to eliminate these drawbacks of the conventional methods and provides a novel printed wiring manufacturing method.

即ち、本発明のプリント配線製造方法は有機質フィルム
から成るキャリアーの一面に導電金属膜を形成し、該キ
ャリアーの金属面を絶縁性基板の−又は両面に接着して
孔開は加工を施し該フィルムを除去した後導電性金属を
無電解メッキすることから成る。
That is, in the printed wiring manufacturing method of the present invention, a conductive metal film is formed on one surface of a carrier made of an organic film, the metal surface of the carrier is adhered to one or both sides of an insulating substrate, and holes are formed. The process consists of electroless plating of a conductive metal after removal of the metal.

以下本発明について詳述する。The present invention will be explained in detail below.

本発明に用いる導電金属膜を有する有機質フィルムは公
知方法により、又は好ましくは下記の新規な方法により
製造される。
The organic film having a conductive metal film used in the present invention can be manufactured by a known method or preferably by the novel method described below.

即ち、この有機質フィルムとしてはポリエステル、ナイ
ロン、ポリプロピレン ポリエチレン ポリエチレンテ
レフタレート、ポリイミド、ポリ塩化ビニール、ゴム、
合成ゴムその他公知の有機質フィルムを用いることがで
き、該金属膜のキャリアーとしての強度を有するもので
あればよく、必ずしも絶縁性を有する必要はない。
That is, this organic film includes polyester, nylon, polypropylene, polyethylene, polyethylene terephthalate, polyimide, polyvinyl chloride, rubber,
Synthetic rubber or other known organic films can be used as long as they have the strength to serve as a carrier for the metal film, and do not necessarily have to have insulation properties.

この有機質フィルムの表面に付着性及び導電性のよい銅
、ニッケル、錫等の一次金属層を単独又は合金として、
また単層又は多層に蒸着又は化学的析着により形成し、
この一次金属層上に導電金属膜を二次金属層として電気
化学的に析着させて得られる。
On the surface of this organic film, a primary metal layer such as copper, nickel, tin, etc. with good adhesion and conductivity is applied either alone or as an alloy.
It can also be formed into a single layer or multiple layers by vapor deposition or chemical deposition,
A conductive metal film is electrochemically deposited as a secondary metal layer on this primary metal layer.

ここに、有機質フィルム厚は前述の強度との関係で適宜
選択でき、また金属膜の保護上の必要からも定められる
Here, the thickness of the organic film can be appropriately selected in relation to the above-mentioned strength, and is also determined based on the necessity for protecting the metal film.

前記−次金属層はその上に導電金属を電気化学的に析着
可能に十分な程度でよく、好ましくはo、oiμ以上も
好ましくは0.1〜0.2μである。
The secondary metal layer may be of a sufficient extent to permit electrochemical deposition of a conductive metal thereon, preferably having a diameter of 0, oi or more, preferably 0.1 to 0.2 .mu..

前記二次金属層は、一次金属と同−又は異種の金属を単
独に、又は錫、ニッケル及び亜鉛の1以上と銅との合金
等の合金として、単段又は多段階に電気メッキ等により
電着形成する。
The secondary metal layer is formed by electroplating the same or different metal as the primary metal alone or as an alloy such as an alloy of copper and one or more of tin, nickel, and zinc in a single step or in multiple steps. Form a deposit.

この際、二次金属層の下層を緩やかに形成した上に上層
を迅速に形成することもできる。
At this time, it is also possible to form the lower layer of the secondary metal layer slowly and then quickly form the upper layer.

この方法によれば二次金属層はその厚みを自由に選択可
能であり、約1〜100μの範囲で電気導体としての膜
を形成できる。
According to this method, the thickness of the secondary metal layer can be freely selected, and a film as an electrical conductor can be formed in the range of about 1 to 100 microns.

本発明の目的には、殊に約1〜10μの厚みの導電金属
膜が好ましいがこのような薄膜はこの方法により有利に
得られる。
For purposes of the present invention, conductive metal films having a thickness of about 1 to 10 microns are particularly preferred, and such thin films are advantageously obtained by this method.

また二次金属層(導電金属膜の主体部分)として最も好
ましいのは銅である。
Further, the most preferable material for the secondary metal layer (the main portion of the conductive metal film) is copper.

更に上記の導電金属膜を有する有機質フィルムの公知の
製造方法としては、蒸着、化学メッキ等もあるし、や5
厚い金属膜を必要とする場合金属箔の接着により形成さ
れるものを用いることもできる。
Furthermore, known manufacturing methods for the organic film having the above-mentioned conductive metal film include vapor deposition, chemical plating, etc.
If a thick metal film is required, one formed by adhering metal foil can also be used.

本発明について以下図面を用いて更に詳述する。The present invention will be explained in more detail below using the drawings.

前記のようにして得られる金属膜付フィルムは次いで絶
縁性基板の−又は両面に接着される。
The metal-coated film obtained as described above is then adhered to one or both sides of an insulating substrate.

ここに絶縁性基板とは、フェノール樹脂、エポキシ樹脂
、塩化ビニール、ポリエステル樹脂その他公知の電気絶
縁性材料から成るものである。
Here, the insulating substrate is made of phenol resin, epoxy resin, vinyl chloride, polyester resin, or other known electrically insulating materials.

図中においてこの絶縁性基板1の一面に、又は両面プリ
ント配線のためには両面に前記金属膜付フィルムの金属
面を公知の方法によりよく接着する。
In the figure, the metal surface of the metal film-coated film is well adhered to one surface of the insulating substrate 1, or to both surfaces for double-sided printed wiring, by a known method.

両面に接着したときは第1図に示す如き断面のものを得
る。
When bonded on both sides, a cross section as shown in FIG. 1 is obtained.

ここに、金属膜2はフィルム3により基板1との間でサ
ンドインチ状に狭まれて保護されている。
Here, the metal film 2 is protected by being sandwiched between the film 3 and the substrate 1 in a sandwich-like manner.

従って次の孔開は加工過程においてプレスにより金属膜
2を損傷することなく容易に孔4が形成される(第2図
)。
Therefore, the next hole 4 can be easily formed by pressing during the processing process without damaging the metal film 2 (FIG. 2).

特に、基板下面の金属膜;2は上記プレス開孔工程で損
傷され易く、また孔4の下端開口部はフィルムなしの場
合には開孔縁が不整にケバ立ったり、めくれたりする場
合があるので、フィルムの保護作用により無理に保たれ
うる。
In particular, the metal film (2) on the bottom surface of the substrate is easily damaged in the press hole-opening process, and the bottom opening of the hole (4) may fray or curl up irregularly if there is no film. Therefore, it can be maintained forcibly by the protective effect of the film.

作業面に存する硬質異物等による金属膜の、損傷はフィ
ルム厚さと強度の選択により解消される。
Damage to the metal film caused by hard foreign objects on the work surface can be eliminated by selecting the film thickness and strength.

次いで、このフィルム3は除去される。This film 3 is then removed.

この除去は機械的方法により、或いは絶縁性基板及び金
属膜を浸蝕せず、フィルムのみを選択的に溶解す・る溶
剤により溶解除去する。
This removal is carried out by a mechanical method, or by dissolution using a solvent that selectively dissolves only the film without corroding the insulating substrate or metal film.

この有機質フィルムと金属膜との間の付着力は、従来法
の如きアルミニウムと銅との間の付着力程大きくなく、
またこの有機質フィルムはアルミ箔よりも引張強度が高
くかつ可撓性に富んだものが得られるので、迅速かつ容
易に機械的剥離可能である。
The adhesion force between this organic film and the metal film is not as strong as the adhesion force between aluminum and copper as in the conventional method.
Moreover, since this organic film has higher tensile strength and greater flexibility than aluminum foil, it can be quickly and easily mechanically peeled off.

第3図はこのフィルム3の除去後の端面図を示す。FIG. 3 shows an end view of this film 3 after removal.

なおこの場合、金属膜2と絶縁性基板1との間の接着は
、金属膜2とフィルム3との間の付着力よりも強力なも
のとする必要があることは言うまでもない。
In this case, it goes without saying that the adhesion between the metal film 2 and the insulating substrate 1 needs to be stronger than the adhesion between the metal film 2 and the film 3.

さらに、上記工程の後、第4図に示すように前記孔4の
内面に導電金属層5を形成する。
Further, after the above steps, a conductive metal layer 5 is formed on the inner surface of the hole 4 as shown in FIG.

このための方法は公知の無電解メッキ法(化学メッキ法
)によることができる。
A known method for this purpose may be a known electroless plating method (chemical plating method).

この場合孔4の開口周端に金属膜2が形成されているの
で、金属膜の存在しない孔4の内面に析着した金属膜は
その付着力を孔4の開口周端の金属膜2の表面に析着し
た導電金属層5により補強される。
In this case, since the metal film 2 is formed around the opening periphery of the hole 4, the metal film deposited on the inner surface of the hole 4, where no metal film is present, transfers its adhesion force to the metal film 2 around the opening periphery of the hole 4. It is reinforced by a conductive metal layer 5 deposited on the surface.

この導電金属層5は、銅、′ニッケル、錫等の導電性金
属、又はこれらの合金を単独又は合金として、単層又は
複層に形成できる。
The conductive metal layer 5 can be formed into a single layer or multiple layers using conductive metals such as copper, nickel, and tin, or an alloy thereof, alone or as an alloy.

この際、導電金属層5は、当然基板表面の金属膜2の表
面にも析着するが、必要に応じ、開孔部周辺以外をマス
キングして過剰な析着を防止することもできる。
At this time, the conductive metal layer 5 is naturally deposited on the surface of the metal film 2 on the substrate surface, but if necessary, areas other than the periphery of the opening can be masked to prevent excessive deposition.

本発明によれば表面の金属膜2の厚みは1〜10μ好ま
しくは3〜8μとすることができる。
According to the present invention, the thickness of the metal film 2 on the surface can be 1 to 10 microns, preferably 3 to 8 microns.

無電解メッキ法としては、例えば金属塩溶液より金属を
析出させる化学メッキ法が適用される。
As the electroless plating method, for example, a chemical plating method in which metal is deposited from a metal salt solution is applied.

上記の処理の後、所望のプリント配線を得るために絶縁
基板表面の金属膜2,5にエツチング処理を施す。
After the above treatment, the metal films 2 and 5 on the surface of the insulating substrate are etched to obtain the desired printed wiring.

この際エツチングすべき金属膜の厚みは導電金属層の無
電解メッキの前にマスキングした場合には1〜10μマ
スキングなしの場合でも20〜30μとなり極めて薄く
できるので、エツチングに際してサイドエツチング等を
生じないようにして精密エツチングをすることが可能と
なる。
At this time, the thickness of the metal film to be etched is 1 to 10μ if masked before electroless plating of the conductive metal layer, and 20 to 30μ even without masking, which can be extremely thin, so side etching does not occur during etching. In this way, precision etching becomes possible.

以上詳述の如く本発明は、特に孔付両面プリント配線の
新規かつ有効な製造方法を提供するものであり、また従
来法よりもより薄くかつ精密なるプリント配線回路を有
するプリント配線を製造可能とするという利点を有する
As described in detail above, the present invention provides a new and effective manufacturing method for double-sided printed wiring with holes, and also makes it possible to manufacture printed wiring with thinner and more precise printed wiring circuits than conventional methods. It has the advantage of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例の製造工程を順次示
すものである。 第1図は両面に金属膜付フィルムを接着した絶縁性基板
の断面図を示す。 第2図は孔開は加工後、第3図はフィルム除去後、及び
第4図は無電解メッキ処理後の状態を夫々絶縁性基板端
面図により示す。 1・・・・・・絶縁性基板、2・・・・・・導電金属膜
、3・・・・・・有機質フィルム、4・・・・・・孔、
5・・・・・・導電金属層。
1 to 4 sequentially show the manufacturing process of an embodiment of the present invention. FIG. 1 shows a cross-sectional view of an insulating substrate with metal-coated films adhered to both sides. FIG. 2 shows an end view of the insulating substrate after hole drilling, FIG. 3 shows the state after film removal, and FIG. 4 shows the state after electroless plating. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Conductive metal film, 3... Organic film, 4... Hole,
5... Conductive metal layer.

Claims (1)

【特許請求の範囲】[Claims] 1 有機質フィルムから成るキャリアーの一面に導電金
属膜を形成し、該キャリ゛アーの金属面を絶縁性基板の
−又は両面に接着して孔開は加工を施し該フィルムを除
去した後導電性金属を無電解メッキすることを特徴とす
るプリント配線の製造方法。
1 A conductive metal film is formed on one surface of a carrier made of an organic film, the metal surface of the carrier is adhered to one or both sides of an insulating substrate, holes are processed, and after the film is removed, a conductive metal film is formed. A method for manufacturing printed wiring characterized by electroless plating.
JP52121199A 1977-10-08 1977-10-08 Printed wiring manufacturing method Expired JPS5816624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52121199A JPS5816624B2 (en) 1977-10-08 1977-10-08 Printed wiring manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52121199A JPS5816624B2 (en) 1977-10-08 1977-10-08 Printed wiring manufacturing method

Publications (2)

Publication Number Publication Date
JPS5454276A JPS5454276A (en) 1979-04-28
JPS5816624B2 true JPS5816624B2 (en) 1983-04-01

Family

ID=14805308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52121199A Expired JPS5816624B2 (en) 1977-10-08 1977-10-08 Printed wiring manufacturing method

Country Status (1)

Country Link
JP (1) JPS5816624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141228U (en) * 1984-08-17 1986-03-15 オリンパス光学工業株式会社 Lens barrel aperture correction mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656694A (en) * 1979-10-13 1981-05-18 Fujitsu Ltd Method of manufacturing printed circuit board
JPS5678199A (en) * 1979-11-30 1981-06-26 Fujitsu Ltd Method of laminating multilayer printed board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831457A (en) * 1971-08-27 1973-04-25
JPS49125851A (en) * 1973-04-06 1974-12-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831457A (en) * 1971-08-27 1973-04-25
JPS49125851A (en) * 1973-04-06 1974-12-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141228U (en) * 1984-08-17 1986-03-15 オリンパス光学工業株式会社 Lens barrel aperture correction mechanism

Also Published As

Publication number Publication date
JPS5454276A (en) 1979-04-28

Similar Documents

Publication Publication Date Title
KR100193979B1 (en) Capped Copper Electrical Interconnect
US7523548B2 (en) Method for producing a printed circuit board
US4088544A (en) Composite and method for making thin copper foil
EP0215557B1 (en) Copper-chromium-polyimide composite
US4964947A (en) Method of manufacturing double-sided wiring substrate
WO2005067354A1 (en) Printed wiring board, method for manufacturing same, and circuit device
JP2000331537A (en) Copper foil for high density hyperfine wiring board
EP1513382A2 (en) Conductive sheet having conductive layer with improved adhesion and product including the same
JPS5816624B2 (en) Printed wiring manufacturing method
JPH04234192A (en) Method and device for using permanent mandrel for manufacture of electric circuit
US6544584B1 (en) Process for removal of undesirable conductive material on a circuitized substrate and resultant circuitized substrate
GB2080630A (en) Printed circuit panels
JPH01290289A (en) Method of forming conductor pattern
JPH10294548A (en) Manufacture of printed wiring board and printed wiring board using the method
JP2903814B2 (en) Manufacturing method of wiring board
JP3054793B2 (en) Wire for wiring of laminated wiring board and method of manufacturing the same
JP2734184B2 (en) TAB tape carrier
JP2914019B2 (en) Electronic component manufacturing method
JPH03194992A (en) Manufacture of printed board
JPH10135604A (en) Manufacture of hybrid printed circuits whose film thickness is 105-400 micron and 17-105 micron
JPH08181455A (en) Manufacture of multilayer printed circuit board
JPS61212097A (en) Manufacture of printed circuit board with exposed inner layer pattern part
JPS61163691A (en) Formation for electric circuit of printed wiring board
JPH11340623A (en) Manufacture of flexible printed board
JPH05175640A (en) Manufacture of printed board