JPS58164287A - Substrate for integrated circuit - Google Patents

Substrate for integrated circuit

Info

Publication number
JPS58164287A
JPS58164287A JP4759082A JP4759082A JPS58164287A JP S58164287 A JPS58164287 A JP S58164287A JP 4759082 A JP4759082 A JP 4759082A JP 4759082 A JP4759082 A JP 4759082A JP S58164287 A JPS58164287 A JP S58164287A
Authority
JP
Japan
Prior art keywords
substrate
composite material
integrated circuit
thermal expansion
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4759082A
Other languages
Japanese (ja)
Inventor
秋雄 千葉
清水 誠喜
国谷 啓一
仁 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4759082A priority Critical patent/JPS58164287A/en
Publication of JPS58164287A publication Critical patent/JPS58164287A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は集積回路装置に係り、特に鋼−炭素繊維構合材
からなる半導体搭載基板及び放熱基板を有する半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit device, and more particularly to a semiconductor device having a semiconductor mounting substrate and a heat dissipation substrate made of a steel-carbon fiber composite material.

半導体を搭載する基板は半導体素子であるStの熱彫遥
降数は3.5X10−’/l:’と非常に小さい走め、
低熱膨張係数を有するMo+Wが用いられてきた。しか
し、価格の高騰、資源不足がある。
The substrate on which the semiconductor is mounted has a very small thermal engraving number of 3.5X10-'/l:' for the semiconductor element St.
Mo+W, which has a low coefficient of thermal expansion, has been used. However, there are soaring prices and resource shortages.

パワーモジュールやその他の温成*1*回路装置等はア
ル2す等の耐電圧特性を有する絶縁板上に半導体素子や
抵抗等の回路素子を配線膜で接続した回路網を形成し、
該基板裏面にCLI、!lIるいはAg等の熱伝導性の
優れた放熱板を接続したS遺となっている。放熱板であ
るCu或いはAgを絶縁基板に固着した場合、熱膨張係
数差により絶縁板の反りや破壊が生じ易くなる。そのた
め比較的厚い絶縁基板が用いられてきた。従って熱抵抗
が悪くなる欠点がある。
Power modules and other hot-forming *1* circuit devices form a circuit network in which circuit elements such as semiconductor elements and resistors are connected with wiring films on an insulating board with voltage resistance characteristics such as Al2.
CLI on the back side of the board! It is connected to a heat sink with excellent thermal conductivity such as Ag or the like. When Cu or Ag, which is a heat dissipation plate, is fixed to an insulating substrate, the insulating plate is likely to warp or break due to the difference in thermal expansion coefficient. Therefore, relatively thick insulating substrates have been used. Therefore, it has the disadvantage of poor thermal resistance.

これらの欠点を改良するには薄板の絶縁材を用い放熱板
の熱f#彊係数を絶縁材と同等でしかも熱伝導性の優れ
次材料が要求さルる。
In order to improve these drawbacks, it is necessary to use a thin plate of insulating material, and to use a material that has a thermal f# coefficient of the heat dissipation plate equivalent to that of the insulating material and has excellent thermal conductivity.

このような目的を満足する材料として、Cu或いはAg
に低熱11遥率の14碓を埋込んだ横合材が開発されて
き友、この低熱膨張係数、高熱伝導性の材料として種々
挙げられるが%KCll1.1I11をCu中に墳込ん
だCU−C@維順合材が優れている。
Cu or Ag is a material that satisfies this purpose.
CU-C, which has 14% KCll1.1I11 embedded in Cu, has been developed.There are various materials that have low thermal expansion coefficient and high thermal conductivity. @Weishun composite material is excellent.

Cu−C鑵繍護合材はC横線の配列やC含有量lこより
要求される熱膨張特性を満足するように構成可能である
。特KCJII維の配列は熱膨張係数を大睡く左右する
The Cu--C embroidery material can be configured to satisfy the thermal expansion characteristics required by the arrangement of the C horizontal lines and the C content. The arrangement of special KCJII fibers greatly influences the coefficient of thermal expansion.

C繊維の配列には一方向、二方向、無方向、放射状など
が考えられるが次のような欠点がある。
The arrangement of C fibers can be unidirectional, bidirectional, non-directional, radial, etc., but they have the following drawbacks.

一方向配列はc4t@繍径方向とその直角方向との熱I
11漫係教が異なるため異方性が生じる。二方向配列は
マトリックスであるcuの熱11張をciI&維で抑制
の効果が少なくcm繍醗に対し熱膨張が大きくなる。無
方向配列はC1#維看はもとより、繊維長さにより熱膨
張係数の調整は可能であるが、C繊維を切断しCuマト
リックス中に高…亮加圧力下で埋込む、このとき、C繊
維は折り曲げられた部分は接合などの加熱により高弾性
を有するC繊維は元の形に戻る力が働きCuマトリック
スに割れが生じる。放射状の配列は困−であり半導体装
置用するKは多数個作製が必要であることから実際的で
ない。これら上述し+cu−ca合材を半導体素子搭載
する九めの形状、あるいは絶縁材に接合する友めの形状
に切断加工、%に5〜1011m程度の大きさにし九場
合、熱膨張係数が大きくなる欠点があつ九。
One-way arrangement is c4t@heat I in the embroidery radial direction and the direction perpendicular to it
11 Anisotropy occurs because the teachings are different. The two-way arrangement has less effect on suppressing the thermal expansion of the matrix Cu with ciI and fibers, and the thermal expansion becomes larger than that of cm embroidery. In the non-directional arrangement, it is possible to adjust the thermal expansion coefficient by adjusting the fiber length as well as C1# fibers. When the bent portion is heated during bonding or the like, a force exerts on the highly elastic C fibers to return to their original shape, causing cracks in the Cu matrix. A radial arrangement is difficult and is not practical because it requires manufacturing a large number of K for semiconductor devices. These above-mentioned +cu-ca composite materials are cut into a shape that mounts a semiconductor element or a shape that is bonded to an insulating material, and when cut to a size of about 5 to 1011 m, the coefficient of thermal expansion is large. There are nine drawbacks.

C1#!維を各方向に配列し&Cu−C基板は切断刀ロ
エすることKより熱膨張係数が変化するのは、マトリッ
クスであるCuの熱膨張を1#I繍の配列により抑制が
できなくなる九めである。つまり、C繊維とマトリック
スであるCuとの反応がなく、加熱し九楊合、Cuが大
きな熱り張係数を有するため、低熱膨張であるC繊維の
効果が薄らいでくる丸めである。
C1#! By arranging the fibers in each direction and cutting the Cu-C substrate with a cutting knife, the thermal expansion coefficient changes due to the fact that the thermal expansion of the matrix Cu cannot be suppressed due to the arrangement of the 1#I embroidery. . In other words, there is no reaction between the C fibers and the matrix Cu, and when heated, the effect of the C fibers, which have low thermal expansion, diminishes because Cu has a large thermal tensile coefficient.

そこで、マトリックスであるCu或いはAg。Therefore, the matrix is Cu or Ag.

熱1彫遥を抑制したC繊維の配列法及びその製造方法、
また、切断加工後の熱膨張に変化の無いcu−CJti
板が必要である。
A method for arranging C fibers that suppresses heat 1-carving and a method for producing the same,
In addition, cu-CJti has no change in thermal expansion after cutting.
A board is required.

本発明の目的は、改良され九熱彰彊特性を有するcu−
cm繍襟合材よりなる半導体装置用基板を樽供すること
にある。
The object of the present invention is to provide a cu-
The purpose is to provide substrates for semiconductor devices made of cm embroidery material in barrels.

本発明は半導体素子を単数或いは複数個搭載する橋板及
び絶−材に固着される放熱板からなる半導$4基嶺に於
・ハて、該層4iはCU−C繊維複合材からなり、C繊
維の配列をクロス状に配列し、そのクロスポイントが4
ケ/ (M”以上有することを特徴とした半導体装置用
基板にある。
The present invention relates to a semiconductor base plate consisting of a bridge plate on which one or more semiconductor elements are mounted and a heat dissipation plate fixed to an insulating material, and the layer 4i is made of a CU-C fiber composite material. , C fibers are arranged in a cross pattern, and the cross points are 4.
K/ A substrate for a semiconductor device characterized by having at least M".

co−cama合材ii@ 1 図に示すよウニcf/
II。
co-cama composite material ii @ 1 As shown in the figure, sea urchin cf/
II.

離合有量VCより熱膨張係数のii#倭は可能である。The coefficient of thermal expansion ii#Wa is possible from the dissociation quantity VC.

図は4繕配列方向の熱膨張係数を示している。また、第
2図に示すようKC4111!繍の配列により熱膨張係
数は異なるが繊維配列を考慮すれば等方性でしかも低熱
41張のJ&板が得られる。このように、C繊維の配列
は種々考えられるが低熱膨張、等方性、量産性など、6
−らクロス状(例えば平織)に配列したものが半導体装
置用基板に適する。
The figure shows the coefficient of thermal expansion in the direction in which the four tassels are arranged. Also, as shown in Figure 2, KC4111! The coefficient of thermal expansion differs depending on the arrangement of the embroidery, but if the fiber arrangement is taken into consideration, a J& board that is isotropic and has a low heat 41 tension can be obtained. In this way, various arrangements of C fibers can be considered, such as low thermal expansion, isotropy, mass production, etc.
- A cross-shaped (for example, plain weave) arrangement is suitable for a substrate for a semiconductor device.

C繊維をクロス状に配列し九基板は、ある種度の大きさ
を有する形状の熱膨張系数は一定するが形状を小さくし
た4合、熱l11張係数が大きくなる。
In the case of a substrate in which C fibers are arranged in a cross shape, the coefficient of thermal expansion is constant when the shape has a certain size, but when the shape is made smaller, the thermal l11 tensile coefficient increases.

これは、基板内に有するクロスポイントの数によるもの
である。つまり、C横線は径方向の411張は、18X
 10””/r橿質と大きく、その直角方向の熱膨張係
数は、−2X 10−’/Cであり、C繊維を#I3図
に示すよ5に径方向の線維を包むように41を維をクロ
ス状に配列することで線維径の熱膨張を抑制しさらにマ
トリックであるCuの熱膨張は、C繊維のクロス部によ
り抑制され低熱膨張のCU−C基板となる。第3図の符
号は、夫々lがCU−C繊維、2がCu、3がCである
This is due to the number of cross points in the board. In other words, the C horizontal line is 411 in the radial direction, which is 18X
10""/r rod quality, and its perpendicular thermal expansion coefficient is -2X 10-'/C, and the C fiber is maintained in a manner that wraps the fiber in the radial direction at 5 as shown in Figure I3. By arranging them in a cross pattern, the thermal expansion of the fiber diameter is suppressed, and furthermore, the thermal expansion of the matrix Cu is suppressed by the cross sections of the C fibers, resulting in a CU-C substrate with low thermal expansion. In FIG. 3, l is the CU-C fiber, 2 is the Cu fiber, and 3 is the C fiber.

実施例1 +1径7ミクロンのC#繍にCu量が70体檀%以丁に
なるようKめつき施し、1000〜3000本の繊維束
とし友、Cuめっきし九繊維束は、1東当り50〜50
0gのテンションをカロえ平織により、縦、横のクロス
ポイントを同数としたcu−C網を作製した。なお、こ
こでクロスポイント5とは*m束4と繊維束4とが交差
する点を云う。
Example 1 +1 C# embroidery with a diameter of 7 microns is K-plated so that the Cu amount is 70% or less, and 1000 to 3000 fiber bundles are made. 50-50
A cu-C net with the same number of vertical and horizontal cross points was produced by plain weaving with a tension of 0 g. Note that the cross point 5 here refers to the point where the *m bundle 4 and the fiber bundle 4 intersect.

作製した網の外−を第4図に示す。Figure 4 shows the outside of the fabricated net.

CU−C網は、酸化物やよごれを除去する目的で水素中
で400C,30分の還元処理をした。
The CU-C network was subjected to a reduction treatment in hydrogen at 400C for 30 minutes to remove oxides and dirt.

還元処理し九CU−C網は一度1000C,30分保持
1 /Jlll圧力250 Kf/lvm”の条件でホ
ットプレスを行ないCU−C基板を作製した。
After the reduction treatment, the nine CU-C nets were once hot-pressed at 1000C, held for 30 minutes, and at a pressure of 250 Kf/lvm to produce a CU-C substrate.

ホットプレスしpcu−C基板はクロスポイント数が1
ケ/cW1” 、  3ケ/cng” 、  4ケ/3
” 、  6ケ/cm” 、  12ケ/3曾を含む基
板で6シ、その試料の熱膨張係数を測定し友。その結果
を第5図に示す。
Hot pressed PCU-C board has 1 cross point
ke/cW1", 3 ke/cng", 4 ke/3
The thermal expansion coefficient of the sample was measured using a substrate containing 12 cm/cm and 12 cm/cm. The results are shown in FIG.

第5図に示すごとく、クロスポイントが少ないはど熱1
1邊係数が大きくなり、クロスポイントが4ケ/m”以
上含む試料、特に好ましくは6り1511”以上の試料
では熱膨張係数に変化がないことがわかった。
As shown in Figure 5, there are few cross points.
It was found that the coefficient of thermal expansion increased and the coefficient of thermal expansion did not change in samples containing cross points of 4 points/m" or more, particularly preferably samples with cross points of 1511" or more.

・窮6図にクロスポイント数を3ケ/ crs ’及び
4ケ/1?llI”で作製した(上述条件で作製した)
Cu−C基板(50wX50m)を1辺の長さを3■。
・Is the number of cross points 3/crs' and 4/1 in the 6th figure? llI” (produced under the above conditions)
Cu-C substrate (50w x 50m) with one side length 3cm.

5m、7++2.10mm、13mの正方形に切断し、
熱膨張係数を測定し九結果を示す。クロスポイント3ケ
/3雪では曲@Iに示すように切断形状が小さい?1ど
、熱膨張係数が大きくなり、また、ノ(ラツ午も大きく
なる。
Cut into squares of 5m, 7++2.10mm, and 13m,
Measure the thermal expansion coefficient and show the nine results. Is the cut shape small in Cross Point 3/3 snow as shown in song @I? First, the coefficient of thermal expansion increases, and the coefficient of thermal expansion also increases.

クロスポイント4ケ/備重では曲線■に示すように切断
形状が変化しても、熱膨gk係数には変死がなく安定ま
たcu−’cC基板得られた。その他、熱膨張係数の変
化のない試料を任21の形状に切断加工し、その熱膨張
係数を測定したが変化はみられなかった。
With 4 cross points/load, even if the cutting shape changed as shown by curve (2), the thermal expansion gk coefficient did not change or die, and a stable cu-'cC substrate was obtained. In addition, samples with no change in thermal expansion coefficient were cut into 21 shapes and the thermal expansion coefficient was measured, but no change was observed.

実施例2 実施例1で作映し丸網の空隙部にCu粉を挿入し100
〜500Kg/cps■の加圧力を加えブレスし、さら
に、600〜800Cで水素中で仮焼結を行いホットプ
レスした。その外観を第7図に示す。作製し+CU−C
基板の熱伝導率ならびに熱11−X!1係赦の測定結果
1表1に示r0表中にCu粉なしのf−夕を添えた。
Example 2 Cu powder was inserted into the void of the circular screen filmed in Example 1, and 100
The material was pressed under a pressure of ~500 kg/cps, and then pre-sintered in hydrogen at 600 to 800 C and hot pressed. Its appearance is shown in Fig. 7. Fabricated+CU-C
Thermal conductivity of the substrate and heat 11-X! Measurement results for 1 test are shown in Table 1.F-Y without Cu powder is included in the r0 table.

表    1 CU−C基板の表面を観察し九場合、CU−C網の?!
111rtllKcu粉が介在したものではC繊維の広
がりが少なく、綱の空隙部に粉が入っている。
Table 1 When observing the surface of the CU-C substrate, what about the CU-C network? !
In the case where 111rtllKcu powder was present, the spread of C fibers was small, and the powder was contained in the voids of the rope.

(嬶7図)そのため、熱伝導よくなる。その理由として
は、CU−C網の断面に分いて、CU−C網の表面から
裏面に1亀るCLIのヒートバイブが杉成さnるためで
ある。
(Figure 7) Therefore, heat conduction is improved. The reason for this is that the heat vibration of the CLI is transmitted from the front side of the CU-C network to the back side of the CU-C network.

熱#張係数がCu粉を埋込まないのに比べあまり大きく
ならないのは、網のクロスポイントによりCuの膨漫を
おさえるためである。
The reason why the thermal tensile coefficient is not so large compared to when no Cu powder is embedded is because the expansion of Cu is suppressed by the cross points of the mesh.

【図面の簡単な説明】[Brief explanation of drawings]

4I!r。 第1図はC鑵推量と熱膨張係数との関数を示すグラフ、
第2図は偵繍の配列方向と熱膨張係数との関係を示すグ
ラフ、第3図は本発明の一寿施例を示すm面図、第4図
はCU−C繊維をクロス状に配列して作つ丸網の平面図
、第5図はCU−C砿維網状基板のクロスポイント数と
M膨張係数との関係を示すグラフ、第6図は基板の一辺
の長さと熱膨張係数との関係を示すグラフ、第7図は本
発明の1!施・例を示す平面図である。 1・・・CU−C繊維、2・・・Cu、3・・・C,4
・・・繊維?θ   、30   41)    50
    (、θ   πC釆襄、推量(体積z9 第2閃 龜維西[列 第4図 7U人オぐインド秩(男4ンmz) 基梧f−堤I)長さく電型) 373
4I! r. Figure 1 is a graph showing the function of C-pitch estimation and thermal expansion coefficient.
Fig. 2 is a graph showing the relationship between the arrangement direction of the embroidery and the coefficient of thermal expansion, Fig. 3 is a m-plane view showing a one-life embodiment of the present invention, and Fig. 4 is a graph showing the relationship between the arrangement direction of the embroidery and the coefficient of thermal expansion. Fig. 5 is a graph showing the relationship between the number of cross points and the M expansion coefficient of the CU-C fiber mesh substrate, and Fig. 6 is a graph showing the relationship between the length of one side of the substrate and the thermal expansion coefficient. FIG. 7 is a graph showing the relationship between 1! and 1! of the present invention. It is a top view showing an example. 1...CU-C fiber, 2...Cu, 3...C, 4
···fiber? θ, 30 41) 50
(, θ πC 釆襄, Estimation (Volume z9 2nd Senkou Isai [Column 4th figure 7U person Og India Chichi (Male 4 mz) Kigo f-Tsutsumi I) Length electric type) 373

Claims (1)

【特許請求の範囲】 1、単数もしくは複数個の半導体素子を搭載する基板及
び絶縁基板に固着される放熱基板とからなる集積回路装
置において、 前記放熱基板はクロス状に配列し九CU−C繊維複合材
によp構成され、前記複合材は前記基板内に4ケ/備1
以上のりμスボイ/トを有することを特徴とする集積回
路用基板。 2、特許請求の範囲811項において、前記Cu、−C
繊維複合材は、中心部をOKより構成し、Cの周辺をC
uにより被覆し九縦糸ならび罠横糸を交互に交叉させて
編成したcu−caによって構成されている仁とを特徴
とする集積回路用基板。 3、特許請求の範囲第1項において、前記Cu−C繊維
複合材はctを10〜70体積%にしたことを特徴とす
る集積回路用基板。 4、特許請求の範囲第1項記載において、前記CU−C
繊維複合材は、クロス状に配列されたcu−camのク
ロス空隙部に熱伝導の良好な金属を介在させ友ことを特
徴とする集積回路用基板。 5、%nt*求の範囲第1項において、前記Cu−C砿
m複合材は、直径7ンクロンのC繊維KO15〜3ミク
ロンのCuめつきを施し走1000〜3000本の#記
鐵維複合材を1束に束ね、前記繊維複合材を1束当シ5
0〜500gのテンションを加え、東ねられた前記複合
材をクロス状に編成し、これによってCU−C網を構成
するよう圧したことを特徴とする集積回路用基板。 6、特許請求の範囲第4項において、前記CIJ−C蝋
繍複合材は100〜500 h/cm”の加圧力を加え
ブレスされ、しかる後600〜800Cの水素雰囲気中
で還元処4されていることを特徴とする集積回路用基板
。 7、特許請求の範囲第5項または第6項において、前記
CU−C繊維複合材は、還元性雰囲気下900〜105
(IK加熱されるとともに200〜300に4/c11
1″の加圧力によりホットプレスされることを特徴とす
る集積回路用基板。 8、%許請求の範囲第7項において、ホットプレス後の
CU−C繊維複合材及び所望の寸法に切断加工された前
記基板は400Cの一度で0.5時間熱処理されること
を特徴とする集積回路用基板。
[Claims] 1. An integrated circuit device comprising a substrate on which one or more semiconductor elements are mounted and a heat dissipation board fixed to an insulating substrate, wherein the heat dissipation board is arranged in a cross shape and has nine CU-C fibers. The composite material is made of a composite material, and the composite material has 4 pieces/equipment in the substrate.
1. A substrate for an integrated circuit, characterized in that it has a glue μ voice/cut as described above. 2. In claim 811, the Cu, -C
The fiber composite material consists of OK in the center and C in the periphery of C.
1. A board for an integrated circuit, characterized by comprising a thread made of cu-ca covered with u and knitted by alternating nine warp threads and trap weft threads. 3. The integrated circuit board according to claim 1, wherein the Cu-C fiber composite material has a ct of 10 to 70% by volume. 4. In claim 1, the CU-C
The fiber composite material is a substrate for an integrated circuit, characterized in that a metal having good thermal conductivity is interposed in the cross gaps of cu-cams arranged in a cross shape. 5. %nt The materials are bundled into one bundle, and each bundle of the fiber composite material is
1. A substrate for an integrated circuit, characterized in that the twisted composite material is knitted in a cross shape by applying a tension of 0 to 500 g, and pressed so as to form a CU-C network. 6. In claim 4, the CIJ-C wax embroidered composite material is pressed under a pressure of 100 to 500 h/cm, and then subjected to reduction treatment in a hydrogen atmosphere at 600 to 800 C. 7. In claim 5 or 6, the CU-C fiber composite material has a temperature of 900 to 105 in a reducing atmosphere.
(4/c11 to 200-300 with IK heating
A substrate for an integrated circuit characterized in that it is hot-pressed with a pressure of 1". An integrated circuit substrate, wherein the substrate is heat-treated at 400C for 0.5 hours at a time.
JP4759082A 1982-03-24 1982-03-24 Substrate for integrated circuit Pending JPS58164287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4759082A JPS58164287A (en) 1982-03-24 1982-03-24 Substrate for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4759082A JPS58164287A (en) 1982-03-24 1982-03-24 Substrate for integrated circuit

Publications (1)

Publication Number Publication Date
JPS58164287A true JPS58164287A (en) 1983-09-29

Family

ID=12779461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4759082A Pending JPS58164287A (en) 1982-03-24 1982-03-24 Substrate for integrated circuit

Country Status (1)

Country Link
JP (1) JPS58164287A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127044A (en) * 1979-03-26 1980-10-01 Hitachi Ltd Electric circuit substrate and its manufacture
JPS56161662A (en) * 1980-05-16 1981-12-12 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127044A (en) * 1979-03-26 1980-10-01 Hitachi Ltd Electric circuit substrate and its manufacture
JPS56161662A (en) * 1980-05-16 1981-12-12 Hitachi Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US3700538A (en) Polyimide resin-fiberglass cloth laminates for printed circuit boards
CN107815854A (en) Nickel-coated carbon fibers film, its preparation method, shielding construction and its preparation method
DE102011086092A1 (en) Semiconductor device and method for its production
Xu et al. Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires
DE10144704B4 (en) Method for connecting a component to a carrier
JP2013082767A (en) Heat-dissipating member and method for producing the same
CN110602934A (en) Electromagnetic shielding heat dissipation film and preparation method and application thereof
JPS58164287A (en) Substrate for integrated circuit
JPH0221667B2 (en)
Noh et al. Printed wire interconnection using Ag sinter paste for wide band gap power semiconductors
DE10320186A1 (en) Heat conducting paste used in the production of power semiconductor modules comprises a base material and a filler
CN214774434U (en) Compound heat dissipation membrane of graphite alkene
DE4401608C1 (en) Thermally conductive electrically insulating adhesive joint
JPWO2007135748A1 (en) Prepreg, laminate and method for producing the same
JP5588158B2 (en) Laminated plate and module
JPS606231B2 (en) Plate base material
DE19730865A1 (en) Heat sink for an electronic component especially a ceramic circuit board
JP2734942B2 (en) Manufacturing method of chip carrier
JPH1149578A (en) Radiating member for semiconductor device and its production
CN115625946A (en) Heat-conducting interface material and preparation method and application thereof
DE102010041261A1 (en) Flip-chip arrangement with a cooling element and method for producing a flip-chip arrangement
US20200317567A1 (en) Substrate and multilayer substrate
CN116039172A (en) High-strength graphene heat conduction gasket and preparation method thereof
DE19640650A1 (en) Heat generating assembly for substrate mounted electronics
JPS62152745A (en) Laminated board