JPS58163372A - Apparatus for removing gas bubble in blood - Google Patents

Apparatus for removing gas bubble in blood

Info

Publication number
JPS58163372A
JPS58163372A JP57045674A JP4567482A JPS58163372A JP S58163372 A JPS58163372 A JP S58163372A JP 57045674 A JP57045674 A JP 57045674A JP 4567482 A JP4567482 A JP 4567482A JP S58163372 A JPS58163372 A JP S58163372A
Authority
JP
Japan
Prior art keywords
blood
upper space
filter
bubble
air bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57045674A
Other languages
Japanese (ja)
Other versions
JPS6144031B2 (en
Inventor
桂 義郎
伊井 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57045674A priority Critical patent/JPS58163372A/en
Publication of JPS58163372A publication Critical patent/JPS58163372A/en
Publication of JPS6144031B2 publication Critical patent/JPS6144031B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (I)背景技術 (I−1)技術分野 本発明は、開心術時における人工心肺装置、人工腎臓装
置、血球成分と血漿成分の分離装置等の体外循環用血液
回路を流れる血液より気泡を除去する血液中気泡除去装
置に関する。
Detailed Description of the Invention (I) Background Art (I-1) Technical Field The present invention relates to a blood circuit for extracorporeal circulation such as an artificial heart-lung device, an artificial kidney device, and a device for separating blood cell components and plasma components during open-heart surgery. The present invention relates to a blood bubble removal device that removes bubbles from blood flowing through blood.

(I−2)従来技術及びその問題点 血液中気泡除去装置には血液中の気泡を濾過体によって
捕捉し上昇させて除去する濾過体方式と、血液滞留空間
を設けて血流速度を小さくし血液中の気泡が浮力で上昇
する滞留方式及び濾過体と血液滞留の組合せ方式とがあ
る。第1図及び第2図はそれぞれ従来の濾過方式の血液
中気泡除去装置である。第1図の装置は、容器本体1内
が気泡をはじき易いナイロン製であり網状の濾過体2に
よって被処理血液室3と処理血液室4とに縦割りに画さ
れ容器1の下部に各室に連通して血液人口5及び血液出
口6がありさらに容器本体1の頂部に両室にそれぞれ連
通した気泡量ロアがある構成である。しかして、血液人
口5よシ被処理血液室3に導入する血液は血流圧力によ
って濾過体2を通る際該濾過体2の孔径よシ大きい気泡
が捕捉され処理血液室4に入り血液出口6より出ること
になり、また濾過体2で捕捉された上記気泡は浮力によ
り上昇し容器本体1内の上部に一定量に集まる毎に気泡
量ロアより流出する。
(I-2) Prior art and its problems The blood bubble removal device uses a filter system in which air bubbles in the blood are captured by a filter and raised to be removed, and a blood retention space is provided to reduce the blood flow velocity. There is a retention method in which air bubbles in the blood rise due to buoyancy, and a combination method in which a filter and blood retention are used. FIG. 1 and FIG. 2 each show a conventional filtration type blood bubble removal device. In the apparatus shown in FIG. 1, the inside of the container body 1 is made of nylon that easily repels air bubbles, and is vertically divided into a blood chamber 3 to be processed and a blood chamber 4 to be processed by a mesh filter 2. Each chamber is located at the bottom of the container 1. It has a structure in which there is a blood volume 5 and a blood outlet 6 communicating with each other, and furthermore, there is a bubble volume lower at the top of the container body 1 which communicates with both chambers. Therefore, when the blood introduced into the blood chamber 3 to be processed from the blood population 5 passes through the filter 2 due to blood flow pressure, air bubbles larger than the pore diameter of the filter 2 are trapped and enter the blood chamber 4 to be processed, which enters the blood outlet 6. The air bubbles captured by the filter body 2 rise due to buoyancy and flow out from the air bubble lower every time they collect in a certain amount at the upper part of the container body 1.

第2図の装、置は、下部側面の接線方向に血液人口9が
あり下面部中央に血液出口10があり上部中央に気泡出
口1】がある円筒形容器8内にナイロン製で上部よりみ
て放射状でかつ筒状の濾過体12を筒芯が縦軸となるよ
うに収容し濾過体12の土部開放端を蓋板13で塞いだ
構成である。
The apparatus shown in Fig. 2 is made of nylon and is housed in a cylindrical container 8 which has a blood supply 9 in the tangential direction of the lower side, a blood outlet 10 in the center of the lower surface, and a bubble outlet 1 in the upper center. A radial and cylindrical filter body 12 is housed with the cylinder core serving as the vertical axis, and the open end of the soil portion of the filter body 12 is closed with a cover plate 13.

上記機構上、血液人口9より流入する血液は濾過体12
の周囲を旋回しながら上部へ向かう流れとなり、前記旋
回流は濾過体12を血液が通過する時の血流による圧力
を小さくして微小気泡の圧力による通過を避けさらには
濾過体12より捉えられた微小気泡を気泡出口11へ向
かわせるものであり、その気泡分離機能は上記第1図の
装置と同じ濾過方式である。それぞれ大人用、小人用が
あり所定血液流量に対応した気泡除去機能を有する。し
かるに、第1図及び第2図に示す各装置は孔径が200
μ内外の濾過体を使用すると微小気泡が濾過体を容易に
通過してしまうだけでなく気泡塊が細かくくだかれて通
過し安全性・信頼性が低い。図1の装置では大流鎗で多
Iの空気が混入した場合気泡除去能は著しく低い。また
孔径が50μ〜150μの濾過体では微小気泡の除去が
上記200μのものより総じてやや良くなる程度である
ので異物、凝集塊除去効果に重みをおいて20〜40μ
のフィルターを用い動脈フィルターとして使用されるが
、動脈フィルターでは血小板や赤血球の破壊等の血液の
侵襲が大きくなると共に圧力損失が大きくなるという欠
点がある。さらに第2図の装置はプライミング容量が約
220m1であり大形である欠点がある。
Due to the above mechanism, the blood flowing from the blood population 9 is transferred to the filter body 12.
The swirling flow reduces the pressure caused by the blood flow when the blood passes through the filter body 12 to avoid passing through due to the pressure of microbubbles, and furthermore, the swirling flow is captured by the filter body 12. The bubble separation function is the same filtration method as the device shown in FIG. 1 above. There are two types for adults and children, each with a bubble removal function that corresponds to a predetermined blood flow rate. However, each device shown in FIGS. 1 and 2 has a pore diameter of 200 mm.
If a filter inside or outside μ is used, not only microbubbles easily pass through the filter, but also the air bubbles are broken up into small pieces, resulting in low safety and reliability. In the apparatus shown in FIG. 1, the ability to remove air bubbles is extremely low when a large amount of air is mixed in with the large barrel. In addition, a filter with a pore size of 50 μm to 150 μm generally has a slightly better ability to remove microbubbles than the 200 μm filter described above, so a filter with a pore size of 20 μm to 40 μm, with emphasis on the effect of removing foreign matter and agglomerates,
Arterial filters are used as arterial filters, but arterial filters have the drawbacks of increased blood invasion, such as destruction of platelets and red blood cells, and increased pressure loss. Furthermore, the apparatus shown in FIG. 2 has a priming capacity of approximately 220 m1, which is disadvantageous in that it is large.

第3図は従来の血液滞留式の血液中気泡除去装置である
。該装置は微小気泡が浮上可能となるように血液流が小
さくなる容積をもった容器本体14の底面部を貫通して
内端が容器14内の上下方向の中程にくる血液人口15
があり、また容器14の底面部に血液出口16がありさ
らに容器14の上面部に気泡出口17がある構成である
。しかして、血液人口15より容器本体14内に導入さ
れる被処理血液は、容器本体14内ではゆるやがな下降
流となって血液中の気泡の浮力により上昇を許すので気
泡の除去された処理血液となシ血液出口16よシ流出し
、また容器本体14内を上昇する気泡は上部に一定量溜
る毎に気泡出口17より取出される。#装置は容器本体
14を大型化し容積を非常に大きくとれくある程度まで
微小気泡を分離除去できる。しかしこのことは必然的に
体外循環血液量及び補液量の増加を招き体内残存血液量
の減少に繋がり人体にとって悪影響を及ぼすものである
。実用化されているもののプライミング量は250〜4
00 mJ程度に限られこれは微小気泡までを除去する
のには充分な容積であるとはいえず、また装置自体の小
型化は、血液滞留を利用する機能上実用化に困難を伴う
という欠点がある。
FIG. 3 shows a conventional blood retention type blood bubble removal device. This device penetrates the bottom of a container body 14 having a volume that allows the blood flow to become small so that microbubbles can float, and the blood flow 15 is inserted into the container 14 so that the inner end thereof is located in the middle of the container 14 in the vertical direction.
In addition, the container 14 has a blood outlet 16 at the bottom and a bubble outlet 17 at the top of the container 14. Therefore, the blood to be processed introduced into the container main body 14 from the blood population 15 forms a gentle downward flow within the container main body 14 and is allowed to rise due to the buoyancy of air bubbles in the blood, so that air bubbles are removed. The treated blood flows out through the blood outlet 16 and air bubbles rising inside the container body 14 are taken out through the air bubble outlet 17 every time a certain amount accumulates in the upper part. # The device can separate and remove microbubbles to a certain extent by enlarging the container body 14 and increasing the volume. However, this inevitably leads to an increase in the amount of extracorporeal circulating blood and the amount of fluid replacement, leading to a decrease in the amount of blood remaining in the body, which has an adverse effect on the human body. The amount of priming that has been put into practical use is 250-4
00 mJ, which cannot be said to be a sufficient volume to remove even microbubbles, and the miniaturization of the device itself has the disadvantage that it is difficult to put it into practical use due to its function of utilizing blood retention. There is.

第4図(a)は従来の濾過体・血液滞留方式の血液中気
泡除去装置であり、第4図(b)はその内部空間に収納
された濾過体ηである。該装置は容器本体18の下面部
を貫通して血液人口19がありまた容器本体18の下側
部に血液出口加がありさらに容器本体18の上部中央に
気泡出口2】があり、容器本体18内には血液人口19
の内端に接続してナイロン製の筒状の濾過体ηがあり、
ガイド棒nbが支持枠Z3aの上部に接続して該濾過体
nの内側中央へ垂下しており、該濾過体22の外側空間
が微小気泡が浮上可能となるように血液流が小さくなる
容積の処理血液室列となっている構成である。しかして
、血液人口19より導入される被処理血液はガイド棒2
3bの周りを上昇し濾過体nを通過する際該p過体ρの
孔径よりも大きい気泡が濾過体内面に捕捉されて一次処
理血液となりさらにν過体ρの外側の処理血液室列にお
いてきわめてゆるやかな下降流となって濾過体ηを通っ
た微小気泡の浮力による上昇を許すので気泡の除去が一
層促進された二次処理血液となり血液出口加より流出し
、また濾過体器の内外を上昇する気泡は上部に一定量溜
る毎に気泡出口2】より取出される。しかるに該装置は
濾過体nでその孔径より大きい気泡を捕えても上記のよ
うに濾過体ηの面が筒状であり、またガイド棒23bが
該濾過体器の内側空間に垂下1   しているためその
内側空間の内容積が小さくなることより該内側空間を上
昇する被処理血液の流速が大きくなる。よって上記濾過
体nで一担捕えられた気泡が血流により上昇させられ該
濾過体ηの上方開口部分より該濾過体ρの外側へ向かう
下降流と共に流れ出しそのまま血液出口加へと向かう恐
れがある上に、濾過体ηを通過した微小気泡の浮力上昇
をも防げてしまう。そこで処理血液室詞の内容積を大に
して流速を弱め滞留効果による微小気泡の上昇を促す機
構をとればよいが、これは上記第3図の装置において説
明したのと同様に即、体外循環血液量及び補液量の増加
に繋がり人体にとって好ましくない結果を生むことより
避けるべきであるし一方では装置の小型化を図りプライ
ミング量を1901より小さくすると滞留効果による微
小気泡の除去を望めなくなるという欠点がある。
FIG. 4(a) shows a conventional filter/blood retention type blood bubble removal device, and FIG. 4(b) shows a filter η housed in its internal space. The device has a blood outlet 19 penetrating the lower surface of the container body 18, a blood outlet in the lower side of the container body 18, and an air bubble outlet 2 in the upper center of the container body 18. Blood population inside is 19
There is a nylon cylindrical filter element η connected to the inner end of the filter.
A guide rod nb is connected to the upper part of the support frame Z3a and hangs down to the center inside the filter body n, and the outer space of the filter body 22 has a volume where the blood flow becomes small so that microbubbles can float. The configuration consists of a row of processing blood chambers. Therefore, the blood to be processed introduced from the blood population 19 is transferred to the guide rod 2.
3b and passing through the filter body n, air bubbles larger than the pore diameter of the p filter body ρ are captured on the inner surface of the filter body and become primary treated blood. The flow becomes a gentle downward flow and allows the microbubbles that have passed through the filter body η to rise due to their buoyancy, resulting in secondary treated blood in which the removal of bubbles is further promoted, flowing out from the blood outlet and rising inside and outside the filter body. Every time a certain amount of bubbles accumulates in the upper part, they are taken out from the bubble outlet 2. However, in this device, even if air bubbles larger than the pore diameter are captured by the filter n, the surface of the filter η is cylindrical as described above, and the guide rod 23b hangs down into the inner space of the filter body. Therefore, as the internal volume of the inner space becomes smaller, the flow rate of blood to be processed rising through the inner space increases. Therefore, there is a risk that the air bubbles trapped in the filter n will be raised by the blood flow and flow out from the upper opening of the filter η along with a downward flow toward the outside of the filter ρ, directly heading toward the blood outlet. Furthermore, it is also possible to prevent the buoyancy of microbubbles that have passed through the filter η from increasing. Therefore, a mechanism can be adopted that increases the internal volume of the treated blood chamber to weaken the flow rate and promote the rise of microbubbles due to the retention effect. This should be avoided because it leads to an increase in the amount of blood and fluid replacement, resulting in unfavorable results for the human body.On the other hand, if the device is made smaller and the priming amount is made smaller than 1901, the disadvantage is that it becomes impossible to remove microbubbles due to the retention effect. There is.

(n)発明の目的 本発明は上述した点に鑑み鋭意に研究の末案出したもの
で、気泡の浮力上昇作用と気泡と血液の比重差に起因す
る遠心分離作用によって気泡除去を行うことができ特に
上記従来装置に比してプライミング容量を小さくでき装
置の小形化が図れ体外循環血液量及び補液量を小さくで
き従来装置と同じプライミング容量とすれば能力の向上
が図れ、また微小気泡を十分に除去できて安全性・信頼
性が高く、さらに気泡分離に対する濾過体の負担が小さ
いため濾過体の孔径を大きくしても微小気泡が除去でき
、もって濾過体による圧力損失を少なくし能力の向上が
図れ血小板や赤血球の破壊等の血液の侵襲が減少し、さ
らにまた使用後の返血時に装置内残存血液をほとんど無
くすことができる血液中気泡除去装置を提供するもので
ある。
(n) Purpose of the Invention The present invention was devised after intensive research in view of the above-mentioned points, and it is possible to remove air bubbles by the effect of increasing the buoyancy of air bubbles and the centrifugal separation effect caused by the difference in specific gravity between air bubbles and blood. In particular, compared to the conventional device mentioned above, the priming capacity can be made smaller, the device can be made more compact, the amount of extracorporeal circulating blood and fluid replacement can be reduced, and if the priming capacity is the same as the conventional device, the capacity can be improved, and microbubbles can be sufficiently removed. It is safe and reliable as it can be removed quickly, and the burden on the filter body for bubble separation is small, so even if the pore size of the filter body is increased, microbubbles can be removed, thereby reducing pressure loss due to the filter body and improving performance. To provide a blood bubble removing device that reduces blood invasion such as destruction of platelets and red blood cells, and can also eliminate almost all residual blood in the device when returning blood after use.

この目的は本発明によれば容器本体と、前記容器本体内
を上部空間と下部空間に画するように設けられ多孔質体
から成る濾過体と、前記容器本体に前記上部空間と連通
ずるように設けられ被処理血液を前記上部空間に旋回流
として導入できる液入口と、前記容器本体に前記下部空
間と連通ずるように設けられ前記濾過体を通過する処理
血液を送出する液出口と、前記容器本体に前記上部空間
の°上部中央と連通ずるように設けられ前記上部空間で
分離される気泡を抜くだめの気泡出口とから成る血液中
気泡除去装置において、前記容器本体で形成される前記
上部空間は該上部空間の平面中央を通る鉛直断面形状の
上辺部分が中央に向って水平ないし上り勾配である扁平
形状でありかつほぼ円形な平面形状であることを特徴と
する血液中気泡除去装置によって達成される。
According to the present invention, this object includes: a container body; a filter body made of a porous material provided so as to divide the container body into an upper space and a lower space; a liquid inlet provided in the container body to allow blood to be processed to be introduced into the upper space as a swirling flow; a liquid outlet provided in the container body to communicate with the lower space and send out the processed blood passing through the filter body; In the blood bubble removal device, the blood bubble removal device includes an air bubble outlet provided in the main body so as to communicate with the upper center of the upper space and for removing air bubbles separated in the upper space, the upper space formed by the container main body. is achieved by a blood bubble removal device characterized in that the upper side of the vertical cross-section passing through the center of the plane of the upper space is flat or has an upward slope toward the center, and has a substantially circular planar shape. be done.

即ち、本発明の血液中気泡除去装置は気泡を含む血液を
旋回流とすることによって血液流の気泡の浮力上昇作用
と遠心力の差による気液分離作用で気泡を上部中央に集
めて除去するものであり、また濾過体に近い旋回流の下
層部を気泡除去が十分に促進した血液で占めるようにし
、さらに導入直径の血液中の気泡のように血液を旋回流
とすることによっても上記浮力上昇作用及び上記気液分
離作用が十分に働らかず濾過体に近づく微小気泡の一部
を該濾過体に低い角度で衝突させて該濾過体より離れる
方向にはじき返し上部中央に集め、もって濾過体を通る
濾過体の孔径より小さい微小気泡の量を小さくしたもの
である。
That is, the device for removing air bubbles in blood of the present invention creates a swirling flow of blood containing air bubbles, and collects the air bubbles in the upper center and removes them through the gas-liquid separation effect due to the difference between the buoyancy increasing effect of the air bubbles in the blood flow and the centrifugal force. In addition, the above buoyancy can also be achieved by making the lower part of the swirling flow near the filter body occupied by blood in which bubble removal has been sufficiently promoted, and by making the blood swirl like air bubbles in the blood at the introduction diameter. When the rising action and the gas-liquid separation action do not work sufficiently, some of the microbubbles that approach the filter collide with the filter at a low angle, are repelled in the direction away from the filter, and are collected in the upper center of the filter. The amount of microbubbles smaller than the pore diameter of the filter that passes through the filter is reduced.

上記発明の血液中気泡除去装置によれば、上記血液の旋
回流はその外周部では流速が大きく気液分離作用が大き
いが血液が液入口よシ土部空間に導入された直後である
ので気泡分離が進んでいない流れとなり、中心部に向う
に連れて流速が遅くな多気泡の浮力上昇が大きく作用し
て気泡分離が進んだ流れとなる。しかして、液入口を濾
過体より離して一般ける必要があり、濾過体が血液旋回
流の円周部に臨む場合は液入口を濾過体より上方に離し
て設ける。
According to the device for removing bubbles in blood of the invention, the swirling flow of blood has a high flow velocity at the outer periphery and has a large gas-liquid separation effect, but immediately after the blood is introduced into the soil space from the liquid inlet, air bubbles are formed. The flow becomes a flow in which separation has not progressed, and as it moves toward the center, the buoyancy of the many bubbles, which have a slower flow velocity, has a greater effect on the flow, resulting in a flow in which bubble separation has progressed. Therefore, it is generally necessary to separate the liquid inlet from the filter body, and when the filter body faces the circumferential portion of the swirling blood flow, the liquid inlet is provided above and apart from the filter body.

従って本発明では、上記容器本体は上記上部空間の円周
部が上記濾過体によって画されないように上記上部空間
の円周部を上・下・外方より包み込む形状である実施態
様とすることが望ましい。
Therefore, in the present invention, the container body may have a shape that wraps around the circumferential portion of the upper space from above, below, and from the outside so that the circumferential portion of the upper space is not defined by the filter. desirable.

([II)本発明の詳細な説明 (m−1)構成 本発明の血液中気泡除去装置の好ましい実施例を第5図
及び第6図に示す。この血液中気泡除去装置は容器本体
δと、該容器本体δ内を上部空間(被処理血液空間)2
6と下部空間(処理血液空間)27に仕切る濾過体あと
、前記容器本体5に前記上部空間と連通ずるように設け
られた液入口四及び気泡出口Iと、前記容器本体5に前
記下部空間ごと連通するように設けられた液出口31と
から成っている。前記容器本体あけ、ポリカーボネート
、スチロール、アクリル樹脂。
([II) Detailed Description of the Present Invention (m-1) Structure A preferred embodiment of the blood bubble removal device of the present invention is shown in FIGS. 5 and 6. This blood bubble removal device includes a container body δ and an upper space (blood space to be treated) 2 inside the container body δ.
6 and a lower space (processed blood space) 27, a liquid inlet 4 and a bubble outlet I are provided in the container body 5 so as to communicate with the upper space, and a filter body 27 is provided in the container body 5 for each of the lower spaces. It consists of a liquid outlet 31 provided so as to communicate with the liquid outlet 31. The container body is made of polycarbonate, styrene, and acrylic resin.

AS樹脂、メチルメタクリレート・ブタジェン・スチレ
ン等のプラスチックスを用いて作ることができるが気泡
観察ができるよう透明であシア1′□生物学的安全性及
び強度的安全性からポリカーボネートより作るのが好ま
しく、前記上部空間あの円周部が上記p週体公によって
画されないように前記上部空間部の円周部を上・下・外
方より包み込む形状に形成されている。前記濾過体あけ
ナイロン、ポリエステル、ポリプロピレン等のプラスチ
ックス製の多孔質体の網より成っており血液の侵襲を防
ぐ為約50μより大きい孔径のものが選ばれる。前記液
入口四は被処理血液を前記上部空間がの円周部より旋回
流として導入できるように前記容器本体6に設けられて
いる。前記気泡出口(9)は前記上部空間3の上部中央
と連通ずるように前記容器本体部に設けられ気泡抜き弁
32を備えるものである。前記液出口31は前記下部空
間ごと連通していれば良く前記液入口四や前記濾過体あ
に対して適宜位置となるように前記容器本体δに設けら
れる。前記容器本体5で画される前記上部空間かは該上
部空間がの平面中央を通る鉛直断面形状の上辺部分が中
央に向って上り勾配である扁平形状である。即ち、該上
部空間部を画している前記容器本体5は浮上してくる気
泡を前記気泡出口(9)に向って流れ得る容器本体内面
で前記上部空間あの上側を画している。また、前記上部
空間がはほぼ円形な平面形成されている。従って上記上
部空間部、前記液入口四から導入される被処理血液が全
容積を占めて旋回流となシ得る円盤状となっている。上
記上部空間あの容積−液入口29及び液出口31のそれ
ぞれの孔径、い週休あの面積は旋回流となる被処理血液
がその中の気泡の浮力上昇を妨げない所定流速以下とな
るように被処理血液量と相関させて適宜に決められるも
のである。なお、上記上部空間あの上部中央に一定量の
気泡を溜め得る気泡溜り42を設けるのが好ましい。
It can be made using plastics such as AS resin, methyl methacrylate, butadiene, styrene, etc., but it is transparent so that bubbles can be observed, and it is preferable to make it from polycarbonate for biological safety and strength safety. The circumferential portion of the upper space is formed in a shape that wraps around the circumferential portion of the upper space from above, below, and from the outside so that the circumferential portion of the upper space is not defined by the p-shaped body. The filter body is made of a porous mesh made of plastic such as nylon, polyester, polypropylene, etc., and the pore size is selected to be larger than about 50 μm to prevent invasion of blood. The liquid inlet 4 is provided in the container body 6 so that the blood to be treated can be introduced as a swirling flow from the circumference of the upper space. The bubble outlet (9) is provided in the container main body so as to communicate with the upper center of the upper space 3, and includes a bubble release valve 32. The liquid outlet 31 may be provided in the container body δ at an appropriate position relative to the liquid inlet 4 and the filter body as long as it communicates with the lower space. The upper space defined by the container body 5 has a flat shape in which the upper side of the vertical cross section passing through the center of the plane of the upper space slopes upward toward the center. That is, the container body 5 defining the upper space defines the upper side of the upper space with the inner surface of the container body through which floating bubbles can flow toward the bubble outlet (9). Further, the upper space is formed in a substantially circular plane. Therefore, the blood to be treated introduced from the upper space and the liquid inlet 4 occupies the entire volume, forming a disk shape capable of creating a swirling flow. The volume of the upper space, the hole diameter of the liquid inlet 29 and the liquid outlet 31, and the area of the liquid are determined so that the flow rate of the blood to be processed, which becomes a swirling flow, is below a predetermined flow rate that does not prevent the increase in the buoyancy of air bubbles therein. It is determined appropriately in correlation with blood volume. In addition, it is preferable to provide a bubble reservoir 42 in the upper center of the above-mentioned upper space to be able to accumulate a certain amount of bubbles.

(m−2)作用 上記血液中気泡除去装置は例えば人工心肺装置において
は人工肺と大動脈とを結ぶ血液回路の中途に取付けるの
が好ましい。上記血液中気泡除去装置には被処理血液の
導入に先立って生理食塩水、乳酸リンゲル等の補液がプ
ライミングされる。そして、被処理血液を液入口四から
上部空間あに導入すると容器本体δ内を濾過体あて画さ
れる上部空間あが扁平で平面円形な円盤状空間となって
おり液入口四が該上部空間あに対し接線方向に連通して
いるので被処理血液は該上部空間あの全容積を占めて旋
回流となる。
(m-2) Effect The above-mentioned blood bubble removing device is preferably installed in the middle of the blood circuit connecting the oxygenator and the aorta in, for example, an artificial heart-lung machine. The blood bubble removing device is primed with a replacement fluid such as physiological saline or lactated Ringer's prior to introducing the blood to be processed. When the blood to be processed is introduced into the upper space from the liquid inlet 4, the upper space inside the container body δ, which is covered with a filter, becomes a flat, circular disk-shaped space, and the liquid inlet 4 is connected to the upper space. Since it communicates tangentially with the upper space, the blood to be processed occupies the entire volume of the upper space and forms a swirling flow.

一般に密閉容器内の気泡を含む液体は旋回流を起させる
と液体と気泡が比重の差により遠心力に差を生じて気泡
が浮力も手伝って中央土層部に集まって気泡を自己破壊
して一塊の空気を形成し、従って旋回流の外周部はど気
泡を含まない液流となる。
Generally, when a liquid containing air bubbles in a closed container causes a swirling flow, a difference in centrifugal force occurs due to the difference in specific gravity between the liquid and air bubbles, and the air bubbles gather in the central soil layer with the help of buoyancy, causing the bubbles to self-destruct. A lump of air is formed, and therefore the outer periphery of the swirling flow becomes a liquid flow that does not contain air bubbles.

しかし、本発明の血液中気泡除去装置は被処理血液が液
入n9から上部空間あに連続して導入され濾過体あを通
過して液出口31よシ流出するので、上記上部空間が内
の旋回流はその外周部にあっては気泡分離が進んでいな
い状態で多くの気泡を含んでいる一方中心に行くに従っ
て血液と気泡の分離が促進されることになる。
However, in the blood bubble removal device of the present invention, the blood to be treated is continuously introduced from the liquid input port n9 into the upper space, passes through the filter body, and flows out through the liquid outlet 31, so that the upper space is The swirling flow contains a large number of bubbles at its outer periphery with no progress in bubble separation, while the separation of blood and bubbles is accelerated toward the center.

しかるに濾過体列は上記旋回流の外周部を外れて上記旋
回流の下層部中央に位置して設けられているので、該濾
過体列が血液の侵襲を防止するため50μ以上の孔径の
多孔質体より成っていても気泡分離が十分に促進された
血液のみが該濾過体列を通過して下部空間、27に流入
し液出7    口31より流出する。他方、上記上部
空間部に旋回流として導入された被処理血液中の気泡は
気泡溜り42に一定量集まる毎に気泡抜き弁32を開け
て気泡出口Iより除去される。
However, since the filter array is located outside the outer periphery of the swirling flow and located in the center of the lower layer of the swirling flow, the filter array is made of porous material with a pore diameter of 50μ or more to prevent invasion of blood. Even though the blood is composed of blood, only the blood for which bubble separation has been sufficiently promoted passes through the filter array, flows into the lower space 27, and flows out from the liquid outlet 7 and port 31. On the other hand, the air bubbles in the blood to be processed introduced into the upper space as a swirling flow are removed from the air bubble outlet I by opening the air bubble removal valve 32 every time a certain amount of air bubbles collects in the air bubble reservoir 42.

(■)本発明の変形例 (IV−t)  第1変形例 第7図及び第8図に示す血液中気泡除去装置は戸遇′#
−公が中心へ向かうに従って血液出口31へ向かうすり
林状に画されている所が上記実施例と異なり旋回速度が
異状に速く分離された気泡の渦が血液出口31方向にの
びる場合該気泡の渦が沖週体公へ接触するのを極力防止
できるものであり気泡分離機能は上記実施例と変る所が
ない。
(■) Modification of the present invention (IV-t) First modification The blood bubble removal device shown in FIGS. 7 and 8 is a household item.
- If the vortex of separated air bubbles extends in the direction of the blood outlet 31, unlike the above embodiment, the swirling speed of the air bubbles is abnormally fast and the vortex of separated air bubbles extends in the direction of the blood outlet 31 as the air bubbles move toward the center. It is possible to prevent the vortex from coming into contact with the Okishū body as much as possible, and the bubble separation function is the same as that of the above embodiment.

(IV−2)第2変形例 第9図に示す血液中気泡除去装置は、濾過体列が上側に
凸となる球面状に設けられている所が上記実施例と異な
るもので気泡分離機能は上記実施例と変る所がない。
(IV-2) Second Modification The blood bubble removal device shown in FIG. 9 is different from the above embodiment in that the filter rows are provided in a spherical shape convex to the upper side, and the bubble separation function is There is no difference from the above embodiment.

(TV−3)第3変形例 第10図に示す血液中気泡除去装置は容器本体5の上部
空間にを画している上面部25aが中央に向って水平と
なっている所が上記実施例が中央に向って上り勾配とな
っているのと異なる。
(TV-3) Third Modified Example The blood bubble removal device shown in FIG. The difference is that the slope slopes upward toward the center.

しかし、該上面部25aが中央に向って水平となってい
ても遠心力による血液と気泡との分離作用によって気泡
が気泡出口Iに向って流れ得ることより、気泡分離機能
は上記実施例と変る所がない。
However, even if the upper surface portion 25a is horizontal toward the center, the bubbles can flow toward the bubble outlet I due to centrifugal force that separates blood and bubbles, so the bubble separation function is different from that of the above embodiment. There is no place.

(IV−4)第4変形例 第11図に示す血液中気泡除去装置はp週体公が上部空
間あの円周部を画するように設けられている所が上記実
施例と異なる。この場合には液入n9を濾過体あより上
方に所要寸法離すように設けて上部空間あの血液旋回流
の外周低層部が十分に気泡除去を促進された血液で占め
るようにする。気泡分離機能は上記実施例と変わる所が
ない。
(IV-4) Fourth Modification The blood bubble removing device shown in FIG. 11 differs from the above embodiment in that the body is provided so as to define the circumference of the upper space. In this case, the liquid reservoir n9 is provided at a required distance above the filter body so that the lower part of the outer periphery of the swirling blood flow in the upper space is occupied by blood whose air bubbles have been sufficiently removed. The bubble separation function is the same as in the above embodiment.

(V)実験結果 第12図は本発明の血液中気泡除去装置の気泡除去能力
を確認するための実験装置であり、第12図において、
あは水温が25cに保たれた恒温槽、あけフラスコであ
り、35%グリセリン溶液が充填されており該溶液は2
.5センチボイズの粘度でありこれは37 Cにおける
ヘマトクリット値()ict=血球量/血液量)35s
の血液粘度に相当する。Iはグリセリン溶液中のゴミを
捕捉するフィルター、37はチューブ回路をしごいて送
液するローラーポンプであシ送液量を4b−としである
。脂は気泡注入手段として設けられた目盛付注射器、3
9は被験用エアトラップ、4oは超音波血流計であり前
記被験用エアトラップ39の直後に取付けられている。
(V) Experimental Results Figure 12 shows an experimental device for confirming the bubble removal ability of the blood bubble removal device of the present invention.
A is a constant temperature bath and an open flask where the water temperature is kept at 25C, and it is filled with a 35% glycerin solution.
.. The viscosity is 5 centiboise, which is the hematocrit value at 37 C ()ict=blood cell volume/blood volume) 35s
corresponds to the blood viscosity of I is a filter that captures dust in the glycerin solution, and 37 is a roller pump that squeezes the tube circuit and sends the liquid, and the amount of liquid sent is 4b-. For fat, a graduated syringe provided as a bubble injection means, 3
Reference numeral 9 denotes a test air trap, and 4o an ultrasonic blood flow meter, which are installed immediately after the test air trap 39.

該超音波血流計40は三栄測器社製の1935型を使用
しておりグローブ平板貼付5形、周波数5MHzであり
5wv′Bのチャート速度でダイヤグラフを記録でき、
感度は直径が20μ程度の気泡を感知できるようになっ
ている。41は観察用エアトラップであシ第13図のよ
うな構造をしている。42はシリンダーであり2000
a/の容量を有し、43 、44は三方活栓であり回路
内を流れる溶液の方向を変更させる機能を有し46は容
量10100Oの観察用トラップであり内部に遮蔽板4
7を設けている。上記構造上三方活栓43 、44を操
作し瞬間的にシリンダー42内へ溶液を導入しシリンダ
ー42内に導入された溶液の流れが安定した時溶液内の
気泡の上昇速度が観察でき、また観察用トラップ46は
滞留効果によ多気泡を溜め、上端の目盛り付き細管部4
8で溜った気泡を測定しうる。
The ultrasonic blood flow meter 40 uses a model 1935 manufactured by Sanei Sokki Co., Ltd., which has a flat globe attached type 5, has a frequency of 5 MHz, and can record a diagram at a chart speed of 5 wv'B.
The sensitivity is such that it can detect bubbles with a diameter of about 20μ. Reference numeral 41 denotes an observation air trap, which has a structure as shown in FIG. 42 is a cylinder and is 2000
43 and 44 are three-way stopcocks that have the function of changing the direction of the solution flowing in the circuit, and 46 is an observation trap with a capacity of 10,100 O, with a shielding plate 4 inside.
7 is provided. Due to the structure described above, the solution is instantaneously introduced into the cylinder 42 by operating the three-way stopcocks 43 and 44, and when the flow of the solution introduced into the cylinder 42 becomes stable, the rising speed of bubbles in the solution can be observed. The trap 46 accumulates a large number of bubbles due to the retention effect, and the graduated thin tube section 4 at the upper end
The air bubbles accumulated in step 8 can be measured.

この実験は、本発明の効果を冒頭で述べた従来装置と比
較して本発明装置が方法を異にして気泡除去できること
を確認するだけではなく、従来装置と比較して本発明装
置はプライミング量が小さくかつ濾過体の孔径を大きく
しても気泡除去能力が高くなるという優・れた効果があ
るとの認識に立って行った。従って前記被験用エアトラ
ップ39には第2図、第3図、第4図に示す従来装置並
びに第10図に示す本発明装置を取換えて使用し各々に
ついて実験した。さらに本発明装置については孔径の異
なる濾過体を張り1    換えて複数の実験を行った
This experiment not only confirmed the effect of the present invention by comparing the effect of the present invention with the conventional device mentioned at the beginning, but also confirmed that the device of the present invention can remove bubbles using a different method. This was done based on the recognition that even if the pore size of the filter body is small and the pore size of the filter body is increased, there is an excellent effect of increasing the bubble removal ability. Therefore, for the test air trap 39, the conventional devices shown in FIGS. 2, 3, and 4 and the device of the present invention shown in FIG. 10 were used interchangeably, and experiments were conducted on each. Furthermore, with respect to the device of the present invention, several experiments were conducted by replacing the filters with different pore sizes.

なお、各装置の、具体的な形状及びプライミング容量を
決める寸法は各装置を示す図中に単位を−とする数値の
みで表わしている。
Note that the specific shape and dimensions determining the priming capacity of each device are expressed only by numerical values with negative units in the drawings showing each device.

1111表 第1表によって本発明装置は従来装置に比ベプライミン
グ容量を小さくするにもかかわらず中気泡、小気泡も有
効に捕捉できることが分る。
Table 1111 shows that the device of the present invention can effectively capture medium and small bubbles even though the priming capacity is smaller than that of the conventional device.

また本発明装置は濾過体の孔径を260μ内外にしても
中気泡、小気泡を有効に捕捉できることが分る。
It is also found that the device of the present invention can effectively trap medium and small bubbles even when the pore diameter of the filter body is around 260 μm.

第14図及び第15図は第12図に示す実験装置におい
て、被験用トラップ39に第4図の従来装置と第1O図
の本発明装置で濾過体のメツシュの大きさが109のも
のを取換え設置し、気泡注入手段22による注入空気量
を3Q 1rLlとしてそれぞれについて実験を行い超
音波血流計40でそれぞれについて得たダイヤグラフで
ある。
FIGS. 14 and 15 show the experimental apparatus shown in FIG. 12, with the conventional device shown in FIG. 4 and the device of the present invention shown in FIG. This diagram is a diagram obtained for each using an ultrasonic blood flow meter 40 after experiments were conducted on each of the two, and the amount of air injected by the bubble injection means 22 was set to 3Q 1rLl.

両方のダイヤグラフは両装置とも空気の注入があると針
が大きく振れ振幅の大きさは両装置ともほぼ同じである
が振幅の乱れの長さは従来の装置の方が本発明装置より
もはるかに長いことを示している。
Both diagrams show that when air is injected in both devices, the needle swings significantly, and the magnitude of the amplitude is almost the same for both devices, but the length of the amplitude disturbance is much greater in the conventional device than in the device of the present invention. It shows that it is a long time.

なお、両方のダイヤグラフとも空気の注入前及び振幅の
乱れがおさまった後に針の乱れがあるのは実験において
使用した溶液中の気泡や不純物によるノイズと考えられ
る。
Note that in both diagrams, the needle disturbances before air injection and after the amplitude disturbance subsides are thought to be noise caused by air bubbles or impurities in the solution used in the experiment.

両方のダイヤグラフから分ることは本発明装置では血液
中から気泡の分離除去が迅速に行われ従来装置では比較
的長い時間に渡シ気泡の流出がみられることである。こ
のような相違は、本発明装置にあっては血液が旋回流と
なることによって血液中の気泡が遠心力の作用で能動的
に気泡出口に移行するのに対し従来装置では濾過体によ
る気泡の捕捉と濾過体を通る微小気泡の滞留捕捉によっ
て気泡除去を行っており、濾過体で捕捉される気泡は上
昇する時再び濾過体の上方部分を通ってしまうことがあ
ると共に濾過体を通った微小気泡は浮力がきわめて小さ
く気泡出口に向わず下向する血流にのって液出口にゆっ
くりと向う量が多くあり、いわば血液中の気泡が受動的
に気泡出口に移行するからと推測される。
It can be seen from both diagrams that in the device of the present invention, air bubbles are quickly separated and removed from the blood, whereas in the conventional device, the outflow of air bubbles can be seen over a relatively long period of time. This difference is due to the fact that in the device of the present invention, air bubbles in the blood are actively transferred to the bubble outlet by the action of centrifugal force as the blood turns into a swirling flow, whereas in the conventional device, the air bubbles are removed by the filter. Air bubbles are removed by trapping and trapping microbubbles through the filter, and the air bubbles captured by the filter may pass through the upper part of the filter again when rising, and the microbubbles that have passed through the filter may pass through the upper part of the filter again. It is speculated that this is because the buoyancy of the air bubbles is extremely small, and a large number of air bubbles do not head towards the air bubble outlet, but slowly head towards the liquid outlet along with the downward blood flow, so to speak, the air bubbles in the blood passively migrate to the air bubble outlet. Ru.

第16図、第17図及び第18図は第12図に示す実験
装置において超音波血流計に積分測定器を接続し超音波
血流計での針の振れと、及び針の振れに応じた積分値を
それぞれ記録したダイヤグラフである。各図において下
側のダイヤグラフが超音波血流計の針の振れを記録した
ものであり、上側のダイヤグラフが針の撮れに応じた積
分曲線である。第16図は被験用エアトラップ39を第
2図に示す従来装置とした場合であり、第17図は第4
図に示す従来装置とした場合であり、第18図は第10
図に示す本発明装置とした場合である。
Figures 16, 17, and 18 show the experimental setup shown in Figure 12, in which an integral measuring device is connected to the ultrasonic blood flow meter, and the needle deflection of the ultrasonic blood flow meter is measured. This is a diagram recording the respective integral values. In each figure, the lower diagram shows the deflection of the needle of the ultrasonic blood flow meter, and the upper diagram shows the integral curve corresponding to the needle deflection. FIG. 16 shows the case where the test air trap 39 is the conventional device shown in FIG.
This is the case with the conventional device shown in the figure.
This is a case where the present invention apparatus shown in the figure is used.

この実験では第12図に示す実験装置において超音波血
流計のプローブは内径6IIIIのアクリル樹脂テテキ
タハイプの外側にステンレス板ヲ巻付けこのステンレス
板に接続しである。これは血流波を消し気泡に対する波
だけを観察できるようにするためである。
In this experiment, in the experimental apparatus shown in FIG. 12, the probe of the ultrasonic blood flow meter was connected to a stainless steel plate wrapped around the outside of an acrylic resin tester pipe having an inner diameter of 6III. This is to eliminate blood flow waves so that only waves for air bubbles can be observed.

この実験の条件として被験溶液は抗凝固剤にヘパリン(
5000単位/);抗凝固剤)入りの5000ut/ノ
、 ACD 50 ml/ノを用いた牛血を生理食塩水
で希釈してHct35%としだものを使用し37 Cに
保ち気泡注入手段間からの空気注入量は10tnlとし
た。
The conditions for this experiment were that the test solution was an anticoagulant and heparin (
Bovine blood containing 5000 units/); anticoagulant) and ACD 50 ml/n was diluted with physiological saline to obtain a Hct of 35%. The air injection amount was 10 tnl.

第16図、第17図及び第18図において、それぞれの
上側の積分曲線の各波の頂点より横軸座標に垂線を下し
、この垂線と積分曲線と横軸座標とで囲まれる面積が第
12図の実験装置の被験用エアトラップ39で捕捉する
ことができず超音波血流計40と接続した積分測定器で
測定される気泡量である。これら3つの実験では第18
図の積分曲線の波の高さが小さく波の収束が一番速いこ
とが分り、したがって本発明にかかる第12図に示す血
液中気泡除去装置が第2図及び第4図にそれぞれ示す従
来装置よりも気泡除去能力が高いことが確認された。
In Figures 16, 17, and 18, a perpendicular line is drawn from the apex of each wave of the upper integral curve to the horizontal axis coordinate, and the area surrounded by this perpendicular line, the integral curve, and the horizontal axis coordinate is This is the amount of bubbles that could not be captured by the test air trap 39 of the experimental device shown in FIG. 12 and was measured by an integral measuring device connected to the ultrasonic blood flow meter 40. In these three experiments, the 18th
It can be seen that the wave height of the integral curve shown in the figure is small and the wave convergence is the fastest. Therefore, the blood bubble removal device shown in FIG. 12 according to the present invention is different from the conventional device shown in FIGS. 2 and 4, respectively. It was confirmed that the bubble removal ability was higher than that of

(Vl)効果 以上説明してきたように本発明の血液中気泡除去装置は
、容器本体内が濾過体により上部空間と下部空間に分け
られ上部空間の円周部に接線方向に連通ずる液入口があ
ると共に上部空間の上部中央に気泡出口があり、また下
部空間に連通して液出口があるものにおいて、容器本体
で画される上部空間の水平中心を通る鉛直断面の上辺部
分を中央に向って水平ないし上9勾配の扁平形状としか
つ円形な平面形状としたものである。
(Vl) Effects As explained above, in the blood bubble removal device of the present invention, the inside of the container body is divided into an upper space and a lower space by a filter, and a liquid inlet is connected to the circumference of the upper space in a tangential direction. In the case where there is a bubble outlet in the upper center of the upper space and a liquid outlet communicating with the lower space, the upper part of the vertical section passing through the horizontal center of the upper space defined by the container body is directed toward the center. It has a flat shape with a horizontal to upward slope and a circular planar shape.

従って、本発明の血液中気泡除去装置は被処理血液を液
入口より上部空間に濾過道程の最も長い旋回流として導
入でき、血液中の気泡を浮力浮上作用と遠心分離作用に
より上部空間の上部中央に能動的に集めて気泡出口より
排出することができると共に、上部空間を満たす被処理
血液の濾過体に近い下層部を積極的に気泡分離を促進す
ることができ、さらには、濾過体そのものの機能による
気泡の捕捉により濾過体を通過し下部空間を経て液出口
に至る処理血液を気泡が十分に除去された血液をなし得
るという効果を有する。
Therefore, the blood bubble removal device of the present invention can introduce the blood to be processed into the upper space from the liquid inlet as a swirling flow with the longest filtration path, and remove the air bubbles in the blood from the upper center of the upper space by the buoyant floating action and the centrifugal separation action. It is possible to actively collect air bubbles and discharge them from the outlet, and also to actively promote the separation of air bubbles from the lower layer near the filter body of the blood to be processed that fills the upper space. The trapping of air bubbles by the function has the effect that air bubbles can be sufficiently removed from the treated blood that passes through the filter, passes through the lower space, and reaches the liquid outlet.

この気泡除去の効果は本発明装置によれば旋回流と浮力
を利用して気泡を能動的に上部中央に集めて捕捉除去す
るものであり、特に浮力がきわめて小さく血液の流れに
容易に左右され易い微小気泡をも有効に捕捉除去できる
ことを内容としていることは前述した実験によって十分
に確認され、従来装置に比してより優れた気泡除去能力
を有しているものである。しかして、本発明の血液中気
泡除去装置は被処理血液中から微小気泡まで有効に除去
することによって気泡通過量をきわめて小さくできるの
で装置の安全性・信頼性が向上する。
According to the device of the present invention, air bubbles are actively collected in the upper center using swirling flow and buoyancy to trap and remove them.In particular, the buoyancy is extremely small and is easily affected by the flow of blood. It has been fully confirmed by the above-mentioned experiment that even easily-prone microbubbles can be effectively captured and removed, and the device has superior bubble removal ability compared to conventional devices. Therefore, the blood bubble removal device of the present invention can effectively remove even minute bubbles from the blood to be processed, thereby making it possible to extremely reduce the amount of bubbles passing through, thereby improving the safety and reliability of the device.

また本発明の血液中気泡除去装置は被処理血液を旋回流
とすることにより気泡を能動的に上部中央に集めて除去
するものであるので濾過道程を実質的に長くできること
になり従来装置に比してプライミング容量が小さくなる
ように装置の小形化が可能であることが前述した実験に
よって確認され、この為体外循環血液量及びプライミン
グのための補液量を小さくすることができ、また本発明
装置を小型化せず従来装置と同じプライミング容量とな
る大きさとすれば従来装置に比し処理能力が向上すると
共に小型化したときよりも一層微小気泡の除去を促進で
きるという効果を有する。
In addition, the device for removing air bubbles in blood of the present invention actively collects and removes air bubbles in the upper center by creating a swirling flow in the blood to be processed, so that the filtration process can be substantially lengthened, compared to conventional devices. It has been confirmed through the above-mentioned experiment that it is possible to downsize the device so that the priming capacity is small, and therefore the amount of extracorporeal circulating blood and the amount of fluid replacement for priming can be reduced. If the size is made to have the same priming capacity as the conventional device without downsizing, the processing capacity will be improved compared to the conventional device, and the removal of microbubbles will be further promoted than when the device is downsized.

さらに本発明の血液中気泡除去装置は、被処理血液を旋
回流として血液中の気泡を浮力と遠心分離により上部中
央に能動的に集めるものであり、上部空間の血液旋回流
の濾過体に近い下層部は十分に気泡除去が促進された血
液で占められることになり従来装置のように濾過体によ
り気泡を捕捉する方式とは異なるので50μないし26
0μ内外の孔径の多孔質体から成る濾過体を用いても直
径0.1 w以下の微小気泡を十分有効に除去すること
ができ、装置の安全性・信頼性が損われずもって孔径2
60μ内外の濾過体を使用すれば血小板や赤血球の破壊
等の血液の侵襲の恐れがなく合せて濾過体での圧力損失
が従来に比して大幅に減少しひいては装置の能力向1 
    上となるという効果を有する。
Furthermore, the blood bubble removal device of the present invention uses the blood to be treated as a swirling flow and actively collects the bubbles in the blood in the upper center by buoyancy and centrifugation, and is close to the filter body of the blood swirling flow in the upper space. The lower layer is occupied by blood from which air bubbles have been sufficiently removed, which is different from the conventional system in which air bubbles are captured by a filter;
Even if a filter body made of a porous material with a pore size of around 0μ is used, microbubbles with a diameter of 0.1W or less can be removed effectively, and the safety and reliability of the device will not be compromised.
If a filter with a diameter of around 60μ is used, there is no risk of blood invasion such as destruction of platelets or red blood cells, and the pressure loss in the filter is significantly reduced compared to conventional methods, which in turn improves the performance of the device.
It has the effect of becoming the top.

また、本発明の実施態様として上記容器本体が上部空間
の円周部を上記濾過体で画されないように上・下・外方
より包み込む形状である場合には、濾過体が血液旋回流
の気泡除去が十分促進した中央下層部に臨み微小気泡の
濾過体通過が少なく気泡除去能力が一層高くなりまた液
入口を濾過体に近づけて上部空間を一層薄形にできもっ
てプライミング容量を小さく装置を小形化できるという
効果を有する。
Further, as an embodiment of the present invention, when the container body has a shape that envelops the circumference of the upper space from above, below, and from the outside so that the circumferential part of the upper space is not demarcated by the filter, the filter can be used to form air bubbles of the swirling blood flow. Facing the central lower layer where removal has been sufficiently promoted, there are fewer microbubbles passing through the filter, and the bubble removal ability is even higher.Also, the liquid inlet is brought closer to the filter, making the upper space thinner, reducing the priming volume and downsizing the device. It has the effect of being able to be converted into

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来の濾過体方式の血液中
気泡除去装置の縦断正面図、第3図は従来の血液滞留方
式の血液気泡除去装置の縦断正面図、第4図61)は従
来の濾過体方式と血液滞留方式との組合せ方式の血液中
気泡除去装置の縦断正面図であり、第4図(b)は同上
の装置の要部正面図、第5図は本発明の好ましい実施例
にかかる血液中気泡除去装置の縦断正面図、第6図は同
上のVI−VI断面図、第7図は本発明の第1変形例に
かかる血液中気泡除去装置の縦断正面図、第8図は同上
の■−■断面図、第9図、第1()図及び第11図はそ
れぞれ本発明の第2、第3及び第4の変形例にかかる血
液中気泡除去装置の縦断正面図、第12図は本発明の技
術的効果を確認するだめの実験装置、第13図は同上の
装置に使用するために試作した観測用エアトラップの縦
断面図である。第14図及び第15図は第12図の実験
装置で従来装置及び本発明装置について気泡除去効果の
実験を行ない超音波血流計で得られたダイヤグラフであ
る。第16図、第17図及び第18図は第12図の実験
装置の実験により従来装置及び本発明装置について超音
波血流計及びこれに接続した積分測定器で得られた夕°
イヤグラフである。 5・・・容器本体、  謳・・・上部空間、n・・・下
部空間′、ア・・・濾過体、四・・・液入口、   I
・・・気泡出口、31・・・液出口。 特許出願人 テルモ株式会社 代理人 弁理士  大  沼  浩  司第7図 第8図 第4図      第10図 番 第12図 第14図 慨3と洩λ 叛う芭う主人
1 and 2 are longitudinal sectional front views of a conventional filter type blood bubble removal device, FIG. 3 is a longitudinal sectional front view of a conventional blood retention type blood bubble removal device, and FIG. 4 is a 61) FIG. 4(b) is a front view of a main part of the same device, and FIG. 5 is a preferable one of the present invention. FIG. 6 is a vertical sectional front view of a blood bubble removing device according to an embodiment, FIG. 6 is a sectional view taken along VI-VI of the same as above, and FIG. Figure 8 is a sectional view taken along the line ■--■, and Figures 9, 1(), and 11 are longitudinal sectional front views of blood bubble removal devices according to second, third, and fourth modifications of the present invention, respectively. 12 is an experimental device for confirming the technical effects of the present invention, and FIG. 13 is a longitudinal sectional view of an observation air trap prototyped for use in the above device. FIGS. 14 and 15 are diagrams obtained using an ultrasonic blood flow meter when experiments were conducted on the bubble removal effect using the conventional device and the device of the present invention using the experimental device shown in FIG. 12. FIGS. 16, 17, and 18 show the ultrasonic blood flow meter and the integral measuring device connected to it for the conventional device and the device of the present invention in experiments using the experimental device shown in FIG. 12.
It is an ear graph. 5...Container main body, U...upper space, n...lower space', a...filter body, 4...liquid inlet, I
...bubble outlet, 31...liquid outlet. Patent Applicant: Terumo Co., Ltd. Agent, Patent Attorney Hiroshi Ohnuma Figure 7 Figure 8 Figure 4 Figure 10 Figure No. 12 Figure 14 Figure 3 and λ Rebelling Master

Claims (1)

【特許請求の範囲】 1、 容器本体と、前記容器本体内を上部空間と下部空
間に画するように設けられた多孔質体から成る濾過体と
、前記容器本体に前記上部空間と連通ずるように設けら
れ被処理液を前記濾過体に対して前記上部空間に旋回流
として導入できる液入口と、前記容器本体に前記下部空
間と連通するように設けられ前記濾過体を通過する処理
血液を送出する液出口と、前記容器本体に前記上部空間
の上部中央と連通ずるように設けられ前記上部空間で分
離される気泡を抜くための気泡出口とから成る血液中気
泡除去装置において、 前記容器本体で形成される前記上部空間は該上部空間の
平面中央を通る鉛直断面形状の上辺部分が中央に向って
水平ないし上り勾配である扁平形状でありかつほぼ円形
な平面形状であることを特徴とする血液、中気泡除去装
置。 2、 上記容器本体は、上記上部空間の円周部が上記濾
過体によって画されないように上記上部空間の円周部を
上・下・外方よシ包み込む形状である特許請求の範囲第
1項記載の血液中気泡除去装置。
[Claims] 1. A container body, a filter body made of a porous body provided so as to divide the container body into an upper space and a lower space, and a filter body configured to communicate with the upper space in the container body. a liquid inlet provided in the container body to allow the liquid to be treated to be introduced into the upper space as a swirling flow relative to the filter body; and a liquid inlet provided in the container body to communicate with the lower space to send the treated blood passing through the filter body. A blood bubble removal device comprising: a liquid outlet for removing air bubbles separated in the upper space; and a bubble outlet for removing air bubbles separated in the upper space, the air bubble outlet being provided in the container body so as to communicate with the upper center of the upper space; The formed upper space has a flat shape in which an upper side portion of a vertical cross-sectional shape passing through the center of the plane of the upper space is horizontal or slopes upward toward the center, and has a substantially circular planar shape. , medium bubble removal device. 2. Claim 1, wherein the container body has a shape that wraps around the circumferential portion of the upper space from above, below, and outward so that the circumferential portion of the upper space is not defined by the filter body. The blood bubble removal device described.
JP57045674A 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood Granted JPS58163372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045674A JPS58163372A (en) 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045674A JPS58163372A (en) 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood

Publications (2)

Publication Number Publication Date
JPS58163372A true JPS58163372A (en) 1983-09-28
JPS6144031B2 JPS6144031B2 (en) 1986-10-01

Family

ID=12725931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045674A Granted JPS58163372A (en) 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood

Country Status (1)

Country Link
JP (1) JPS58163372A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228849A (en) * 1983-06-10 1984-12-22 テルモ株式会社 Apparatus for removing air bubbles in liquid
JPS6058142U (en) * 1983-09-29 1985-04-23 株式会社ウベ循研 blood filter
JPS60246763A (en) * 1984-05-23 1985-12-06 テルモ株式会社 Blood storage tank
JPS61143073A (en) * 1984-12-13 1986-06-30 ザルトリウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Disposable filter
JPS61133046U (en) * 1985-02-07 1986-08-19
JPS624343U (en) * 1985-06-24 1987-01-12
JPS6242839U (en) * 1985-08-31 1987-03-14
JP2005334640A (en) * 2004-05-24 2005-12-08 Terumo Cardiovascular Systems Corp Air removal equipment for hemophoresis system with float valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229635A (en) * 2006-03-01 2007-09-13 Toray Eng Co Ltd Coating liquid supply apparatus
JP6031083B2 (en) * 2014-12-24 2016-11-24 成吾 村川 Liquid level confirmation device, holder and air trap chamber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228849A (en) * 1983-06-10 1984-12-22 テルモ株式会社 Apparatus for removing air bubbles in liquid
JPS6330441Y2 (en) * 1983-09-29 1988-08-15
JPS6058142U (en) * 1983-09-29 1985-04-23 株式会社ウベ循研 blood filter
JPS60246763A (en) * 1984-05-23 1985-12-06 テルモ株式会社 Blood storage tank
JPS6322831B2 (en) * 1984-05-23 1988-05-13 Terumo Corp
JPS61143073A (en) * 1984-12-13 1986-06-30 ザルトリウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Disposable filter
JPH0417063B2 (en) * 1984-12-13 1992-03-25 Sartorius Werke Gmbh
JPS61133046U (en) * 1985-02-07 1986-08-19
JPH0225408Y2 (en) * 1985-06-24 1990-07-12
JPS624343U (en) * 1985-06-24 1987-01-12
JPS6242839U (en) * 1985-08-31 1987-03-14
JPH0239466Y2 (en) * 1985-08-31 1990-10-23
JP2005334640A (en) * 2004-05-24 2005-12-08 Terumo Cardiovascular Systems Corp Air removal equipment for hemophoresis system with float valve

Also Published As

Publication number Publication date
JPS6144031B2 (en) 1986-10-01

Similar Documents

Publication Publication Date Title
EP0128556B1 (en) Apparatus for removing bubbles from a liquid
JPH01148266A (en) Blood filter
US4923620A (en) Device for depletion of the leukocyte content of blood and blood components
US4925572A (en) Device and method for depletion of the leukocyte content of blood and blood components
US4954251A (en) Concentric microaggregate blood filter
CN1878582B (en) Degassing device and end-cap assembly for a filter including such a degassing device
CN102014985B (en) Degassing device
US7963901B2 (en) Blood processing apparatus with cell capture chamber with protruding inlet
JPS58163372A (en) Apparatus for removing gas bubble in blood
US4976861A (en) Method for determining the wetting characteristic of a porous medium
JPH07507463A (en) Apparatus and method for producing leukocyte-free platelet concentrate
US20120258531A1 (en) Systems and methods for harvesting target particles of a suspension
JPH0651063B2 (en) How to selectively remove white blood cells
JP2016506861A (en) Separation of complex liquid
JPH04240456A (en) Filter apparatus for removing leukocyte and method for using it
WO2016047444A1 (en) Cell separation material and cell separation method
JP2004329793A (en) Bubble eliminating chamber with function of preventing deformation of hemocyte component
JP3250833B2 (en) Leukocyte selective capture filter material
JP2538751B2 (en) Leukocyte capture and separation device
JP2918595B2 (en) White blood cell separator
JPH1043293A (en) Device for removing bubble in liquid
RU2815528C1 (en) Air separator for extracorporeal circulation system
JP2002177384A (en) Blood regulating device
WO1989002305A1 (en) Leucocyte-separating filter
JPH01148265A (en) Blood filter