WO2016047444A1 - Cell separation material and cell separation method - Google Patents

Cell separation material and cell separation method Download PDF

Info

Publication number
WO2016047444A1
WO2016047444A1 PCT/JP2015/075602 JP2015075602W WO2016047444A1 WO 2016047444 A1 WO2016047444 A1 WO 2016047444A1 JP 2015075602 W JP2015075602 W JP 2015075602W WO 2016047444 A1 WO2016047444 A1 WO 2016047444A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell separation
cell
cells
separation material
less
Prior art date
Application number
PCT/JP2015/075602
Other languages
French (fr)
Japanese (ja)
Inventor
愛弓 山本
康弘 溝上
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016550096A priority Critical patent/JP6707031B2/en
Publication of WO2016047444A1 publication Critical patent/WO2016047444A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • A61M1/3406Physical characteristics of the filtrate, e.g. urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media

Definitions

  • the present invention relates to a cell separation material and a cell separation method using the same. More specifically, the present invention relates to a cell separation material suitable for separating rare cells (tumor cells, stem cells, endothelial cells, fetal cells, etc.) present in a liquid from contaminated cells, and collecting and concentrating the rare cells. And a cell separation method using the same.
  • rare cells tumor cells, stem cells, endothelial cells, fetal cells, etc.
  • the main components of cell components in blood are red blood cells, white blood cells, and platelets, but it is known that cells other than these exist in blood.
  • cells other than these exist in blood For example, circulating tumor cells, circulating stem cells, circulating endothelial cells, etc. (hereinafter collectively referred to as “rare cells”) are cells that are extremely rare in whole blood. And detection of these rare cells is considered to be clinically useful.
  • circulating tumor cells in the blood are found at low concentrations in the blood of cancer patients and are considered to be the cause of metastatic cancer. If these tumor cells can be detected early, the presence of the primary tumor, tumor metastasis, or recurrence of the tumor after treatment can be detected early, and effective treatment can be introduced from the initial stage.
  • currently used methods for collecting and concentrating circulating tumor cells in the blood include negative selection using magnetic beads with immobilized antibodies against antigens of contaminated cells whose surface antigens have been clarified, tumor cells Examples thereof include a positive selection method using magnetic beads on which an antibody against a specific antigen is immobilized.
  • cell sorting methods such as cell sorting using fluorescent antibodies, but both methods require a large amount of antibody and processing time to sort out large amounts of contaminating cells and trace amounts of tumor cells. Therefore, the process becomes very expensive and the work efficiency is poor.
  • density gradient centrifugation methods such as Ficoll separation method and Percoll separation method.
  • this method is a method of separation utilizing the specific gravity difference of cells, it is impossible to separate tumor cells and contaminated cells having the same specific gravity because they are separated by specific gravity.
  • the operation of washing the ficoll solution or percoll solution using a centrifuge after the separation is repeated several times, cell loss occurs, and in the worst case, circulating tumor cells in the blood that are very few are also lost. As a result, an incorrect diagnosis may be made.
  • Red blood cells are the largest number in blood, and this large amount of red blood cells is a major obstacle to detecting tumor cells.
  • hemolyzing red blood cells for example, the ammonium chloride method and the high osmotic pressure destruction method).
  • Patent Documents 1 and 2 Although this method efficiently lyses and removes red blood cells, the damage to other cells is great, making it difficult to analyze and culture tumor cells alive.
  • Patent Documents 1 and 2 several techniques for collecting rare cells such as tumor cells contained in body fluids such as blood have been reported (Patent Documents 1 and 2), but target rare cells are selected from whole blood samples. It is difficult to say that it is sufficient as a separate separation and recovery technology.
  • any of the above methods cannot be processed in a closed system, and has safety problems such as contamination and infection.
  • the present applicant also (a) capturing the tumor cells, white blood cells and platelets in the blood cell separation material by contacting the body fluid containing tumor cells with the blood cell separation material. , The step of removing the erythrocyte-rich fraction, (b) the step of separating the tumor cell enriched fraction from the blood cell separation material using the separation solution, and the recovered liquid obtained from the steps (a) and (b) above.
  • Proposed is a cell separation method characterized in that the value indicated by the ratio of erythrocyte removal rate / tumor cell recovery rate is 1.25 or less and 1.00 or more (Patent Document 3).
  • This technique simply and quickly removes erythrocyte-rich fractions from body fluids such as blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, or tissue extracts, and collects tumor cell enriched fractions.
  • body fluids such as blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, or tissue extracts.
  • the fraction containing tumor cells is collected in a state containing leukocytes and platelets, and is not a method for selectively collecting tumor cells. Therefore, a technique capable of more selectively collecting rare cells such as circulating tumor cells in the blood has been demanded.
  • the object of the present invention is to selectively increase rare cells from a liquid in which rare cells such as circulating tumor cells in the blood and contaminating cells such as red blood cells, platelets and white blood cells are mixed.
  • An object of the present invention is to provide a cell separation material that can be recovered at a recovery rate.
  • Another object of the present invention is to provide a cell separation method capable of selectively collecting rare cells at a high recovery rate using the cell separation material.
  • the present inventors have intensively studied to solve such problems. As a result, the inventors have found that the selective recovery of rare cells is affected by the air permeability and the compression energy in addition to the average fiber diameter of the cell separation material. By using a cell separation material in which these are in a specific range, it has been found that the recovery rate of rare cells can be significantly improved, and the removal rate of contaminating cells such as red blood cells, platelets and white blood cells can be improved. It came to complete.
  • the gist of the present invention is as follows. [1] Consisting of fibers having an average fiber diameter of 1.0 ⁇ m or more and 50 ⁇ m or less, the air permeability is 10 cc / cm 2 / sec or more, 400 cc / cm 2 / sec or less, and the compression energy WC is 3.5 J / m 2 or less. Cell separation material. [2] The cell separation material according to [1], wherein the density of the cell separation material is 6.5 ⁇ 10 4 g / m 3 or more and 1.5 ⁇ 10 5 g / m 3 or less.
  • the air permeability coefficient M which is a product of the air permeability (cc / cm 2 / sec) of the cell separating material and the thickness (mm) of the cell separating material, is 36 or more and 300 or less [1] or The cell separation material according to [2].
  • the nonwoven fabric is a spunlace nonwoven fabric, a spunbond nonwoven fabric, or a meltblown nonwoven fabric.
  • the fiber constituting the cell separation material is composed of at least one synthetic polymer selected from the group consisting of polyester, rayon, polyolefin, vinylon, polystyrene, acrylic, nylon and polyurethane.
  • a cell separation filter comprising a plurality of the cell separation materials according to any one of [1] to [9] stacked and filled in a container having an inlet and an outlet.
  • the cell separation filter according to [10] wherein the cell separation material is filled in a compressed state.
  • the filling rate of the cell separation material (the thickness of the whole cell separation material before filling / the thickness of the whole cell separation material after filling) is 1 or more and 10 or less. Cell separation filter.
  • the packing density of the cell separation material (weight of the whole cell separation material / volume of the whole cell separation material) is 1.0 ⁇ 10 5 g / m 3 or more, 1.0 ⁇
  • the cell separation filter according to any one of [10] to [14], wherein a thickness of the whole cell separation material packed in a direction in which the liquid flows is 1 mm or more and 30 mm or less.
  • [16] The cell separation according to any one of the above [10] to [15] for capturing rare cells by passing a liquid containing rare cells and removing red blood cells, white blood cells, and platelets filter.
  • [17] A step of passing a liquid containing rare cells through the cell separation filter according to any one of [10] to [16], and capturing a fraction containing rare cells in the cell separation material.
  • a cell separation method comprising.
  • a step of passing a liquid containing rare cells from the inlet of the cell separation filter (b) A washing step of passing a washing solution from the inlet of the cell separation filter after the step (a) (c)
  • the cell separation method according to [19] or [20], wherein the rare cells recovered in the step (c) can be cultured.
  • the cell separation material according to any of [1] to [9], the cell separation filter according to any of [10] to [16], or the above [17] to [21] A rare cell-rich fraction collected by any of the cell separation methods, wherein erythrocytes and platelets are removed by 60% or more, leukocytes are removed by 50% or more, and rare cells can be cultured. A rare cell-rich fraction.
  • cell separation material of the present invention for example, body fluid such as blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, urine, saliva or tissue extract, and fluid such as culture fluid
  • body fluid such as blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, urine, saliva or tissue extract, and fluid such as culture fluid
  • the rare cells contained in can be separated and efficiently recovered from mixed cells other than erythrocytes, platelets, leukocytes and the like.
  • the rare cell-rich fraction obtained in the present invention has a low contamination rate of red blood cells, platelets and white blood cells, and does not undergo hemolysis even if stored frozen until use, and has very little effect on rare cells. Moreover, it is possible to collect aseptically, and if the culture solution is used as the recovery solution at the time of cell recovery, the recovered cells can be cultured as they are. Further, even in a liquid in which the rare cell contamination rate is extremely small and rare cells have not been detected so far, the rare cells are recovered by amplifying the rare cells by culturing and then using the cell separation method of the present invention. Therefore, detection sensitivity can be improved. As described above, the cell separation material, cell separation filter and cell separation method of the present invention are very useful as a technique for selectively recovering rare cells from various liquids, and are useful for examination and the like. Can be obtained.
  • the cell separation material of the present invention is composed of fibers having an average fiber diameter of 1.0 ⁇ m or more and 50 ⁇ m or less, and has an air permeability of 10 cc / cm 2 / sec or more and 400 cc / cm 2 / sec or less and a compression energy WC of 3. 5 J / m 2 or less.
  • the fibers constituting the cell separation material preferably have an average fiber diameter of 1.0 ⁇ m or more and 50 ⁇ m or less. If the average fiber diameter is smaller than 1.0 ⁇ m, clogging is likely to occur. If the average fiber diameter is larger than 50 ⁇ m, rare cells pass through without being captured by the cell separation material, so that the collection rate of rare cells is greatly reduced.
  • the fiber diameter is the width of the fiber in the direction perpendicular to the fiber axis.
  • the average fiber diameter can be measured, for example, by taking a photograph of the cell separation material with a scanning electron microscope and averaging the calculated values of the fiber diameter obtained from the scale described in the photograph.
  • the average fiber diameter in the present invention means an average value of the fiber diameters measured as described above, and is an average value of 50 or more, preferably 100 or more fiber diameters measured.
  • the fiber diameter is calculated excluding the data. .
  • the average fiber diameter of the cell separation material is preferably 3 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more, from the viewpoint of separation efficiency between rare cells and contaminating cells.
  • the average fiber diameter is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the material of the fiber is not particularly limited, but from the viewpoint of sterilization resistance and cell safety, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), rayon, polyolefin (polyethylene, high density polyethylene, low density) Polyethylene, polypropylene, etc.), vinylon, polystyrene, acrylic (polymethyl methacrylate, polyhydroxyethyl methacrylate, polyacrylonitrile, polyacrylic acid, polyacrylate, etc.), nylon, polyurethane, polyvinyl alcohol, polyvinylidene chloride, polyimide, aramid (aromatic) Polyamide), polyamide, cupra, carbon, phenol, pulp, hemp, polycarbonate, synthetic polymers, agarose, cellulose, cellulose acetate Chitosan, natural polymers such as chitin, an inorganic material, metal or the like such as glass.
  • polyester polyethylene terephthalate, polybutylene terephthalate, etc.
  • rayon poly
  • polyester, rayon, polyolefin, vinylon, polystyrene, acrylic, nylon, and polyurethane are preferable from the viewpoint of cell separation efficiency.
  • these materials are not limited to a single type, and may be combined, mixed, and fused as necessary. When two or more kinds of materials are combined, the combination is not particularly limited, but a combination of polyester and polyolefin; rayon and polyolefin; polyester and rayon; or a synthetic polymer composed of polyester, rayon and vinylon is preferable.
  • molecules having affinity for specific cells such as proteins, peptides, amino acids, and sugars may be fixed to the material.
  • Examples of the shape of the cell separation material composed of the fibers include a nonwoven fabric, a woven fabric, a sponge shape, a porous body, a mesh shape, and the like, but a nonwoven fabric is preferable because it can be easily produced and obtained.
  • Nonwoven fabric production methods can be broadly classified into wet methods and dry methods, and further include resin bond methods, thermal bond methods, spun lace methods, needle punch methods, stitch bond methods, spun bond methods, and melt blown methods.
  • a spunlace nonwoven fabric, a spunpond nonwoven fabric, or a meltblown nonwoven fabric which is a nonwoven fabric manufactured by a spunlace method, a spunbond method, or a meltblown method is preferable.
  • the non-woven fabric may be subjected to processing such as calendar processing or plasma processing. Since the fibers are intertwined in a complicated manner and blood cell separation efficiency is good, so-called divided fibers obtained by dividing a composite single yarn into a plurality of fibers are also suitable as the nonwoven fabric fibers.
  • the cell separation material further has an air permeability of 10 cc / cm 2 / sec to 400 cc / cm 2 / sec.
  • the air permeability is preferably 25 cc / cm 2 / sec or more, more preferably 40 cc / cm 2 / sec or more, further preferably 45 cc / cm 2 / sec or more, from the viewpoint of separation efficiency between rare cells and contaminating cells. Particularly preferably, it is 47 cc / cm 2 / sec or more.
  • the air permeability preferably 350cc / cm 2 / sec or less, more preferably 330cc / cm 2 / sec or less, more preferably 300cc / cm 2 / sec or less, especially preferably below 275cc / cm 2 / sec is there.
  • the air permeability can be measured by various methods. For example, it can be easily measured in accordance with or in accordance with the Frazier method described in JIS L1096-2010.
  • the cell separation material further has a compression energy WC of 3.5 J / m 2 or less. Only when the average fiber diameter and the air permeability are limited to the above ranges and the compression energy WC is limited to the above ranges, the trapping efficiency of rare cells can be remarkably improved.
  • the compression energy WC is preferably 2.0 J / m 2 or less, more preferably 1.5 J / m 2 or less, further preferably 1.2 J / m 2 or less, from the viewpoint of further improving the capture efficiency of rare cells. Particularly preferred is 0.6 J / m 2 or less.
  • the compression energy WC is preferably at 0.05 J / m 2 or more, more preferably 0.1 J / m 2 or more, further preferably 0.2 J / m 2 or more.
  • the compression energy WC is 0.05 J / m 2 or more, from the viewpoint that it has a compression characteristic that can be easily filled into a cell separation filter, and is excellent in the ability to separate target rare cells.
  • a cell separation material adjusted to 2 J / m 2 or less is preferable.
  • the compression energy WC is a parameter representing the compression characteristics of the cell separation material. When a load is applied to the cell separation material, the cell separation material is compressed and deformed in the load direction.
  • the compression energy WC was measured at three points using, for example, a KES compression tester (KES-G5) manufactured by Kato Tech Co. under conditions of a compression rate of 20 ⁇ m / sec and a maximum compression load of 50 gf / cm 2 . The average value can be calculated.
  • the density of the cell separation material may be 2.0 ⁇ 10 4 g / m 3 or more and 1.5 ⁇ 10 5 g / m 3 or less.
  • it is preferably 6.5 ⁇ 10 4 g / m 3 or more and 1.5 ⁇ 10 5 g / m 3 or less.
  • the density is more preferably 7.0 ⁇ 10 4 g / m 3 or more, and further preferably 8.0 ⁇ 10 4 g / m 3 or more.
  • the density of the cell separation material is preferably 1.3 ⁇ 10 5 g / m 3 or less, more preferably 1.2 ⁇ 10 5 g / m 3 or less, 1.1 ⁇ 10 5 more preferably g / m 3 or less, particularly preferably 1.0 ⁇ 10 5 g / m 3 or less.
  • the density indicates basis weight (g / m 2 ) / thickness (m), which can also be expressed as weight (g) / unit volume (m 3 ). That is, the density can also be obtained by measuring the weight (g) per unit volume (m 3 ) regardless of the form of the cell separation material.
  • the density may be obtained from the basis weight (g / m 2 ) / thickness (m) based on the data.
  • the thickness of the cell separation material at the time of calculating the density refers to the thickness in an uncompressed state.
  • the thickness in the uncompressed state for example, pressure is applied to the cell separation material using a KES compression tester (Kato Tech, KES-G5), and the thickness at a low load in the obtained compression curve is measured. It can be the thickness in an uncompressed state.
  • the basis weight can be calculated, for example, by measuring the weight of a 1 m square cell separator with a balance.
  • the thickness of one sheet of the cell separation material in the uncompressed state is 0.1 mm or more and 3.5 mm or less.
  • the thickness is preferably 0.2 mm or more, more preferably 0.3 mm or more, from the viewpoint of separation efficiency between rare cells and contaminating cells.
  • it is 2.5 mm or less, More preferably, it is 2.0 mm or less, Especially preferably, it is 1.2 mm or less.
  • the air permeability coefficient M which is the product of the air permeability (cc / cm 2 / sec) of the cell separator and the thickness (mm) of the cell separator, is limited to a range of 36 to 300. Is preferred. When the air permeability coefficient M is smaller than 36, the removal efficiency of contaminating cells such as red blood cells and white blood cells tends to be reduced. When the air permeability coefficient M is larger than 300, the efficiency of capturing rare cells in the cell separation material is reduced. Tend. Furthermore, from the viewpoint of improving the separation efficiency between rare cells and contaminating cells, the air permeability coefficient M is preferably 37 or more, more preferably 72 or more, and further preferably 80 or more.
  • the air permeability coefficient M of the cell separation material is preferably 250 or less, more preferably 200 or less, and even more preferably 150 or less.
  • the air permeability coefficient M is a value defined by the product of the air permeability (cc / cm 2 / sec) and the thickness (mm) of the cell separation material.
  • the air permeability is a parameter that depends on the size of the pore size of the cell separation material, but even if the air permeability is the same, the smaller the cell separation material, the smaller the essential air permeability. The degree becomes smaller. Therefore, by multiplying the air permeability and the thickness, it becomes a parameter representing the essential pore diameter of the cell separation material.
  • the cell separation filter of the present invention is characterized in that a plurality of the cell separation materials are stacked and filled in a container having an inlet and an outlet.
  • the form, size, and material of the container filled with the cell separation material are not particularly limited.
  • the form of the container may be any form such as a sphere, a container, a cassette, a bag, a tube, or a column.
  • Preferable specific examples include, for example, a translucent cylindrical container having a capacity of about 0.1 mL to 400 mL and a diameter of about 0.1 cm to 15 cm.
  • a rectangular column container having a length of about 0.1 cm to 20 cm and a thickness of about 0.1 cm to 5 cm can be used, but the present invention is not limited thereto.
  • the container type includes a cross flow type and a column type. Either the cross flow type or the column type can be used, and the type of the container is not particularly limited, but the column type is more preferable from the viewpoint that the recovered liquid can be introduced uniformly.
  • the column type means, for example, a container having a liquid inlet and outlet near the center of the surface with respect to the filter surface, or a container in which the inlet and outlet portions are positioned perpendicular to the filter surface, or the filter surface.
  • the container is characterized in that the liquid flows in a direction perpendicular to the above, or the container characterized in that the liquid flows in parallel to the compression direction of the separating material.
  • the leukocyte removal filter (“Sepacel” manufactured by Asahi Kasei Medical Co., Ltd., “Pure Cell RC” manufactured by Paul Co., Ltd.) This refers to a container in which an inlet and an outlet are located parallel to the filter surface.
  • the container can be made using any structural material.
  • the structural material include non-reactive polymers, biocompatible metals, alloys, and glass.
  • Non-reactive polymers include acrylonitrile polymers such as acrylonitrile butadiene styrene terpolymers; polytetrafluoroethylene, polychlorotrifluoroethylene, copolymers of tetrafluoroethylene and hexafluoropropylene, halogenated polymers such as polyvinyl chloride; polyamides and polyimides , Polysulfone, polycarbonate, polyethylene, polypropylene, polyvinyl chloride acrylic copolymer, polycarbonate acrylonitrile butadiene styrene, polystyrene, polymethylpentene and the like.
  • the metal material (biocompatible metal, alloy) useful as the material of the container stainless steel, titanium, platinum, tantalum, gold, and alloys thereof, as well as gold-plated alloy iron, platinum-plated alloy iron, cobalt-chromium alloy,
  • metal material biocompatible metal, alloy
  • stainless steel titanium, platinum, tantalum, gold, and alloys thereof, as well as gold-plated alloy iron, platinum-plated alloy iron, cobalt-chromium alloy
  • examples include titanium nitride-coated stainless steel.
  • structural materials having sterilization resistance are preferable, and specific examples include polypropylene, polyvinyl chloride, polyethylene, polyimide, polycarbonate, polysulfone, and polymethylpentene.
  • the cell separation filter in which the container is filled with the cell separation material include the cell separation filter 1 having the structure shown in FIGS.
  • a cylindrical container body 2 provided with openings at the top and bottom, a presser member 3 with a nozzle disposed in the vicinity of the top and bottom openings in the inner space of the container body 2, with the nozzle It is comprised from the lid
  • cover 5 which can fix the cell separation material 4 filled between the pressing members 3 and the said pressing member 3 with a nozzle near the said opening part.
  • the nozzle port 6 of the pressing member with nozzle 3 serves as an inlet or an outlet for introducing a liquid into the cell separation filter 1.
  • the lid 5 may be screwed to the container body 2. Further, the place where the lid 5 or the presser member 3 with the nozzle contacts the container body 2 is not specified, but the liquid introduced into the cell separation filter 1 leaks out by disposing the sealing material 7. You may make it prevent doing.
  • the cell separation material When filling the container with the cell separation material, the cell separation material may be cut into an appropriate size as necessary, and used in a state where a plurality of layers are stacked in the direction in which a liquid containing rare cells flows. it can.
  • the thickness T of the whole cell separation material 4 to be filled is preferably 1 mm or more and 30 mm or less with respect to the direction D in which the liquid flows.
  • the direction D is a direction connecting nozzle ports 6 that are liquid inlets and outlets of the cell separation filter 1.
  • the total thickness T of the filled cell separating material 4 is preferably 25 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less, from the viewpoint of efficiently removing contaminating cells.
  • the said container is preferably 3 mm or more, and more preferably 5 mm or more.
  • the thickness T of the said filled cell separation material 4 whole can be visually measured using a caliper from the outside, for example.
  • it can be calculated by measuring the length of the part filled with the cell separating material 4 in the structure of each part of the container.
  • the container may be packed in a roll shape as well as stacked on a flat plate.
  • cells may be separated by treating the liquid from the inside to the outside of the roll, or conversely, the liquid may be treated from the outside to the inside of the roll. Good.
  • the container When filling the cell separating material into the container, it is preferable to compress the cell separating material in the flowing direction of the liquid and fill the container. However, depending on the material of the cell separating material, the container may be filled without being compressed. The degree of compression can be appropriately selected according to the material of the cell separation material.
  • the cell separation filter in which the container is filled with the cell separation material may be produced by using two or more types of cell separation materials having different materials and shapes.
  • the filling rate of the cell separation material (total thickness of the cell separation material before filling / total thickness of the cell separation material after filling) is 1 or more.
  • the packing ratio is less than 1, rare cells may be lost from the voids generated in the filter.
  • the packing ratio is greater than 10, it is difficult to fill the filter with a cell separation material. It becomes.
  • the filling rate is more preferably 1.2 or more, and further preferably 1.5 or more.
  • the filling rate is more preferably 9 or less, further preferably 8 or less, and particularly preferably 7.7 or less.
  • the thickness of the whole cell separation material before filling the container is calculated from the total thickness of one cell separation material in the uncompressed state, and the thickness of the whole cell separation material after filling is calculated using the calipers. Can be measured by the conventional method.
  • the packing density of the cell separation material filled in the container is 1.0 ⁇ 10 5 g. / M 3 or more and 1.0 ⁇ 10 6 g / m 3 or less is preferable.
  • the packing density is less than 1.0 ⁇ 10 5 g / m 3 , the rare cells are likely to pass through the filter, so the recovery rate of the rare cells tends to be remarkably reduced.
  • the packing density exceeds 1.0 ⁇ 10 6 g / m 3 , rare cells are firmly trapped in the packed cell separation material, making it difficult to recover.
  • the packing density is preferably 1.2 ⁇ 10 5 g / m 3 or more, and more preferably 1.4 ⁇ 10 5 g / m 3 or more.
  • the packing density is preferably 9.0 ⁇ 10 5 g / m 3 or less, more preferably 8.0 ⁇ 10 5 g / m 3 or less, and 7.6 ⁇ 10 5 g / m 3. More preferably, it is 3 or less.
  • what is necessary is just to calculate the volume of the said filled cell separation material by the product of the thickness of the said whole filled cell separation material, and the area of a cell separation material, for example.
  • the average pore diameter of the whole cell separation material filled in the cell separation filter is 1 ⁇ m or more and 70 ⁇ m or less.
  • the average pore diameter is less than 1 ⁇ m, not only rare cells but also contaminated cells such as erythrocytes and leukocytes cannot pass through the filter, making it difficult to remove the contaminated cells.
  • it exceeds 70 ⁇ m it is highly possible that not only contaminated cells but also rare cells pass through the filter, and the recovery rate of rare cells is significantly reduced.
  • the average pore diameter of the cell separation filter is preferably 3 ⁇ m or more, more preferably 6 ⁇ m or more, and further preferably 9 ⁇ m or more.
  • the average pore diameter can be measured using, for example, a palm porometer (manufactured by Porus Materials).
  • the cell separation filter of the present invention can capture rare cells and remove contaminating cells such as red blood cells, platelets, and white blood cells by passing a liquid containing rare cells.
  • capturing the rare cells means that 30% or more, preferably 40% or more, more preferably 50% or more of the rare cells contained in the liquid in contact with the cell separation material or the liquid passed through the cell separation filter. More preferably, it means that 60% or more, particularly preferably 70% or more, particularly preferably 80% or more, and most preferably 90% or more is captured by the cell separation material or the cell separation filter.
  • the cell separation filter of the present invention removes contaminating cells such as red blood cells, platelets and white blood cells, for example, 60% or more of red blood cells and platelets contained in the liquid in contact with the cell separation material and the cell separation filter, preferably 70. % Or more, more preferably 80% or more, more preferably 90% or more, particularly preferably 95% or more, particularly preferably 97% or more, most preferably 99% or more, and 50% or more of leukocytes, preferably It means that 60% or more, more preferably 70% or more, still more preferably 80 or more, particularly preferably 90% or more, particularly preferably 95% or more, and most preferably 97% or more can be removed.
  • the cell separation filter of the present invention can freely control the performance of the filter by changing the type of cell separation material to be filled, the filling method, and the like. That is, it can be designed as a filter having a particularly high rare cell recovery rate, or can be designed as a filter having a particularly high contamination cell removal rate.
  • the present invention relates to a cell separation method including a step of allowing a liquid containing rare cells to flow through the cell separation filter and capturing a fraction (rare cell rich fraction) rich in rare cells in the cell separation material. .
  • a liquid containing rare cells is injected into the container filled with the cell separation material from the inlet side, and a fraction rich in rare cells is captured by the cell separation material.
  • the liquid inlet When flowing a liquid into the container having the inlet and the outlet, the liquid inlet may be set to be higher than the liquid outlet and the liquid may flow in the same direction as gravity. It may be set so that it is lower than the outlet, and the liquid may flow in the direction opposite to gravity. By flowing the liquid in the direction opposite to the gravity, the liquid flows uniformly into the container and the bubbles are easily removed, so that the separation efficiency can be further improved.
  • the direction in which the liquid flows may be perpendicular to gravity, and the direction in which the liquid flows is not limited to the above.
  • the liquid containing rare cells used in the cell separation method of the present invention is not particularly limited as long as it is a suspension containing rare cells, but blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, Examples include urine, saliva or tissue extract. Alternatively, it may be a culture solution obtained by culturing rare cells in vitro or a suspension obtained by suspending in a liquid such as physiological saline.
  • washing solution that can be used is not particularly limited as long as it does not damage rare cells, but general buffer solutions such as physiological saline, Ringer's solution, medium used for cell culture, and phosphate buffer are preferable.
  • the recovery solution from the outlet direction of the container, that is, from the direction opposite to the direction in which the liquid containing the rare cells or the washing solution is passed, the fraction containing the rare cells captured in the cell separation material is abundant.
  • the image can be collected.
  • the recovered solution is not particularly limited as long as it is an isotonic solution, but has been used as an injectable agent such as physiological saline, Ringer's solution, dextran sugar injection, hydroxyethyl starch, buffer solution, cell culture medium Etc.
  • injectable agent such as physiological saline, Ringer's solution, dextran sugar injection, hydroxyethyl starch, buffer solution, cell culture medium Etc.
  • the viscosity of the recovered solution may be increased in order to increase the recovery rate of the trapped rare cells.
  • albumin, fibrinogen, globulin, dextran, hydroxyethyl starch, hydroxyethyl cellulose, collagen, hyaluronic acid, gelatin and the like can be added to the recovered solution, but the additives are not limited thereto.
  • the viscosity of the recovered solution is not particularly limited. However, if the viscosity is too high, the recovery operation tends to be difficult, and therefore 20 mPa ⁇ s or less is more preferable.
  • a step of immersing the cell separation material in a pretreatment solution such as physiological saline or a buffer solution is performed. Also good. This operation is not necessarily required, but by immersing the cell separation material in the pretreatment solution, a liquid containing rare cells can be uniformly passed through the entire cell separation material, and an improvement in separation efficiency is expected.
  • the This pretreatment solution need not be the same as the washing solution, but if it is the same, the solution bag connected to the cell separation filter can be shared during the treatment, which simplifies the circuit system and improves operability. It is preferable that it is the same from a viewpoint.
  • the amount of the pretreatment liquid is practically and preferably about 1 to 100 times the filter capacity.
  • the buffer that can be used is not particularly limited, but general buffers such as physiological saline, Ringer's solution, a medium used for cell culture, and phosphate buffer are preferable.
  • a liquid containing rare cells is passed through the cell separation filter, and a fraction rich in erythrocytes that have passed without being captured by the cell separation material is removed from the cell separation filter. it can.
  • the liquid when the liquid is passed from the liquid inlet side of the container filled with the cell separation material, the liquid may be naturally dropped from the container in which the liquid is placed through the liquid feeding circuit, or by using a pump. You may send liquid.
  • a syringe containing a liquid containing rare cells may be directly connected to the container and the plunger of the syringe may be pushed by hand.
  • the separation efficiency tends to decrease if the liquid feeding speed is too fast, and the processing time tends to be longer if it is too slow.
  • the liquid feeding speed include a speed of 0.1 mL / min to 100 mL / min, but are not limited thereto.
  • a fraction rich in white blood cells and platelets can be passed through the filter and removed.
  • the same cleaning solution as described above may be used.
  • it may be sent by natural fall or by a pump.
  • the flow rate when the liquid is sent by a pump is similar to that when a liquid containing rare cells is sent, and the speed is 0.1 to 100 mL / min, but is not limited thereto.
  • the amount of the washing solution varies depending on the volume of the container used. However, if the amount of the washing solution is too small, the amount of white blood cells and platelets remaining on the filter will increase. If the amount of the washing solution is too large, rare cells will pass through the filter. It is preferable to perform cleaning with a liquid amount of about 0.5 to 100 times the filter capacity.
  • the cell fraction passed through the outlet of the cell separation filter in the steps (a) and (b) (passed cell fraction) is passed through the inlet of the cell separation filter a plurality of times.
  • the method further includes the step of re-collecting a fraction containing rare cells mixed in the passing cell fraction by performing the step (c).
  • step (c) rare cells captured by the cell separation material are separated from the cell separation material and collected.
  • the collected solution is injected from the outlet side in the steps (a) and (b) into the filter filled with the cell separation material, and the rare cells are injected from the inlet side in the steps (a) and (b).
  • Recover That is, the liquid passing direction in the step (c) is opposite to the steps (a) and (b).
  • the recovery solution can be put in a syringe or the like in advance, and the plunger of the syringe can be pushed out by hand or equipment.
  • the amount and flow rate of the recovered solution vary depending on the volume and throughput of the container used, it is preferable to adjust the flow rate to 0.5 to 20 mL / sec with a liquid amount of about 1 to 100 times the filter volume. It is not limited to this.
  • a method with a particularly high rare cell recovery rate can be selected, or a method with a particularly high contamination cell removal rate can be selected.
  • the cell separation efficiency is controlled by controlling the flow rate in the step (a), the amount and flow rate of the washing solution in the step (b), and the amount and flow rate of the recovered liquid in the step (c). Can be controlled.
  • a cell separation system using the cell separation filter may be configured.
  • the cell separation system contains the inlet and outlet of the liquid containing the rare cells, the washing solution and the recovery solution, the bag containing the liquid containing the rare cells, and the liquid containing the contaminated cells that have passed through the filter. It is practical and preferable to simultaneously provide a waste liquid bag, a bag for storing rare cells collected from the filter, and the like.
  • the cell separation filter has an inlet through which a liquid containing rare cells flows in and an outlet through which it flows, and further has an inflow section and an outflow section for a cleaning solution used to remove contaminating cells such as red blood cells.
  • an inlet for introducing the recovered solution is also provided independently of the outflow part.
  • the inlet of the cleaning solution and recovery solution connected to the filter may function as an outlet for liquid after washing with contaminated cells or after collecting rare cells, and each bag or syringe is connected via a three-way stopcock. May be.
  • a cell separation system 13 as shown in FIG. 3 can be used.
  • the cell separation filter 1 since the cell separation filter 1 is set so that the liquid inlet 8 is vertically downward and the liquid outlet 9 is vertically upward, the liquid introduced from the inlet 8 is set. Is discharged from the outlet 9 on the upper side in the vertical direction in the cell filter 1.
  • the inlet 8 of the cell separation filter 1 is provided with a bag 11 containing a liquid containing rare cells and a bag 12 containing a washing solution (right side in the figure) via a three-way cock 10a, and a cell.
  • a bag (collection bag) 20 for storing the liquid collected from the separation filter 1 and a means 21 (lower side in the figure) for collecting the liquid collected in the collection bag or the like are connected by a tube.
  • a means 21 for collecting the liquid collected in the collection bag 20 and the collection bag is connected by a tube via the three-way cock 10c.
  • the outlet 9 of the cell separation filter 1 is connected via a three-way cock 10d to a bag (waste solution bag) 23 for storing the liquid that has passed through the cell separation filter 1 and a bag 24 for storing the recovered solution. ing.
  • the bags 11 and 12 are arranged vertically above the cell separation filter 1 and the outlet 9, so the liquid contained in the bag 11 or the bag 12 is either Can be introduced into the cell separation filter 1 by using gravity, and all of the introduced liquid is discharged from the outlet 9 and stored in the waste liquid bag 23.
  • switching of the liquid flow from the bag 11 or the bag 12 can be performed by the three-way cock 10b.
  • rare cells can be captured by the cell separation material in the cell separation filter 1.
  • the recovered solution is introduced from the bag 24 into the cell separation filter 1 through the outlet 9, and the rare cells are introduced into the cell separation filter 1. It is separated from the cell separation material and collected in the collection bag 20 as a suspension. Further, when the amount of the suspension is large, for example, the collection bag 20 is removed from the cell separation system 13 and centrifuged to settle rare cells, and then the cell separation system 13 is returned to the cell separation system 13 again.
  • the supernatant liquid in the collection bag 20 may be attached and discharged from the means 21 for collecting the liquid collected in the collection bag or the like.
  • the cell collection bag is connected to the inlet and outlet of each solution described above, so that cells can be separated in a sterile and closed system.
  • Each bag is preferably used after being used, and may be shaped like a commonly used blood bag, but may be a flat cartridge type.
  • a bag capable of cell culture, a bag having cryopreservation resistance, and the like may be selected as necessary.
  • the stress applied to the rare cells is very low as compared with the conventional centrifugation method, and therefore, the rare cells contained in the collected solution can be cultured as they are.
  • the rare cells may be cryopreserved at a cryogenic temperature such as liquid nitrogen or a deep freezer while being put in a cryopreservation tube or the like.
  • a cryoprotectant is added to the collected solution for the purpose of protecting the rare cells from damage caused by freezing.
  • the type of cryoprotectant added is not particularly limited, and dimethyl sulfoxide, dextran, albumin, hydroxyethyl starch, and the like can be used.
  • the cryoprotectant may be used alone or in combination of several kinds.
  • the temperature at the time of storage is not particularly limited, but is preferably ⁇ 196 ° C. to ⁇ 30 ° C., more preferably ⁇ 196 ° C. to ⁇ 50 ° C. in order to prevent a decrease in the activity of rare cells.
  • the temperature is preferably -196 ° C to -80 ° C.
  • the survival rate of rare cells after cryopreservation is preferably 80% or more, and more preferably 85% or more.
  • rare cells collected in the present invention include tumor cells, stem cells, endothelial cells, fetal cells and the like.
  • Examples 1 to 27, Comparative Examples 1 to 4 As shown in FIGS. 1 and 2, a cylindrical container body (2) having an inner diameter of 26 mm is filled with a nonwoven fabric (4) cut into a round shape with a diameter of 26 mm, and the upper and lower openings of the container body (2) are filled.
  • the holding member with nozzle (3) was inserted and screwed with a cap (5) from above to produce a cell separation filter (1).
  • the kind of resin, the manufacturing method of a nonwoven fabric, an average fiber diameter, compression energy WC, air permeability, thickness, density, and air permeability coefficient M are shown in Table 1.
  • Table 1 shows the thickness, packing density, packing rate, and average pore diameter of the whole cell separating material packed in the cell separation filter.
  • rare cells and cells other than rare cells red blood cells, platelets and white blood cells
  • contaminated cells separation examination of rare cells and cells other than rare cells (red blood cells, platelets and white blood cells) (hereinafter referred to as contaminated cells) was performed using the cell separation filter.
  • the rare cells human prostate cancer cell line PC3, human breast cancer cell line MCF-7, human lung cancer cell line A549, and human adipose-derived stem cells (ASC) were used as model cells.
  • the recovery system for rare cells should be an experimental system that does not include contaminated cells, and the removal rate of contaminated cells must include rare cells. The experimental system was not possible.
  • the rare cells were collected from the liquid containing the rare cells by the following procedure.
  • a liquid in which a rare cell was suspended was passed through the inlet of the cell separation filter.
  • Table 2 shows the type and number of rare cells that passed through, the type and volume of the solution in which the cells were suspended, and the flow rate of the cell suspension.
  • the washing solution was passed through the inlet of the cell separation filter.
  • Table 2 shows the type and amount of the cleaning solution, and the flow rate of the cleaning solution.
  • the recovered solution was passed through the outlet of the cell separation filter, and the rare cell-rich fraction was recovered from the inlet of the cell separation filter. Table 2 shows the type and amount of the recovered solution.
  • the number of rare cells in the rare cell-rich fraction obtained in the above step was measured with an automatic cell counting device (GE Healthcare, CYTORECON).
  • the contaminated cells were removed from the liquid containing the contaminated cells by the following procedure.
  • Human peripheral blood was passed through the inlet of the cell separation filter.
  • Table 2 shows the volume and speed of human peripheral blood that has passed through.
  • the washing solution was passed through the inlet of the cell separation filter.
  • Table 2 shows the type and amount of the cleaning solution, and the flow rate of the cleaning solution.
  • the recovered solution was passed through the outlet of the cell separation filter, and the contaminating cells remaining in the filter were recovered from the inlet of the cell separation filter to obtain a contaminated cell fraction. Table 2 shows the type and amount of the recovered solution.
  • the number of blood cells in the peripheral blood before passing through the filter and the number of blood cells in the contaminated cell fraction obtained in the above step are measured with a blood cell counter (Sysmex, K-4500). did.
  • the blood cell represents a red blood cell, a white blood cell, and a platelet.
  • Table 3 shows the collection rate of rare cells and the removal rate of contaminating cells.
  • the rare cell recovery rate was calculated by dividing the number of cells recovered from the cell separation filter by the number of cells passed through the filter.
  • the removal rate of contaminating cells was calculated by subtracting from 1 the value obtained by dividing the number of cells recovered from the cell separation filter by the number of cells passed through the filter (contaminated cell recovery rate).
  • the cell separation filters of Examples 1 to 27 have a high recovery rate of 35% or more compared to Comparative Examples 1 to 4, regardless of the type of rare cells. Yes. From the results of Examples 1 to 17, it can be seen that leukocyte removal rate is 51% or more, red blood cell removal rate is 98% or more, and platelet removal rate is 79% or more, so that contaminated cells can also be removed.
  • the cell separation filters according to Examples 1 to 4, 6 to 23, 26, and 27 in which the packing density of the cell separation material packed in the cell separation filter is 1.0 ⁇ 10 5 g / m 3 or more.
  • the rare cell recovery rate is as high as 43% or more, and the air permeability coefficient M of the cell separation material is 300 or less. It can be seen that the cell separation filter has a higher rare cell recovery rate of 51% or more.
  • Examples 1 to 4, 6, 9, and 11 have a significantly high recovery rate of rare cells of 70% or more, and leukocytes. Removal rate of 90% or more, red blood cell removal rate of 99% or more, and platelet removal rate of 95% or more, which is a cell separation filter with excellent rare cell concentration efficiency.
  • the recovery rate is as high as 68% or more regardless of the type of cancer cell, and thus it is used for examination diagnosis of cancer patients of various cancer types. It is thought that it is a cell separation filter that can.
  • rare cells such as tumor cells and stem cells can be selectively and efficiently recovered by using the cell separation filter filled with the cell separation material of the present invention.

Abstract

The present invention pertains to: a cell separation material comprising fibers having an average fiber diameter of 1.0-50 µm, air permeability of 10-400 cc/cm2/sec, and a compression energy WC of no more than 3.5 J/m2; a cell separation filter characterized by having several layers of the cell separation material laminated and filled into a container having an entry and an exit; and a cell separation method including a step in which fluid including rare cells is caused to pass through the cell separation filter and fractions rich in rare cells are captured in the cell separation material. As a result of the present invention, rare cells can be selectively recovered, at a high recovery rate, from a fluid having mixed therein rare cells such as circulating tumor cells and contaminating cells such as red blood cells, platelets, platelets, and leukocytes.

Description

細胞分離材および細胞分離方法Cell separation material and cell separation method
 本発明は、細胞分離材およびこれを利用した細胞分離方法に関する。さらに詳しくは、本発明は、液体中に存在する希少細胞(腫瘍細胞、幹細胞、内皮細胞、胎児細胞など)と夾雑細胞とを分離し、希少細胞を回収・濃縮するのに適した細胞分離材およびこれを利用した細胞分離方法に関する。 The present invention relates to a cell separation material and a cell separation method using the same. More specifically, the present invention relates to a cell separation material suitable for separating rare cells (tumor cells, stem cells, endothelial cells, fetal cells, etc.) present in a liquid from contaminated cells, and collecting and concentrating the rare cells. And a cell separation method using the same.
 血液中の細胞成分の主成分は、赤血球、白血球、血小板であるが、血液中にこれら以外の細胞が存在することが知られている。例えば、血中循環腫瘍細胞、循環幹細胞、循環内皮細胞など(まとめて以下「希少細胞」ともいう。)は、全血中に極めて稀に存在する細胞である。そして、これら希少細胞の検出は臨床的に有用であると考えられている。 The main components of cell components in blood are red blood cells, white blood cells, and platelets, but it is known that cells other than these exist in blood. For example, circulating tumor cells, circulating stem cells, circulating endothelial cells, etc. (hereinafter collectively referred to as “rare cells”) are cells that are extremely rare in whole blood. And detection of these rare cells is considered to be clinically useful.
 例えば、血中循環腫瘍細胞は、がん患者の血中に低濃度で認められ、転移がんの原因とも考えられている。この腫瘍細胞を早期に発見することができれば、原発性腫瘍の存在や腫瘍の転移、あるいは治療後の腫瘍の再発を早期に発見でき、初期段階から効果的な治療の導入が可能となる。
 しかしながら、血液中には赤血球が約5×109(cells/mL)、白血球が約5×106(cells/mL)、血小板が約3×108(cells/mL)あり、癌患者の白血球数の数十万から数千万に一個の割合でしか存在しないような腫瘍細胞を検出することは極めて難しいのが現状であり、腫瘍細胞を診断に利用することには限界がある。そこで、腫瘍細胞の定量分析を行う前に、夾雑している細胞を除去して、腫瘍細胞を濃縮することにより検出感度や測定精度を向上させる方法が現在開発され用いられている。
For example, circulating tumor cells in the blood are found at low concentrations in the blood of cancer patients and are considered to be the cause of metastatic cancer. If these tumor cells can be detected early, the presence of the primary tumor, tumor metastasis, or recurrence of the tumor after treatment can be detected early, and effective treatment can be introduced from the initial stage.
However, there are about 5 × 10 9 (cells / mL) red blood cells, about 5 × 10 6 (cells / mL) white blood cells, and about 3 × 10 8 (cells / mL) platelets in the blood. Currently, it is extremely difficult to detect tumor cells that exist only in a ratio of hundreds of thousands to tens of millions, and there is a limit to using tumor cells for diagnosis. Therefore, a method for improving detection sensitivity and measurement accuracy by removing contaminated cells and concentrating tumor cells before quantitative analysis of tumor cells is currently being developed and used.
 例えば、現在用いられている血中循環腫瘍細胞を回収・濃縮する方法としては、表面抗原が明らかになっている夾雑細胞の抗原に対する抗体を固定化した磁気ビーズによるネガティブセレクション法や、腫瘍細胞の特定の抗原に対する抗体を固定化した磁気ビーズによるポジティブセレクション法などが挙げられる。また蛍光抗体を用いたセルソーティングなどの細胞選別法もあるが、大量に存在する夾雑細胞と、微量に存在する腫瘍細胞とを選別するには、いずれの方法も大量の抗体や処理時間が必要になり、処理が非常に高コストになるとともに作業効率も悪い。一方で抗体を使用しないで腫瘍細胞を回収・濃縮する方法として、フィコール分離法やパーコール分離法などの密度勾配遠心法がある。本方法は細胞の比重差を利用して分離する方法であるが、比重で分離するために、腫瘍細胞と同じ比重の夾雑細胞とを分離することは不可能である。また、分離後に遠心分離機を使用してフィコール液やパーコール液を洗浄する操作を数回繰り返すために、細胞のロスが発生し、最悪の場合、数が非常に少ない血中循環腫瘍細胞もロスした結果、誤った診断を下す可能性がある。血液の中で最も数が多いのが赤血球であり、この大量の赤血球の混在が腫瘍細胞の検出の大きな阻害要因となっている。赤血球を予め除去する方法として上記以外に、赤血球を溶血処理する方法がある(例えば塩化アンモニウム法や高浸透圧破壊法)。該方法は効率的に赤血球を溶血して除去するものの、他の細胞へのダメージが大きいため、腫瘍細胞を生きたまま分析することや培養することが困難となる。他にも、血液などの体液中に含まれている腫瘍細胞などの希少細胞を回収する技術がいくつか報告されている(特許文献1、2)が、全血サンプルから目的の希少細胞を選択的に分離・回収する技術として十分であるとは言い難い。さらに、上記方法はいずれも、閉鎖系での処理が不可能であり異物の混入や感染などの安全上の課題も有している。 For example, currently used methods for collecting and concentrating circulating tumor cells in the blood include negative selection using magnetic beads with immobilized antibodies against antigens of contaminated cells whose surface antigens have been clarified, tumor cells Examples thereof include a positive selection method using magnetic beads on which an antibody against a specific antigen is immobilized. There are cell sorting methods such as cell sorting using fluorescent antibodies, but both methods require a large amount of antibody and processing time to sort out large amounts of contaminating cells and trace amounts of tumor cells. Therefore, the process becomes very expensive and the work efficiency is poor. On the other hand, as a method for collecting and concentrating tumor cells without using antibodies, there are density gradient centrifugation methods such as Ficoll separation method and Percoll separation method. Although this method is a method of separation utilizing the specific gravity difference of cells, it is impossible to separate tumor cells and contaminated cells having the same specific gravity because they are separated by specific gravity. In addition, since the operation of washing the ficoll solution or percoll solution using a centrifuge after the separation is repeated several times, cell loss occurs, and in the worst case, circulating tumor cells in the blood that are very few are also lost. As a result, an incorrect diagnosis may be made. Red blood cells are the largest number in blood, and this large amount of red blood cells is a major obstacle to detecting tumor cells. In addition to the above-described methods for removing red blood cells in advance, there are methods for hemolyzing red blood cells (for example, the ammonium chloride method and the high osmotic pressure destruction method). Although this method efficiently lyses and removes red blood cells, the damage to other cells is great, making it difficult to analyze and culture tumor cells alive. In addition, several techniques for collecting rare cells such as tumor cells contained in body fluids such as blood have been reported (Patent Documents 1 and 2), but target rare cells are selected from whole blood samples. It is difficult to say that it is sufficient as a separate separation and recovery technology. Furthermore, any of the above methods cannot be processed in a closed system, and has safety problems such as contamination and infection.
 本件出願人も、腫瘍細胞を含む体液を各血球成分に分離する方法として、(a)腫瘍細胞を含む体液を血球分離材と接触させることにより腫瘍細胞と白血球および血小板を血球分離材に捕捉し、赤血球豊富分画を除去する工程、(b)分離溶液を用いて血球分離材から腫瘍細胞濃縮分画を分離する工程、上記(a)と(b)の工程より得られた回収液に含まれる赤血球の除去率/腫瘍細胞の回収率の比で示す値が1.25以下、1.00以上であることを特徴とする細胞分離方法を提案している(特許文献3)。この手法は、血液、骨髄、臍帯血、月経血、腹膜液、胸膜液、リンパ液または組織抽出物をはじめとする体液から簡便かつ迅速に赤血球豊富分画を除去し、腫瘍細胞濃縮分画を回収することを可能としているが、腫瘍細胞を含む分画が白血球および血小板を含む状態で回収されており、腫瘍細胞を選択的に回収する方法ではない。したがって、血中循環腫瘍細胞などの希少細胞をより選択的に回収できる技術が求められていた。 As a method of separating the body fluid containing tumor cells into each blood cell component, the present applicant also (a) capturing the tumor cells, white blood cells and platelets in the blood cell separation material by contacting the body fluid containing tumor cells with the blood cell separation material. , The step of removing the erythrocyte-rich fraction, (b) the step of separating the tumor cell enriched fraction from the blood cell separation material using the separation solution, and the recovered liquid obtained from the steps (a) and (b) above. Proposed is a cell separation method characterized in that the value indicated by the ratio of erythrocyte removal rate / tumor cell recovery rate is 1.25 or less and 1.00 or more (Patent Document 3). This technique simply and quickly removes erythrocyte-rich fractions from body fluids such as blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, or tissue extracts, and collects tumor cell enriched fractions. However, the fraction containing tumor cells is collected in a state containing leukocytes and platelets, and is not a method for selectively collecting tumor cells. Therefore, a technique capable of more selectively collecting rare cells such as circulating tumor cells in the blood has been demanded.
特許第5348357号公報Japanese Patent No. 5348357 特開2014-25918号公報JP 2014-25918 A 特開2013-36818号公報JP 2013-36818 A
 上記のような事情に鑑み、本発明の目的は、血中循環腫瘍細胞などの希少細胞と、赤血球、血小板、白血球などの夾雑細胞とが混合されている液体から、希少細胞を選択的に高い回収率で回収できる細胞分離材を提供することにある。
 また、本発明の他の目的は、前記細胞分離材を用いて、希少細胞を選択的に高い回収率で回収できる細胞分離方法を提供することにある。
In view of the above circumstances, the object of the present invention is to selectively increase rare cells from a liquid in which rare cells such as circulating tumor cells in the blood and contaminating cells such as red blood cells, platelets and white blood cells are mixed. An object of the present invention is to provide a cell separation material that can be recovered at a recovery rate.
Another object of the present invention is to provide a cell separation method capable of selectively collecting rare cells at a high recovery rate using the cell separation material.
 本発明者らは、かかる課題を解決すべく、鋭意検討を進めた。その結果、希少細胞の選択的な回収には、細胞分離材の平均繊維径に加えて、通気度および圧縮エネルギーが影響することを見出した。これらが特定の範囲にある細胞分離材を用いることで、希少細胞の回収率が有意に向上し、しかも赤血球、血小板、白血球などの夾雑細胞の除去率を向上することができることを見出し、本発明を完成するに至った。 The present inventors have intensively studied to solve such problems. As a result, the inventors have found that the selective recovery of rare cells is affected by the air permeability and the compression energy in addition to the average fiber diameter of the cell separation material. By using a cell separation material in which these are in a specific range, it has been found that the recovery rate of rare cells can be significantly improved, and the removal rate of contaminating cells such as red blood cells, platelets and white blood cells can be improved. It came to complete.
 即ち、本発明の要旨は以下の通りである。
〔1〕平均繊維径1.0μm以上、50μm以下の繊維から構成され、且つ通気度が10cc/cm/sec以上、400cc/cm/sec以下および圧縮エネルギーWCが3.5J/m以下である細胞分離材。
〔2〕前記細胞分離材の密度が6.5×10g/m以上、1.5×10g/m以下である前記〔1〕に記載の細胞分離材。
〔3〕前記細胞分離材の通気度(cc/cm/sec)と前記細胞分離材の厚み(mm)との積である通気度係数Mが36以上、300以下である前記〔1〕または〔2〕に記載の細胞分離材。
〔4〕前記細胞分離材の厚みが0.1mm以上、3.5mm以下である前記〔1〕~〔3〕のいずれかに記載の細胞分離材。
〔5〕前記細胞分離材の圧縮エネルギーWCが0.05J/m以上、1.2J/m以下である前記〔1〕~〔4〕のいずれかに記載の細胞分離材。
〔6〕前記細胞分離材が不織布である前記〔1〕~〔5〕のいずれかに記載の細胞分離材。
〔7〕前記不織布がスパンレース不織布、スパンボンド不織布またはメルトブローン不織布である前記〔6〕に記載の細胞分離材。
〔8〕前記細胞分離材を構成する繊維が、ポリエステル、レーヨン、ポリオレフィン、ビニロン、ポリスチレン、アクリル、ナイロンおよびポリウレタンからなる群より選ばれる少なくとも1種の合成高分子からなる前記〔1〕~〔7〕のいずれか1項に記載の細胞分離材。
〔9〕前記細胞分離材を構成する繊維が、ポリエステルおよびポリオレフィン;レーヨンおよびポリオレフィン;ポリエステルおよびレーヨン;またはポリエステル、レーヨンおよびビニロンの合成高分子の組み合わせからなる前記〔8〕に記載の細胞分離材。
〔10〕前記〔1〕~〔9〕のいずれかに記載の細胞分離材が、入口と出口を供えた容器に複数枚積層して充填されていることを特徴とする細胞分離フィルター。
〔11〕前記細胞分離材が、圧縮された状態で充填されている前記〔10〕に記載の細胞分離フィルター。
〔12〕前記細胞分離材の充填率(充填前の細胞分離材全体の厚み/充填後の細胞分離材全体の厚み)が1以上、10以下である前記〔10〕または〔11〕に記載の細胞分離フィルター。
〔13〕前記細胞分離材の充填密度(充填されている細胞分離材全体の重量/充填されている細胞分離材全体の体積)が1.0×10g/m以上、1.0×10g/m以下である前記〔10〕~〔12〕のいずれかに記載の細胞分離フィルター。
〔14〕充填されている前記細胞分離材全体の平均孔径が1μm以上、70μm以下である前記〔10〕~〔13〕のいずれかに記載の細胞分離フィルター。
〔15〕液体が流れる方向に対する、充填されている前記細胞分離材全体の厚みが1mm以上、30mm以下である前記〔10〕~〔14〕のいずれか1項に記載の細胞分離フィルター。
〔16〕希少細胞を含む液体を通液させることにより、希少細胞を捕捉し、且つ赤血球、白血球および血小板を除去するための前記〔10〕~〔15〕のいずれか1項に記載の細胞分離フィルター。
〔17〕前記〔10〕~〔16〕のいずれかに記載の細胞分離フィルターに希少細胞を含む液体を通液させて、前記細胞分離材に希少細胞を豊富に含む分画を捕捉させる工程を含む細胞分離方法。
〔18〕前記液体が血液、骨髄、臍帯血、月経血、腹膜液、胸膜液、リンパ液、尿、唾液または組織抽出物である前記〔17〕に記載の細胞分離方法。
〔19〕前記液体が血液、臍帯血または月経血であり、下記(a)~(c)工程を含有する前記〔17〕または〔18〕に記載の細胞分離方法。
(a)希少細胞を含む液体を前記細胞分離フィルターの入口から通液させる工程
(b)前記(a)工程後に洗浄溶液を前記細胞分離フィルターの入口から通液させる洗浄工程
(c)前記(b)工程後に回収溶液を前記細胞分離フィルターの出口から通液させて、前記細胞分離フィルターの入口から希少細胞豊富分画を回収する希少細胞回収工程
〔20〕前記(a)工程および(b)工程において前記細胞分離フィルターの出口から通過させた細胞分画(通過細胞分画)を、前記細胞分離フィルターの入口から複数回通液し、さらに前記(c)工程を実施することにより、通過細胞分画中に混入した希少細胞を含む分画を再回収する工程を有する前記〔19〕に記載の細胞分離方法。
〔21〕前記(c)工程において回収した希少細胞が培養可能である前記〔19〕または〔20〕に記載の細胞分離方法。
〔22〕前記〔1〕~〔9〕のいずれかに記載の細胞分離材、もしくは前記〔10〕~〔16〕のいずれかに記載の細胞分離フィルター、もしくは前記〔17〕~〔21〕のいずれかに記載の細胞分離方法によって回収した希少細胞豊富分画であって、赤血球および血小板が60%以上除去されており、かつ白血球が50%以上除去されており、かつ希少細胞が培養可能である希少細胞豊富分画。
That is, the gist of the present invention is as follows.
[1] Consisting of fibers having an average fiber diameter of 1.0 μm or more and 50 μm or less, the air permeability is 10 cc / cm 2 / sec or more, 400 cc / cm 2 / sec or less, and the compression energy WC is 3.5 J / m 2 or less. Cell separation material.
[2] The cell separation material according to [1], wherein the density of the cell separation material is 6.5 × 10 4 g / m 3 or more and 1.5 × 10 5 g / m 3 or less.
[3] The air permeability coefficient M, which is a product of the air permeability (cc / cm 2 / sec) of the cell separating material and the thickness (mm) of the cell separating material, is 36 or more and 300 or less [1] or The cell separation material according to [2].
[4] The cell separation material according to any one of [1] to [3], wherein the cell separation material has a thickness of 0.1 mm to 3.5 mm.
[5] The cell separation material according to any one of [1] to [4], wherein the compression energy WC of the cell separation material is 0.05 J / m 2 or more and 1.2 J / m 2 or less.
[6] The cell separation material according to any one of [1] to [5], wherein the cell separation material is a nonwoven fabric.
[7] The cell separation material according to [6], wherein the nonwoven fabric is a spunlace nonwoven fabric, a spunbond nonwoven fabric, or a meltblown nonwoven fabric.
[8] The above [1] to [7], wherein the fiber constituting the cell separation material is composed of at least one synthetic polymer selected from the group consisting of polyester, rayon, polyolefin, vinylon, polystyrene, acrylic, nylon and polyurethane. ] The cell separation material of any one of.
[9] The cell separation material according to [8], wherein the fibers constituting the cell separation material comprise a combination of polyester and polyolefin; rayon and polyolefin; polyester and rayon; or a synthetic polymer of polyester, rayon and vinylon.
[10] A cell separation filter comprising a plurality of the cell separation materials according to any one of [1] to [9] stacked and filled in a container having an inlet and an outlet.
[11] The cell separation filter according to [10], wherein the cell separation material is filled in a compressed state.
[12] The filling rate of the cell separation material (the thickness of the whole cell separation material before filling / the thickness of the whole cell separation material after filling) is 1 or more and 10 or less. Cell separation filter.
[13] The packing density of the cell separation material (weight of the whole cell separation material / volume of the whole cell separation material) is 1.0 × 10 5 g / m 3 or more, 1.0 × The cell separation filter according to any one of [10] to [12], which is 10 6 g / m 3 or less.
[14] The cell separation filter according to any one of [10] to [13], wherein the entire pore size of the cell separation material packed is 1 μm or more and 70 μm or less.
[15] The cell separation filter according to any one of [10] to [14], wherein a thickness of the whole cell separation material packed in a direction in which the liquid flows is 1 mm or more and 30 mm or less.
[16] The cell separation according to any one of the above [10] to [15] for capturing rare cells by passing a liquid containing rare cells and removing red blood cells, white blood cells, and platelets filter.
[17] A step of passing a liquid containing rare cells through the cell separation filter according to any one of [10] to [16], and capturing a fraction containing rare cells in the cell separation material. A cell separation method comprising.
[18] The cell separation method according to [17], wherein the liquid is blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, urine, saliva, or tissue extract.
[19] The cell separation method according to [17] or [18], wherein the liquid is blood, umbilical cord blood or menstrual blood, and includes the following steps (a) to (c).
(A) A step of passing a liquid containing rare cells from the inlet of the cell separation filter (b) A washing step of passing a washing solution from the inlet of the cell separation filter after the step (a) (c) The (b ) Step of collecting rare cell-rich fraction from the inlet of the cell separation filter by passing the recovered solution through the outlet of the cell separation filter after the step [20] Steps (a) and (b) The cell fraction passed through from the outlet of the cell separation filter (passed cell fraction) was passed through the inlet of the cell separation filter a plurality of times, and the step (c) was further performed, The cell separation method according to [19] above, which further comprises a step of recovering a fraction containing rare cells mixed in the fraction.
[21] The cell separation method according to [19] or [20], wherein the rare cells recovered in the step (c) can be cultured.
[22] The cell separation material according to any of [1] to [9], the cell separation filter according to any of [10] to [16], or the above [17] to [21] A rare cell-rich fraction collected by any of the cell separation methods, wherein erythrocytes and platelets are removed by 60% or more, leukocytes are removed by 50% or more, and rare cells can be cultured. A rare cell-rich fraction.
 本発明の細胞分離材を用いることにより、例えば、血液、骨髄、臍帯血、月経血、腹膜液、胸膜液、リンパ液、尿、唾液または組織抽出物をはじめとする体液や、培養液などの液体に含まれる希少細胞を、赤血球、血小板、白血球などの他に混在する細胞から分離して効率よく回収することができる。 By using the cell separation material of the present invention, for example, body fluid such as blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, urine, saliva or tissue extract, and fluid such as culture fluid The rare cells contained in can be separated and efficiently recovered from mixed cells other than erythrocytes, platelets, leukocytes and the like.
 また、本発明で得られる希少細胞豊富分画は、赤血球、血小板、白血球の混入率が低く、使用時まで凍結保存しても溶血などせず、希少細胞への影響は非常に少ない。また、無菌的に回収することが可能であり、かつ細胞回収時の回収液に培養液を使用すれば、そのまま回収した細胞の培養が可能である。また、希少細胞の混入率が極端に少なくこれまで希少細胞が検出されていなかった液体においても、希少細胞を培養で増幅させた後に本発明の細胞分離方法に供することにより、希少細胞を回収することができるため、検出感度を向上させることが可能となる。以上より、本発明の細胞分離材、細胞分離フィルターおよび細胞分離方法は、各種の液体中から希少細胞を選択的に回収する技術として非常に有用であり、検査等に有用な希少細胞豊富分画を得ることができる。 In addition, the rare cell-rich fraction obtained in the present invention has a low contamination rate of red blood cells, platelets and white blood cells, and does not undergo hemolysis even if stored frozen until use, and has very little effect on rare cells. Moreover, it is possible to collect aseptically, and if the culture solution is used as the recovery solution at the time of cell recovery, the recovered cells can be cultured as they are. Further, even in a liquid in which the rare cell contamination rate is extremely small and rare cells have not been detected so far, the rare cells are recovered by amplifying the rare cells by culturing and then using the cell separation method of the present invention. Therefore, detection sensitivity can be improved. As described above, the cell separation material, cell separation filter and cell separation method of the present invention are very useful as a technique for selectively recovering rare cells from various liquids, and are useful for examination and the like. Can be obtained.
本発明の細胞分離材を用いた細胞分離フィルター1の一例を示す概略図である。It is the schematic which shows an example of the cell separation filter 1 using the cell separation material of this invention. 図1に示す細胞分離フィルター1の概略断面図である。It is a schematic sectional drawing of the cell separation filter 1 shown in FIG. 図1に示す細胞分離フィルター1を備えた細胞分離システム13の一例を示す概略図である。It is the schematic which shows an example of the cell separation system 13 provided with the cell separation filter 1 shown in FIG.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(細胞分離材)
 本発明の細胞分離材は、平均繊維径1.0μm以上、50μm以下の繊維から構成され、且つ通気度が10cc/cm/sec以上、400cc/cm/sec以下および圧縮エネルギーWCが3.5J/m以下であることを特徴とする。
(Cell separation material)
The cell separation material of the present invention is composed of fibers having an average fiber diameter of 1.0 μm or more and 50 μm or less, and has an air permeability of 10 cc / cm 2 / sec or more and 400 cc / cm 2 / sec or less and a compression energy WC of 3. 5 J / m 2 or less.
 細胞分離材を構成する繊維は、平均繊維径1.0μm以上、50μm以下であることが好ましい。平均繊維径が1.0μmより細いと目詰まりが起こり易くなり、50μmより太いと希少細胞が細胞分離材へ捕捉されずに通過するため、希少細胞の回収率が大幅に低下する。
 繊維径とは繊維軸に対して直角方向の繊維の幅である。平均繊維径の測定は、例えば、細胞分離材を走査型電子顕微鏡にて写真撮影し、写真に記載されたスケールから求めた繊維径の計算値を平均することにより求めることができる。つまり、本発明における平均繊維径とは、上記のように測定した繊維径の平均値を意味しており、測定した繊維50個以上、望ましくは100個以上の繊維径の平均値である。但し、繊維が多数に重なりあった場合や、他繊維が邪魔をしてその幅が測定できない場合、著しく直径の異なる繊維が混在している場合などは、そのデータは除いて繊維径を算出する。
The fibers constituting the cell separation material preferably have an average fiber diameter of 1.0 μm or more and 50 μm or less. If the average fiber diameter is smaller than 1.0 μm, clogging is likely to occur. If the average fiber diameter is larger than 50 μm, rare cells pass through without being captured by the cell separation material, so that the collection rate of rare cells is greatly reduced.
The fiber diameter is the width of the fiber in the direction perpendicular to the fiber axis. The average fiber diameter can be measured, for example, by taking a photograph of the cell separation material with a scanning electron microscope and averaging the calculated values of the fiber diameter obtained from the scale described in the photograph. That is, the average fiber diameter in the present invention means an average value of the fiber diameters measured as described above, and is an average value of 50 or more, preferably 100 or more fiber diameters measured. However, when there are many overlapping fibers, when other fibers interfere with each other and the width cannot be measured, or when fibers with significantly different diameters are mixed, the fiber diameter is calculated excluding the data. .
 本発明では、前記細胞分離材の平均繊維径を前記範囲に限定することで、希少細胞を効率よく捕捉し、夾雑細胞(赤血球、血小板、白血球等)を効率よく除去することができる。また、前記平均繊維径は、希少細胞と夾雑細胞との分離効率の観点から、好ましくは3μm以上、より好ましくは7μm以上、さらに好ましくは10μm以上である。また、前記平均繊維径は好ましくは40μm以下、より好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下、特に好ましくは15μm以下である。 In the present invention, by limiting the average fiber diameter of the cell separation material to the above range, rare cells can be efficiently captured and contaminated cells (erythrocytes, platelets, leukocytes, etc.) can be efficiently removed. The average fiber diameter is preferably 3 μm or more, more preferably 7 μm or more, and further preferably 10 μm or more, from the viewpoint of separation efficiency between rare cells and contaminating cells. The average fiber diameter is preferably 40 μm or less, more preferably 30 μm or less, more preferably 25 μm or less, still more preferably 20 μm or less, and particularly preferably 15 μm or less.
 前記繊維の材質としては、材料は特に制限されないが、滅菌耐性や細胞への安全性の観点からは、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、レーヨン、ポリオレフィン(ポリエチレン、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレンなど)、ビニロン、ポリスチレン、アクリル(ポリメチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリロニトリル、ポリアクリル酸、ポリアクリレートなど)、ナイロン、ポリウレタン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリイミド、アラミド(芳香族ポリアミド)、ポリアミド、キュプラ、カーボン、フェノール、パルプ、麻、ポリカーボネートなどの合成高分子、アガロース、セルロース、セルロースアセテート、キトサン、キチンなどの天然高分子、ガラスなどの無機材料や金属等が挙げられる。
 中でも、細胞分離効率の観点から、ポリエステル、レーヨン、ポリオレフィン、ビニロン、ポリスチレン、アクリル、ナイロンおよびポリウレタンが好ましい。また、これらの材料は一種類単独とは限らず、必要に応じて材料を複合・混合・融合して用いてもよい。2種以上の材料を組み合わせる場合、その組み合わせは特に限定されないが、ポリエステルおよびポリオレフィン;レーヨンおよびポリオレフィン;ポリエステルおよびレーヨン;またはポリエステル、レーヨンおよびビニロンからなる合成高分子の組み合わせ等が好ましく挙げられる。さらに必要ならば、蛋白質、ペプチド、アミノ酸、糖類など、特定の細胞に親和性を有する分子を材料に固定してもよい。
The material of the fiber is not particularly limited, but from the viewpoint of sterilization resistance and cell safety, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), rayon, polyolefin (polyethylene, high density polyethylene, low density) Polyethylene, polypropylene, etc.), vinylon, polystyrene, acrylic (polymethyl methacrylate, polyhydroxyethyl methacrylate, polyacrylonitrile, polyacrylic acid, polyacrylate, etc.), nylon, polyurethane, polyvinyl alcohol, polyvinylidene chloride, polyimide, aramid (aromatic) Polyamide), polyamide, cupra, carbon, phenol, pulp, hemp, polycarbonate, synthetic polymers, agarose, cellulose, cellulose acetate Chitosan, natural polymers such as chitin, an inorganic material, metal or the like such as glass.
Among these, polyester, rayon, polyolefin, vinylon, polystyrene, acrylic, nylon, and polyurethane are preferable from the viewpoint of cell separation efficiency. In addition, these materials are not limited to a single type, and may be combined, mixed, and fused as necessary. When two or more kinds of materials are combined, the combination is not particularly limited, but a combination of polyester and polyolefin; rayon and polyolefin; polyester and rayon; or a synthetic polymer composed of polyester, rayon and vinylon is preferable. Further, if necessary, molecules having affinity for specific cells such as proteins, peptides, amino acids, and sugars may be fixed to the material.
 前記繊維からなる細胞分離材の形状としては、不織布、織布、スポンジ状、多孔体、メッシュ状等が挙げられるが、容易に作製でき入手できることから不織布が好ましい。 Examples of the shape of the cell separation material composed of the fibers include a nonwoven fabric, a woven fabric, a sponge shape, a porous body, a mesh shape, and the like, but a nonwoven fabric is preferable because it can be easily produced and obtained.
 不織布の製造方法としては、大きく分けて湿式法と乾式法、さらには、レジンボンド法、サーマルボンド法、スパンレース法、ニードルパンチ法、ステッチボンド法、スパンボンド法、メルトブローン法などが挙げられる。
 中でも、希少細胞を捕捉しやすい観点から、スパンレース法、スパンボンド法またはメルトブローン法で製造された不織布であるスパンレース不織布、スパンポンド不織布またはメルトブローン不織布が好ましい。
 また、前記不織布は、カレンダー加工やプラズマ処理等による加工を施していてもよい。
 繊維が複雑に絡み合って血球分離効率が良いことから、前記不織布の繊維としては、複合単糸を複数に分割した、いわゆる分割繊維も適している。
Nonwoven fabric production methods can be broadly classified into wet methods and dry methods, and further include resin bond methods, thermal bond methods, spun lace methods, needle punch methods, stitch bond methods, spun bond methods, and melt blown methods.
Among these, from the viewpoint of easily capturing rare cells, a spunlace nonwoven fabric, a spunpond nonwoven fabric, or a meltblown nonwoven fabric, which is a nonwoven fabric manufactured by a spunlace method, a spunbond method, or a meltblown method is preferable.
The non-woven fabric may be subjected to processing such as calendar processing or plasma processing.
Since the fibers are intertwined in a complicated manner and blood cell separation efficiency is good, so-called divided fibers obtained by dividing a composite single yarn into a plurality of fibers are also suitable as the nonwoven fabric fibers.
 前記細胞分離材は、さらに通気度が10cc/cm/sec以上、400cc/cm/sec以下である。通気度を前記範囲に限定することで、希少細胞が選択的に細胞分離材に捕捉され、希少細胞と夾雑細胞との分離効率を高めることができる。前記通気度は、希少細胞と夾雑細胞との分離効率の観点から、好ましくは25cc/cm/sec以上、より好ましくは40cc/cm/sec以上、さらに好ましくは45cc/cm/sec以上、とりわけ好ましくは47cc/cm/sec以上である。また、前記通気度は、好ましくは350cc/cm/sec以下、より好ましくは330cc/cm/sec以下、さらに好ましくは300cc/cm/sec以下、とりわけ好ましくは275cc/cm/sec以下である。
 前記通気度は種々の方法で測定可能であるが、例えば、JIS L1096-2010に記載されたフラジール形法に則り、または準拠し、容易に測定することが可能である。
The cell separation material further has an air permeability of 10 cc / cm 2 / sec to 400 cc / cm 2 / sec. By limiting the air permeability to the above range, the rare cells are selectively captured by the cell separation material, and the separation efficiency between the rare cells and the contaminated cells can be increased. The air permeability is preferably 25 cc / cm 2 / sec or more, more preferably 40 cc / cm 2 / sec or more, further preferably 45 cc / cm 2 / sec or more, from the viewpoint of separation efficiency between rare cells and contaminating cells. Particularly preferably, it is 47 cc / cm 2 / sec or more. Further, the air permeability, preferably 350cc / cm 2 / sec or less, more preferably 330cc / cm 2 / sec or less, more preferably 300cc / cm 2 / sec or less, especially preferably below 275cc / cm 2 / sec is there.
The air permeability can be measured by various methods. For example, it can be easily measured in accordance with or in accordance with the Frazier method described in JIS L1096-2010.
 前記細胞分離材は、さらに圧縮エネルギーWCが3.5J/m以下である。平均繊維径及び通気度を前記範囲に限定し、さらに圧縮エネルギーWCを前記範囲に限定することによってはじめて希少細胞の捕捉効率を格段に向上させることができる。前記圧縮エネルギーWCは、希少細胞の捕捉効率をさらに向上させる観点から、好ましくは2.0J/m以下、より好ましくは1.5J/m以下、さらに好ましくは1.2J/m以下、とりわけ好ましくは0.6J/m以下である。また前記圧縮エネルギーWCは、0.05J/m以上であることが好ましく、0.1J/m以上であることがより好ましく、0.2J/m以上であることがさらに好ましい。
 中でも、本発明では、細胞分離フィルターへの充填がしやすい圧縮特性を有し、かつ目的の希少細胞の分離能に優れるという観点から、前記圧縮エネルギーWCは、0.05J/m以上、1.2J/m以下に調整されている細胞分離材が好ましい。
 圧縮エネルギーWCとは、細胞分離材の圧縮特性を表すパラメーターである。細胞分離材に荷重をかけると、細胞分離材は荷重方向に圧縮されて変形するが、その圧縮されやすさは、細胞分離材が受けた荷重による変形量、すなわち荷重×変位=エネルギーとして表すことができることから、圧縮エネルギーWCは細胞分離材の圧縮されやすさを表すパラメーターといえる。圧縮エネルギーWCの数値が大きいほど細胞分離材は圧縮されやすく、前記数値が小さいほど細胞分離材は圧縮されにくい。
 なお、前記圧縮エネルギーWCは、例えば、カトーテック社製KES圧縮試験機(KES-G5)を用いて、圧縮速度20μm/sec、圧縮最大荷重50gf/cmの条件で試料3点を測定し、その平均値として算出することができる。
The cell separation material further has a compression energy WC of 3.5 J / m 2 or less. Only when the average fiber diameter and the air permeability are limited to the above ranges and the compression energy WC is limited to the above ranges, the trapping efficiency of rare cells can be remarkably improved. The compression energy WC is preferably 2.0 J / m 2 or less, more preferably 1.5 J / m 2 or less, further preferably 1.2 J / m 2 or less, from the viewpoint of further improving the capture efficiency of rare cells. Particularly preferred is 0.6 J / m 2 or less. Also, the compression energy WC is preferably at 0.05 J / m 2 or more, more preferably 0.1 J / m 2 or more, further preferably 0.2 J / m 2 or more.
Among them, in the present invention, the compression energy WC is 0.05 J / m 2 or more, from the viewpoint that it has a compression characteristic that can be easily filled into a cell separation filter, and is excellent in the ability to separate target rare cells. A cell separation material adjusted to 2 J / m 2 or less is preferable.
The compression energy WC is a parameter representing the compression characteristics of the cell separation material. When a load is applied to the cell separation material, the cell separation material is compressed and deformed in the load direction. The ease of compression is expressed as the amount of deformation caused by the load received by the cell separation material, that is, load × displacement = energy. Therefore, the compression energy WC can be said to be a parameter representing the ease of compression of the cell separation material. The larger the numerical value of the compression energy WC, the easier the cell separating material is compressed, and the smaller the numerical value, the more difficult the cell separating material is compressed.
The compression energy WC was measured at three points using, for example, a KES compression tester (KES-G5) manufactured by Kato Tech Co. under conditions of a compression rate of 20 μm / sec and a maximum compression load of 50 gf / cm 2 . The average value can be calculated.
 前記細胞分離材の密度、つまり目付(g/m)/厚み(m)は、2.0×10g/m以上、1.5×10g/m以下であればよいが、中でも、希少細胞と夾雑細胞との分離効率から、6.5×10g/m以上、1.5×10g/m以下であることが好ましい。さらに希少細胞を高い回収率で回収するためには、前記密度が7.0×10g/m以上がより好ましく、8.0×10g/m以上がさらに好ましい。また前記細胞分離材の密度は、1.3×10g/m以下であることが好ましく、1.2×10g/m以下であることがより好ましく、1.1×10g/m以下であることがさらに好ましく、1.0×10g/m以下であることが特に好ましい。 The density of the cell separation material, that is, the basis weight (g / m 2 ) / thickness (m) may be 2.0 × 10 4 g / m 3 or more and 1.5 × 10 5 g / m 3 or less. Among these, from the separation efficiency of rare cells and contaminated cells, it is preferably 6.5 × 10 4 g / m 3 or more and 1.5 × 10 5 g / m 3 or less. Furthermore, in order to collect rare cells at a high recovery rate, the density is more preferably 7.0 × 10 4 g / m 3 or more, and further preferably 8.0 × 10 4 g / m 3 or more. The density of the cell separation material is preferably 1.3 × 10 5 g / m 3 or less, more preferably 1.2 × 10 5 g / m 3 or less, 1.1 × 10 5 more preferably g / m 3 or less, particularly preferably 1.0 × 10 5 g / m 3 or less.
 前記密度は、目付(g/m)/厚み(m)を示すが、これは重量(g)/単位体積(m)と表すこともできる。つまり、密度は細胞分離材の形態に関わらず、単位体積(m)あたりの重量(g)を測定することにより求めることもできる。勿論、用いる材料のカタログ等に目付や厚みが記載されている場合には、そのデータに基づき目付(g/m)/厚み(m)から密度を求めても構わない。
 なお、前記密度を算出する際の細胞分離材の厚みは、非圧縮状態における厚みをいう。前記非圧縮状態での厚みの測定方法としては、例えば、KES圧縮試験機(カトーテック、KES-G5)を使用して細胞分離材に圧力を加え、取得した圧縮曲線における低荷重での厚みを非圧縮状態での厚みとすることができる。
 また、前記目付については、例えば、1m四方の細胞分離材の重量を天秤で測定することにより算出できる。
The density indicates basis weight (g / m 2 ) / thickness (m), which can also be expressed as weight (g) / unit volume (m 3 ). That is, the density can also be obtained by measuring the weight (g) per unit volume (m 3 ) regardless of the form of the cell separation material. Of course, when the basis weight or thickness is described in the catalog of the material to be used, the density may be obtained from the basis weight (g / m 2 ) / thickness (m) based on the data.
In addition, the thickness of the cell separation material at the time of calculating the density refers to the thickness in an uncompressed state. As a method for measuring the thickness in the uncompressed state, for example, pressure is applied to the cell separation material using a KES compression tester (Kato Tech, KES-G5), and the thickness at a low load in the obtained compression curve is measured. It can be the thickness in an uncompressed state.
The basis weight can be calculated, for example, by measuring the weight of a 1 m square cell separator with a balance.
 また、前記細胞分離材の前記非圧縮状態における1枚の厚みは0.1mm以上、3.5mm以下であることが好ましい。前記厚みは、希少細胞と夾雑細胞との分離効率の観点から、好ましくは0.2mm以上、より好ましくは0.3mm以上であり、さらに希少細胞を細胞分離材に効率よく捕捉させるためには、より好ましくは2.5mm以下、さらに好ましくは2.0mm以下、とりわけ好ましくは1.2mm以下である。 Moreover, it is preferable that the thickness of one sheet of the cell separation material in the uncompressed state is 0.1 mm or more and 3.5 mm or less. The thickness is preferably 0.2 mm or more, more preferably 0.3 mm or more, from the viewpoint of separation efficiency between rare cells and contaminating cells. Further, in order to efficiently capture rare cells in the cell separation material, More preferably, it is 2.5 mm or less, More preferably, it is 2.0 mm or less, Especially preferably, it is 1.2 mm or less.
 また、前記細胞分離材の通気度(cc/cm/sec)と前記細胞分離材の厚み(mm)との積である通気度係数Mは36以上、300以下の範囲に限定されていることが好ましい。通気度係数Mが36より小さい場合、赤血球、白血球等の夾雑細胞の除去効率が低下する傾向があり、通気度係数Mが300より大きい場合、希少細胞を細胞分離材に捕捉させる効率が低下する傾向がある。さらに、希少細胞と夾雑細胞との分離効率を向上させる観点から、通気度係数Mは、37以上が好ましく、72以上がより好ましく、80以上がさらに好ましい。また、前記細胞分離材の通気度係数Mは、250以下が好ましく、200以下がより好ましく、150以下がさらに好ましい。
 前記通気度係数Mは、細胞分離材の通気度(cc/cm/sec)と厚み(mm)の積で定義される値である。通気度は細胞分離材の孔径の大きさに依存するパラメーターであるが、同じ通気度であっても細胞分離材の厚みが小さいほど本質的な通気度はより小さく、同じ厚み相当に換算すると通気度は小さくなる。そこで通気度と厚みを掛け合わせることにより、細胞分離材の本質的な孔径を表すパラメーターとなる。
The air permeability coefficient M, which is the product of the air permeability (cc / cm 2 / sec) of the cell separator and the thickness (mm) of the cell separator, is limited to a range of 36 to 300. Is preferred. When the air permeability coefficient M is smaller than 36, the removal efficiency of contaminating cells such as red blood cells and white blood cells tends to be reduced. When the air permeability coefficient M is larger than 300, the efficiency of capturing rare cells in the cell separation material is reduced. Tend. Furthermore, from the viewpoint of improving the separation efficiency between rare cells and contaminating cells, the air permeability coefficient M is preferably 37 or more, more preferably 72 or more, and further preferably 80 or more. Further, the air permeability coefficient M of the cell separation material is preferably 250 or less, more preferably 200 or less, and even more preferably 150 or less.
The air permeability coefficient M is a value defined by the product of the air permeability (cc / cm 2 / sec) and the thickness (mm) of the cell separation material. The air permeability is a parameter that depends on the size of the pore size of the cell separation material, but even if the air permeability is the same, the smaller the cell separation material, the smaller the essential air permeability. The degree becomes smaller. Therefore, by multiplying the air permeability and the thickness, it becomes a parameter representing the essential pore diameter of the cell separation material.
(細胞分離フィルター)
 本発明の細胞分離フィルターは、前記細胞分離材が、入口と出口を供えた容器に複数枚積層して充填されていることを特徴とする。
(Cell separation filter)
The cell separation filter of the present invention is characterized in that a plurality of the cell separation materials are stacked and filled in a container having an inlet and an outlet.
 前記細胞分離材を充填する容器の形態、大きさ、材質は特に限定されない。容器の形態は、球、コンテナ、カセット、バッグ、チューブ、カラム等、任意の形態であってよい。好ましい具体例としては、例えば、容量約0.1mLから400mL程度、直径約0.1cmから15cm程度の半透明の筒状容器が挙げられる。また、一片の長さ0.1cmから20cm程度の長方形または正方形で、厚みが0.1cmから5cm程度の四角柱容器等が挙げられるが、これらに限定されるものではない。 The form, size, and material of the container filled with the cell separation material are not particularly limited. The form of the container may be any form such as a sphere, a container, a cassette, a bag, a tube, or a column. Preferable specific examples include, for example, a translucent cylindrical container having a capacity of about 0.1 mL to 400 mL and a diameter of about 0.1 cm to 15 cm. In addition, a rectangular column container having a length of about 0.1 cm to 20 cm and a thickness of about 0.1 cm to 5 cm can be used, but the present invention is not limited thereto.
 前記容器の型としては、クロスフロータイプ、カラムタイプ等が挙げられる。クロスフロータイプまたはカラムタイプのどちらでも使用することができ、特に容器のタイプは限定されないが、回収液を均一に導入できるという観点からカラムタイプがより好ましい。 The container type includes a cross flow type and a column type. Either the cross flow type or the column type can be used, and the type of the container is not particularly limited, but the column type is more preferable from the viewpoint that the recovered liquid can be introduced uniformly.
 カラムタイプとは、例えばフィルター面に対して面の中心付近に液の入口と出口が付いている容器、またはフィルター面に対して垂直に入口部と出口部が位置している容器、またはフィルター面に対して垂直方向に液が流れることを特徴とする容器、または分離材の圧縮方向に対して平行に液が流れることを特徴とするような容器のことをいう。 The column type means, for example, a container having a liquid inlet and outlet near the center of the surface with respect to the filter surface, or a container in which the inlet and outlet portions are positioned perpendicular to the filter surface, or the filter surface. The container is characterized in that the liquid flows in a direction perpendicular to the above, or the container characterized in that the liquid flows in parallel to the compression direction of the separating material.
 一方、クロスフロータイプとは、白血球除去フィルター(旭化成メディカル株式会社製「セパセル」、ポール社製「ピュアセルRC」)に代表されるように、フィルター面に対して液の入口と出口の位置が面の中心から外れており、フィルター面に対して平行に入口部と出口部が位置している容器を指す。 On the other hand, as represented by the leukocyte removal filter (“Sepacel” manufactured by Asahi Kasei Medical Co., Ltd., “Pure Cell RC” manufactured by Paul Co., Ltd.) This refers to a container in which an inlet and an outlet are located parallel to the filter surface.
 前記容器は、任意の構造材料を使用して作製することができる。構造材料としては具体的には、非反応性ポリマー、生物親和性金属、合金、ガラス等が挙げられる。非反応性ポリマーとしては、アクリロニトリルブタジエンスチレンターポリマー等のアクリロニトリルポリマー;ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレンとヘキサフルオロプロピレンのコポリマー、ポリ塩化ビニル等のハロゲン化ポリマー;ポリアミド、ポリイミド、ポリスルホン、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリビニルクロリドアクリルコポリマー、ポリカーボネートアクリロニトリルブタジエンスチレン、ポリスチレン、ポリメチルペンテン等が挙げられる。前記容器の材料として有用な金属材料(生物親和性金属、合金)については、ステンレス鋼、チタン、白金、タンタル、金、およびそれらの合金、並びに金メッキ合金鉄、白金メッキ合金鉄、コバルトクロミウム合金、窒化チタン被覆ステンレス鋼等が挙げられる。
 これらの構造材料のうち、滅菌耐性を有する構造材料が好ましく、具体的にはポリプロピレン、ポリ塩化ビニル、ポリエチレン、ポリイミド、ポリカーボネート、ポリスルホン、ポリメチルペンテン等が挙げられる。
The container can be made using any structural material. Specific examples of the structural material include non-reactive polymers, biocompatible metals, alloys, and glass. Non-reactive polymers include acrylonitrile polymers such as acrylonitrile butadiene styrene terpolymers; polytetrafluoroethylene, polychlorotrifluoroethylene, copolymers of tetrafluoroethylene and hexafluoropropylene, halogenated polymers such as polyvinyl chloride; polyamides and polyimides , Polysulfone, polycarbonate, polyethylene, polypropylene, polyvinyl chloride acrylic copolymer, polycarbonate acrylonitrile butadiene styrene, polystyrene, polymethylpentene and the like. As for the metal material (biocompatible metal, alloy) useful as the material of the container, stainless steel, titanium, platinum, tantalum, gold, and alloys thereof, as well as gold-plated alloy iron, platinum-plated alloy iron, cobalt-chromium alloy, Examples include titanium nitride-coated stainless steel.
Among these structural materials, structural materials having sterilization resistance are preferable, and specific examples include polypropylene, polyvinyl chloride, polyethylene, polyimide, polycarbonate, polysulfone, and polymethylpentene.
 前記容器に前記細胞分離材を充填した細胞分離フィルターの具体例としては、図1、2に示す構造の細胞分離フィルター1が挙げられる。前記細胞分離フィルター1では、上下に開口部が設けられた円筒状の容器本体2、前記容器本体2の内空部分であって上下の開口部付近に配置するノズル付き押え部材3、前記ノズル付き押え部材3同士の間で充填されている細胞分離材4および前記ノズル付き押え部材3を前記開口部付近に固定することができる蓋5から構成されている。
 前記ノズル付き押え部材3のノズル口6は、前記細胞分離フィルター1へ液体を導入するための入口または出口になる。
 また、前記蓋5は容器本体2にネジ止めできるようにしておいてもよい。
 さらに前記蓋5またはノズル付き押え部材3と容器本体2とが接触する部分には、場所は特定されないが、シール材7を配置することで、前記細胞分離フィルター1内部に導入された液体が漏出することを防ぐようにしてもよい。
Specific examples of the cell separation filter in which the container is filled with the cell separation material include the cell separation filter 1 having the structure shown in FIGS. In the cell separation filter 1, a cylindrical container body 2 provided with openings at the top and bottom, a presser member 3 with a nozzle disposed in the vicinity of the top and bottom openings in the inner space of the container body 2, with the nozzle It is comprised from the lid | cover 5 which can fix the cell separation material 4 filled between the pressing members 3 and the said pressing member 3 with a nozzle near the said opening part.
The nozzle port 6 of the pressing member with nozzle 3 serves as an inlet or an outlet for introducing a liquid into the cell separation filter 1.
The lid 5 may be screwed to the container body 2.
Further, the place where the lid 5 or the presser member 3 with the nozzle contacts the container body 2 is not specified, but the liquid introduced into the cell separation filter 1 leaks out by disposing the sealing material 7. You may make it prevent doing.
 前記容器に前記細胞分離材を充填する際には、必要に応じて細胞分離材を適当な大きさに切断し、希少細胞を含む液体が流れる方向に、複数枚積層した状態で使用することができる。中でも、図2に示すように、充填させる細胞分離材4全体の厚みTは、液体が流れる方向Dに対して1mm以上、30mm以下であることが好ましい。なお、前記方向Dは、細胞分離フィルター1の液体の出入口であるノズル口6同士を結ぶ方向である。前記充填した細胞分離材4全体の厚みTは、夾雑細胞を効率よく除去する観点から、好ましくは25mm以下、より好ましくは20mm以下、さらに好ましくは15mm以下である。また、希少細胞のロスを減らす観点から、3mm以上であることが好ましく、5mm以上であることがより好ましい。
 なお、前記充填した細胞分離材4全体の厚みTは、例えば、前記容器が透明な容器であれば、外部からノギスを用いて目視で測定することができる。また、不透明な容器であっても、容器の各部の構造のうち、細胞分離材4を充填する部分の長さを測定することで算出することができる。
When filling the container with the cell separation material, the cell separation material may be cut into an appropriate size as necessary, and used in a state where a plurality of layers are stacked in the direction in which a liquid containing rare cells flows. it can. In particular, as shown in FIG. 2, the thickness T of the whole cell separation material 4 to be filled is preferably 1 mm or more and 30 mm or less with respect to the direction D in which the liquid flows. The direction D is a direction connecting nozzle ports 6 that are liquid inlets and outlets of the cell separation filter 1. The total thickness T of the filled cell separating material 4 is preferably 25 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less, from the viewpoint of efficiently removing contaminating cells. Further, from the viewpoint of reducing the loss of rare cells, it is preferably 3 mm or more, and more preferably 5 mm or more.
In addition, if the said container is a transparent container, the thickness T of the said filled cell separation material 4 whole can be visually measured using a caliper from the outside, for example. Moreover, even if it is an opaque container, it can be calculated by measuring the length of the part filled with the cell separating material 4 in the structure of each part of the container.
 また、前記容器に前記細胞分離材を充填する方法としては、平板上に積層して充填するだけでなく、ロール状に巻いて充填してもよい。ロール状で使用する場合、該ロールの内側から外側に向けて液体を処理することにより細胞を分離してもよいし、或いはその逆に該ロールの外側から内側に向けて液体を処理してもよい。 In addition, as a method of filling the container with the cell separation material, the container may be packed in a roll shape as well as stacked on a flat plate. When used in the form of a roll, cells may be separated by treating the liquid from the inside to the outside of the roll, or conversely, the liquid may be treated from the outside to the inside of the roll. Good.
 前記細胞分離材を前記容器に充填する際には、液体の流れる方向に圧縮して容器に充填することが好ましいが、細胞分離材の材質等によっては圧縮せずに容器充填してもよい。圧縮の程度は、細胞分離材の材質等に応じて適宜選定することができる。 When filling the cell separating material into the container, it is preferable to compress the cell separating material in the flowing direction of the liquid and fill the container. However, depending on the material of the cell separating material, the container may be filled without being compressed. The degree of compression can be appropriately selected according to the material of the cell separation material.
 前記細胞分離材を前記容器に充填した前記細胞分離フィルターは、材質、形状などが相違した2種以上の細胞分離材を併用して作製してもよい。 The cell separation filter in which the container is filled with the cell separation material may be produced by using two or more types of cell separation materials having different materials and shapes.
 前記細胞分離フィルターにおいて、前記容器に前記細胞分離材を充填する際、細胞分離材の充填率(充填前の細胞分離材全体の厚み/充填後の細胞分離材全体の厚み)を1以上、10以下とすることが好ましい。前記充填率が1より小さい場合には、フィルター内に生じた空隙から希少細胞をロスする可能性があり、前記充填率が10より大きい場合には、フィルターに細胞分離材を充填することが困難となる。さらに、希少細胞の捕捉効率を高めると同時に夾雑細胞の除去効率を高めるために、前記充填率は1.2以上がより好ましく、1.5以上がさらに好ましい。また前記充填率は、9以下がより好ましく、8以下がさらに好ましく、7.7以下がとりわけ好ましい。
 なお、前記容器に充填する前の細胞分離材全体の厚みは、前記非圧縮状態における細胞分離材1枚の厚みの総和から算出し、充填後の細胞分離材全体の厚みは、前記ノギスを用いた方法により測定することができる。
In the cell separation filter, when the container is filled with the cell separation material, the filling rate of the cell separation material (total thickness of the cell separation material before filling / total thickness of the cell separation material after filling) is 1 or more. The following is preferable. When the packing ratio is less than 1, rare cells may be lost from the voids generated in the filter. When the packing ratio is greater than 10, it is difficult to fill the filter with a cell separation material. It becomes. Furthermore, in order to increase the capture efficiency of rare cells and at the same time increase the removal efficiency of contaminating cells, the filling rate is more preferably 1.2 or more, and further preferably 1.5 or more. The filling rate is more preferably 9 or less, further preferably 8 or less, and particularly preferably 7.7 or less.
The thickness of the whole cell separation material before filling the container is calculated from the total thickness of one cell separation material in the uncompressed state, and the thickness of the whole cell separation material after filling is calculated using the calipers. Can be measured by the conventional method.
 本発明の細胞分離フィルターでは、前記容器に充填する細胞分離材の充填密度(充填されている細胞分離材全体の重量/充填されている細胞分離材全体の体積)が1.0×10g/m以上、1.0×10g/m以下であることが好ましい。前記充填密度が1.0×10g/mを下回る場合、希少細胞がフィルターを通過しやすくなるため、希少細胞の回収率は著しく低下する傾向がある。一方、前記充填密度が1.0×10g/mを上回る場合、充填された細胞分離材中に希少細胞が強固に捕捉された状態となり、回収を行うことが困難となる。さらに、希少細胞の回収率を向上させる観点から、前記充填密度は、1.2×10g/m以上が好ましく、1.4×10g/m以上がより好ましい。また前記充填密度は、9.0×10g/m以下であることが好ましく、8.0×10g/m以下であることがより好ましく、7.6×10g/m以下であることがさらに好ましい。
 なお、前記充填されている細胞分離材全体の体積は、例えば、前記充填した細胞分離材全体の厚みと細胞分離材の面積との積で算出すればよい。
In the cell separation filter of the present invention, the packing density of the cell separation material filled in the container (weight of the whole cell separation material / volume of the whole cell separation material) is 1.0 × 10 5 g. / M 3 or more and 1.0 × 10 6 g / m 3 or less is preferable. When the packing density is less than 1.0 × 10 5 g / m 3 , the rare cells are likely to pass through the filter, so the recovery rate of the rare cells tends to be remarkably reduced. On the other hand, when the packing density exceeds 1.0 × 10 6 g / m 3 , rare cells are firmly trapped in the packed cell separation material, making it difficult to recover. Furthermore, from the viewpoint of improving the recovery rate of rare cells, the packing density is preferably 1.2 × 10 5 g / m 3 or more, and more preferably 1.4 × 10 5 g / m 3 or more. The packing density is preferably 9.0 × 10 5 g / m 3 or less, more preferably 8.0 × 10 5 g / m 3 or less, and 7.6 × 10 5 g / m 3. More preferably, it is 3 or less.
In addition, what is necessary is just to calculate the volume of the said filled cell separation material by the product of the thickness of the said whole filled cell separation material, and the area of a cell separation material, for example.
 また、前記細胞分離フィルターに充填されている前記細胞分離材全体の平均孔径は、1μm以上、70μm以下であることが好ましい。前記平均孔径が1μmを下回る場合、希少細胞だけでなく赤血球や白血球等の夾雑細胞もフィルターを通過することができず、夾雑細胞を除去することが困難となる。一方、70μmを上回る場合、夾雑細胞だけでなく希少細胞もフィルターを通過する可能性が高く、希少細胞の回収率が著しく低下すると考えられる。さらに、希少細胞の回収率を向上させる観点から、好ましくは66μm以下、より好ましくは57μm以下、さらに好ましくは43μm以下、とりわけ好ましくは33μm以下である。また、前記細胞分離フィルターの平均孔径は、好ましくは3μm以上、より好ましくは6μm以上、さらに好ましくは9μm以上である。
 なお、前記平均孔径は、例えば、パームポロメータ(Porus Materials社製)等を用いて測定することができる。
Moreover, it is preferable that the average pore diameter of the whole cell separation material filled in the cell separation filter is 1 μm or more and 70 μm or less. When the average pore diameter is less than 1 μm, not only rare cells but also contaminated cells such as erythrocytes and leukocytes cannot pass through the filter, making it difficult to remove the contaminated cells. On the other hand, when it exceeds 70 μm, it is highly possible that not only contaminated cells but also rare cells pass through the filter, and the recovery rate of rare cells is significantly reduced. Furthermore, from the viewpoint of improving the recovery rate of rare cells, it is preferably 66 μm or less, more preferably 57 μm or less, still more preferably 43 μm or less, and particularly preferably 33 μm or less. The average pore diameter of the cell separation filter is preferably 3 μm or more, more preferably 6 μm or more, and further preferably 9 μm or more.
The average pore diameter can be measured using, for example, a palm porometer (manufactured by Porus Materials).
 本発明の細胞分離フィルターは、希少細胞を含む液体を通液させることにより、希少細胞を捕捉し、且つ赤血球、血小板、白血球などの夾雑細胞を除去することができる。
 ここで、希少細胞を捕捉するとは、細胞分離材と接触した液体または細胞分離フィルターに通液した液体に含まれる希少細胞のうち、30%以上、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%以上、とりわけ好ましくは70%以上、特に好ましくは80%以上、もっとも好ましくは90%以上が細胞分離材または細胞分離フィルターに捕捉されることを意味する。
The cell separation filter of the present invention can capture rare cells and remove contaminating cells such as red blood cells, platelets, and white blood cells by passing a liquid containing rare cells.
Here, capturing the rare cells means that 30% or more, preferably 40% or more, more preferably 50% or more of the rare cells contained in the liquid in contact with the cell separation material or the liquid passed through the cell separation filter. More preferably, it means that 60% or more, particularly preferably 70% or more, particularly preferably 80% or more, and most preferably 90% or more is captured by the cell separation material or the cell separation filter.
 また、本発明の細胞分離フィルターが赤血球、血小板および白血球などの夾雑細胞を除去するとは、例えば、細胞分離材および細胞分離フィルターと接触した液体に含まれる赤血球および血小板の60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、とりわけ好ましくは95%以上、特に好ましくは97%以上、もっとも好ましくは99%以上が除去でき、かつ白血球の50%以上、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80以上、とりわけ好ましくは90%以上、とくに好ましくは95%以上、もっとも好ましくは97%以上が除去できることを意味する。 The cell separation filter of the present invention removes contaminating cells such as red blood cells, platelets and white blood cells, for example, 60% or more of red blood cells and platelets contained in the liquid in contact with the cell separation material and the cell separation filter, preferably 70. % Or more, more preferably 80% or more, more preferably 90% or more, particularly preferably 95% or more, particularly preferably 97% or more, most preferably 99% or more, and 50% or more of leukocytes, preferably It means that 60% or more, more preferably 70% or more, still more preferably 80 or more, particularly preferably 90% or more, particularly preferably 95% or more, and most preferably 97% or more can be removed.
 また、本発明の細胞分離フィルターは、充填する細胞分離材の種類や充填方法などを変えることにより、フィルターの性能を自在に制御することが可能である。つまり、希少細胞回収率が特に高いフィルターとして設計することもできるし、夾雑細胞除去率が特に高いフィルターとして設計することもできる。 Further, the cell separation filter of the present invention can freely control the performance of the filter by changing the type of cell separation material to be filled, the filling method, and the like. That is, it can be designed as a filter having a particularly high rare cell recovery rate, or can be designed as a filter having a particularly high contamination cell removal rate.
(細胞分離方法)
 本発明は、前記細胞分離フィルターに希少細胞を含む液体を通液させて、前記細胞分離材に希少細胞を豊富に含む分画(希少細胞豊富分画)を捕捉させる工程を含む細胞分離方法に関する。
(Cell separation method)
The present invention relates to a cell separation method including a step of allowing a liquid containing rare cells to flow through the cell separation filter and capturing a fraction (rare cell rich fraction) rich in rare cells in the cell separation material. .
 具体的には、細胞分離材が充填された容器に希少細胞を含む液体を入口側より注入し、希少細胞を豊富に含む分画を前記細胞分離材に捕捉させる。 Specifically, a liquid containing rare cells is injected into the container filled with the cell separation material from the inlet side, and a fraction rich in rare cells is captured by the cell separation material.
 前記入口と出口を有する容器に、液体を流す際は、液体の入口を液体の出口よりも高くなるようにセットし、重力と同方向に液体を流してもよいが、液体の入口を液体の出口よりも低くなるようにセットし、重力と逆方向に液体を流してもよい。重力と逆方向に液体を流すことにより、液体が容器内に均一に流れるとともに気泡が抜けやすくなることから、分離効率をさらに向上させることができる。他にも、液体を流す方向は重力と垂直方向であってもよく、液体を流す方向は上記に限定されない。 When flowing a liquid into the container having the inlet and the outlet, the liquid inlet may be set to be higher than the liquid outlet and the liquid may flow in the same direction as gravity. It may be set so that it is lower than the outlet, and the liquid may flow in the direction opposite to gravity. By flowing the liquid in the direction opposite to the gravity, the liquid flows uniformly into the container and the bubbles are easily removed, so that the separation efficiency can be further improved. In addition, the direction in which the liquid flows may be perpendicular to gravity, and the direction in which the liquid flows is not limited to the above.
 本発明の細胞分離方法に用いられる希少細胞を含む液体としては、希少細胞を含む懸濁液であれば特に限定されないが、血液、骨髄、臍帯血、月経血、腹膜液、胸膜液、リンパ液、尿、唾液または組織抽出物などが挙げられる。
 また、希少細胞を生体外で培養した培養液や、生理食塩水などの液体に懸濁させた懸濁液であってもよい。
The liquid containing rare cells used in the cell separation method of the present invention is not particularly limited as long as it is a suspension containing rare cells, but blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, Examples include urine, saliva or tissue extract.
Alternatively, it may be a culture solution obtained by culturing rare cells in vitro or a suspension obtained by suspending in a liquid such as physiological saline.
 また、前記の希少細胞を含む液体の通液後に、必要に応じて、入口側から洗浄溶液を通液することで希少細胞以外の成分を前記細胞分離フィルターから除去してもよい。
 使用できる洗浄溶液としては、希少細胞を損傷したりしなければ特に限定はないが、生理食塩水、リンゲル液、細胞培養に用いる培地、リン酸緩衝液等の一般的な緩衝液が好ましい。
In addition, after passing the liquid containing the rare cells, components other than the rare cells may be removed from the cell separation filter by passing a washing solution from the inlet side as necessary.
The washing solution that can be used is not particularly limited as long as it does not damage rare cells, but general buffer solutions such as physiological saline, Ringer's solution, medium used for cell culture, and phosphate buffer are preferable.
 次いで、前記容器の出口方向から、すなわち、希少細胞を含む液体や洗浄溶液の通液方向とは逆方向から、回収溶液を流すことにより、細胞分離材に捕捉された希少細胞を豊富に含む分画を回収することができる。 Next, by flowing the recovery solution from the outlet direction of the container, that is, from the direction opposite to the direction in which the liquid containing the rare cells or the washing solution is passed, the fraction containing the rare cells captured in the cell separation material is abundant. The image can be collected.
 前記回収溶液としては、等張液であれば特に限定されないが、生理食塩水、リンゲル液、デキストラン糖注、ヒドロキシエチルスターチなどの注射用剤として使用実績があるものや、緩衝液、細胞培養用培地等が挙げられる。 The recovered solution is not particularly limited as long as it is an isotonic solution, but has been used as an injectable agent such as physiological saline, Ringer's solution, dextran sugar injection, hydroxyethyl starch, buffer solution, cell culture medium Etc.
 また捕捉された希少細胞の回収率を上げるために回収溶液の粘度を上げてもよい。そのために前記回収溶液にアルブミン、フィブリノゲン、グロブリン、デキストラン、ヒドロキシエチルスターチ、ヒドロキシエチルセルロース、コラーゲン、ヒアルロン酸、ゼラチン等を添加できるが、添加物はこれらに限定されるものではない。回収溶液の粘度は特に限定されないが、粘度が高すぎると回収操作を行いにくくなる傾向があることから、20mPa・s以下がより好ましい。カラムタイプの容器であれば低粘度の回収溶液を使用しても回収性能は低下しないことから10mPa・s以下でも使用することができる。更には5mPa・s以下の回収溶液でも使用することが可能である。 Also, the viscosity of the recovered solution may be increased in order to increase the recovery rate of the trapped rare cells. For this purpose, albumin, fibrinogen, globulin, dextran, hydroxyethyl starch, hydroxyethyl cellulose, collagen, hyaluronic acid, gelatin and the like can be added to the recovered solution, but the additives are not limited thereto. The viscosity of the recovered solution is not particularly limited. However, if the viscosity is too high, the recovery operation tends to be difficult, and therefore 20 mPa · s or less is more preferable. If it is a column type container, even if a low-viscosity recovery solution is used, the recovery performance does not deteriorate, so it can be used even at 10 mPa · s or less. Furthermore, it is possible to use even a recovered solution of 5 mPa · s or less.
 また、前記のように希少細胞を豊富に含む分画を細胞分離材に捕捉させる工程の前処理として、生理食塩水、緩衝液などの前処理溶液に細胞分離材を浸漬させる工程を実施してもよい。この操作は必ずしも必要ではないが、細胞分離材を前記前処理溶液へ浸漬させることで、希少細胞を含む液体を細胞分離材全体に均一に通液させることができ、分離効率の向上が期待される。この前処理溶液は、前記洗浄溶液と同一である必要はないが、同一であれば処理の際に前記細胞分離フィルターに接続する溶液バッグ等を共有できるため、回路システムの単純化と操作性の観点から同一であることが好ましい。前処理の液量としては、フィルター容量の1倍から100倍程度が実用的であり好ましい。使用できる緩衝液としては、特に限定されないが、生理食塩水、リンゲル液、細胞培養に用いる培地、リン酸緩衝液等の一般的な緩衝液が好ましい。 In addition, as a pretreatment for the step of capturing the fraction rich in rare cells in the cell separation material as described above, a step of immersing the cell separation material in a pretreatment solution such as physiological saline or a buffer solution is performed. Also good. This operation is not necessarily required, but by immersing the cell separation material in the pretreatment solution, a liquid containing rare cells can be uniformly passed through the entire cell separation material, and an improvement in separation efficiency is expected. The This pretreatment solution need not be the same as the washing solution, but if it is the same, the solution bag connected to the cell separation filter can be shared during the treatment, which simplifies the circuit system and improves operability. It is preferable that it is the same from a viewpoint. The amount of the pretreatment liquid is practically and preferably about 1 to 100 times the filter capacity. The buffer that can be used is not particularly limited, but general buffers such as physiological saline, Ringer's solution, a medium used for cell culture, and phosphate buffer are preferable.
 また、希少細胞以外に、赤血球、血小板、白血球などの夾雑細胞を含む液体、例えば、血液、臍帯血または月経血を用いた場合には、下記(a)~(c)工程を行うことで、希少細胞をより高い効率で回収し、夾雑細胞をより高い効率で除去することができる。
(a)希少細胞を含む液体を前記細胞分離フィルターの入口から通液させる工程
(b)前記(a)工程後に洗浄溶液を前記細胞分離フィルターの入口から通液させる洗浄工程
(c)前記(b)工程後に回収溶液を前記細胞分離フィルターの出口から通液させて、前記細胞分離フィルターの入口から希少細胞豊富分画を回収する希少細胞回収工程
In addition to rare cells, when using a liquid containing contaminating cells such as red blood cells, platelets, white blood cells, for example, blood, umbilical cord blood or menstrual blood, the following steps (a) to (c) are carried out, Rare cells can be recovered with higher efficiency and contaminated cells can be removed with higher efficiency.
(A) A step of passing a liquid containing rare cells from the inlet of the cell separation filter (b) A washing step of passing a washing solution from the inlet of the cell separation filter after the step (a) (c) The (b ) After the step, a rare cell-recovering step in which a recovery solution is passed through the outlet of the cell separation filter and a rare cell-rich fraction is recovered from the inlet of the cell separation filter.
 前記(a)工程では、希少細胞を含む液体を前記細胞分離フィルターに通液し、前記細胞分離材に捕捉されずに通過した赤血球を豊富に含む分画を前記細胞分離フィルターから除去することができる。本工程では、細胞分離材を充填した容器の液体入口側より液体を通液する際には、液体を入れた容器から送液回路を通じて自然落下で送液してもよいし、ポンプを用いて送液してもよい。また、希少細胞を含む液体を入れたシリンジを直接容器に接続し、シリンジのプランジャーを手で押してもよい。ポンプにより通液する場合には、送液速度が速過ぎると分離効率が落ち、遅過ぎると処理時間がかかる傾向がある。送液速度としては、例えば0.1mL/minから100mL/minの速度が挙げられるが、これに限定されるものではない。 In the step (a), a liquid containing rare cells is passed through the cell separation filter, and a fraction rich in erythrocytes that have passed without being captured by the cell separation material is removed from the cell separation filter. it can. In this step, when the liquid is passed from the liquid inlet side of the container filled with the cell separation material, the liquid may be naturally dropped from the container in which the liquid is placed through the liquid feeding circuit, or by using a pump. You may send liquid. Alternatively, a syringe containing a liquid containing rare cells may be directly connected to the container and the plunger of the syringe may be pushed by hand. When the liquid is passed by the pump, the separation efficiency tends to decrease if the liquid feeding speed is too fast, and the processing time tends to be longer if it is too slow. Examples of the liquid feeding speed include a speed of 0.1 mL / min to 100 mL / min, but are not limited thereto.
 前記(b)工程では、洗浄溶液をフィルターに通液することで、白血球、血小板を豊富に含む分画をフィルターから通過させて除去することができる。洗浄溶液は、前記と同じものを使用すればよい。
 洗浄溶液を通液する際には、自然落下で送液しても、ポンプにより送液してもよい。ポンプにより送液する場合の流速は、希少細胞を含む液体を送液する場合と同程度であり、0.1~100mL/minの速度が挙げられるが、これに限定されるものではない。洗浄溶液の量は、使用する容器の容量によって異なるが、洗浄溶液の量が少なすぎるとフィルターに残存する白血球や血小板の量が多くなり、洗浄溶液の量が多すぎると希少細胞がフィルターから通過する可能性が高くなるとともに、工程に多大な時間を要することから、フィルター容量の0.5倍から100倍程度の液量で洗浄することが好ましい。
In the step (b), by passing the washing solution through the filter, a fraction rich in white blood cells and platelets can be passed through the filter and removed. The same cleaning solution as described above may be used.
When passing the cleaning solution, it may be sent by natural fall or by a pump. The flow rate when the liquid is sent by a pump is similar to that when a liquid containing rare cells is sent, and the speed is 0.1 to 100 mL / min, but is not limited thereto. The amount of the washing solution varies depending on the volume of the container used. However, if the amount of the washing solution is too small, the amount of white blood cells and platelets remaining on the filter will increase. If the amount of the washing solution is too large, rare cells will pass through the filter. It is preferable to perform cleaning with a liquid amount of about 0.5 to 100 times the filter capacity.
 また、本発明では、前記(a)工程および(b)工程において前記細胞分離フィルターの出口から通過させた細胞分画(通過細胞分画)を、前記細胞分離フィルターの入口から複数回通液し、さらに前記(c)工程を実施することにより、通過細胞分画中に混入した希少細胞を含む分画を再回収する工程を有する。 In the present invention, the cell fraction passed through the outlet of the cell separation filter in the steps (a) and (b) (passed cell fraction) is passed through the inlet of the cell separation filter a plurality of times. In addition, the method further includes the step of re-collecting a fraction containing rare cells mixed in the passing cell fraction by performing the step (c).
 前記(c)工程では、細胞分離材に捕捉されている希少細胞を細胞分離材から分離して回収する。具体的には、細胞分離材を充填したフィルターに対して、(a)工程および(b)工程における出口側から回収溶液を注入し、(a)工程および(b)工程における入口側から希少細胞を回収する。すなわち、(c)工程における通液方向は、(a)工程および(b)工程とは逆方向となる。回収溶液を注入する際には、回収溶液を予めシリンジ等に入れておき、シリンジのプランジャーを手や機器を用いて押し出すことにより実行できる。回収溶液の量や流速は、使用する容器の容量や処理量により異なるが、フィルター容量の1倍から100倍程度の液量で、流速0.5~20mL/secに調整することが好ましいが、これに限定されるものではない。 In the step (c), rare cells captured by the cell separation material are separated from the cell separation material and collected. Specifically, the collected solution is injected from the outlet side in the steps (a) and (b) into the filter filled with the cell separation material, and the rare cells are injected from the inlet side in the steps (a) and (b). Recover. That is, the liquid passing direction in the step (c) is opposite to the steps (a) and (b). When injecting the recovery solution, the recovery solution can be put in a syringe or the like in advance, and the plunger of the syringe can be pushed out by hand or equipment. Although the amount and flow rate of the recovered solution vary depending on the volume and throughput of the container used, it is preferable to adjust the flow rate to 0.5 to 20 mL / sec with a liquid amount of about 1 to 100 times the filter volume. It is not limited to this.
 本発明の細胞分離方法では、希少細胞回収率が特に高い方法を選択することもできるし、夾雑細胞除去率が特に高い方法を選択することもできる。例えば、前記(a)工程における通液速度や、前記(b)工程における洗浄液量および通液速度、さらに前記(c)工程における回収液量や通液速度をコントロールすることで、上記細胞分離効率をコントロールすることが可能である。 In the cell separation method of the present invention, a method with a particularly high rare cell recovery rate can be selected, or a method with a particularly high contamination cell removal rate can be selected. For example, the cell separation efficiency is controlled by controlling the flow rate in the step (a), the amount and flow rate of the washing solution in the step (b), and the amount and flow rate of the recovered liquid in the step (c). Can be controlled.
 また、本発明の細胞分離方法として、前記細胞分離フィルターを使用した細胞分離システムを構成してもよい。細胞分離システムは、細胞分離フィルターの他に、希少細胞を含む液体や洗浄溶液及び回収溶液の入口や出口、希少細胞を含む液体を収容するバッグ、フィルターを通過した夾雑細胞を含む液体を収容する廃液バッグ、フィルターから回収した希少細胞を収容するバッグ等を同時に備えていることが実用的であり好ましい。この場合、細胞分離フィルターは、希少細胞を含む液体が流入する入口と流出する出口を有しており、さらに赤血球などの夾雑細胞を除去するために用いる洗浄溶液の流入部および流出部を有し、尚且つ、上記流出部とは独立して、回収溶液を導入するための入口も備えていることが好ましい。フィルターに接続する洗浄溶液や回収溶液の入口は、それぞれ夾雑細胞洗浄後や希少細胞回収後の液体の出口として機能してもよく、さらに三方活栓等を介して各バッグやシリンジ等が接続されていてもよい。 Further, as the cell separation method of the present invention, a cell separation system using the cell separation filter may be configured. In addition to the cell separation filter, the cell separation system contains the inlet and outlet of the liquid containing the rare cells, the washing solution and the recovery solution, the bag containing the liquid containing the rare cells, and the liquid containing the contaminated cells that have passed through the filter. It is practical and preferable to simultaneously provide a waste liquid bag, a bag for storing rare cells collected from the filter, and the like. In this case, the cell separation filter has an inlet through which a liquid containing rare cells flows in and an outlet through which it flows, and further has an inflow section and an outflow section for a cleaning solution used to remove contaminating cells such as red blood cells. Moreover, it is preferable that an inlet for introducing the recovered solution is also provided independently of the outflow part. The inlet of the cleaning solution and recovery solution connected to the filter may function as an outlet for liquid after washing with contaminated cells or after collecting rare cells, and each bag or syringe is connected via a three-way stopcock. May be.
 例えば、図3に示すような細胞分離システム13を用いることができる。前記細胞分離システム13において、細胞分離フィルター1は、その液体の入口8が鉛直方向下側、液体の出口9が鉛直方向上側になるようにセットされているため、前記入口8から導入された液体は、前記細胞フィルター1内を鉛直方向上側の出口9から排出される。
 前記細胞分離フィルター1の入口8には、三方活栓10aを介して、希少細胞を含有する液体を収容しているバッグ11および洗浄溶液を収容しているバッグ12(図中、右側)と、細胞分離フィルター1から回収した液体を収容するバッグ(回収バッグ)20及び回収バッグ等に回収された液体を回収する手段21(図中、下側)とがチューブで接続されている。
 前記三方活栓10aの下側には、三方活栓10cを介して、回収バッグ20及び回収バッグ等に回収された液体を回収する手段21がチューブで接続されている。
 また、前記細胞分離フィルター1の出口9には、三方活栓10dを介して、細胞分離フィルター1を通過した液体を収容するバッグ(廃液バッグ)23及び回収溶液を収容しているバッグ24が接続されている。
For example, a cell separation system 13 as shown in FIG. 3 can be used. In the cell separation system 13, since the cell separation filter 1 is set so that the liquid inlet 8 is vertically downward and the liquid outlet 9 is vertically upward, the liquid introduced from the inlet 8 is set. Is discharged from the outlet 9 on the upper side in the vertical direction in the cell filter 1.
The inlet 8 of the cell separation filter 1 is provided with a bag 11 containing a liquid containing rare cells and a bag 12 containing a washing solution (right side in the figure) via a three-way cock 10a, and a cell. A bag (collection bag) 20 for storing the liquid collected from the separation filter 1 and a means 21 (lower side in the figure) for collecting the liquid collected in the collection bag or the like are connected by a tube.
Below the three-way cock 10a, a means 21 for collecting the liquid collected in the collection bag 20 and the collection bag is connected by a tube via the three-way cock 10c.
The outlet 9 of the cell separation filter 1 is connected via a three-way cock 10d to a bag (waste solution bag) 23 for storing the liquid that has passed through the cell separation filter 1 and a bag 24 for storing the recovered solution. ing.
 前記細胞分離システム13では、前記バッグ11、12は前記細胞分離フィルター1および前記出口9よりも鉛直方向上側になるように配置されているため、バッグ11またはバッグ12に収容されている液体はいずれも重力を利用して前記細胞分離フィルター1内に導入することができ、導入された液体はいずれも前記出口9から排出されて廃液バッグ23に収容される。なお、バッグ11またはバッグ12からの通液の切り替えは、三方活栓10bにより行うことができる。
 以上のようにして、前記細胞分離フィルター1内の細胞分離材に希少細胞を捕捉させることができる。
In the cell separation system 13, the bags 11 and 12 are arranged vertically above the cell separation filter 1 and the outlet 9, so the liquid contained in the bag 11 or the bag 12 is either Can be introduced into the cell separation filter 1 by using gravity, and all of the introduced liquid is discharged from the outlet 9 and stored in the waste liquid bag 23. In addition, switching of the liquid flow from the bag 11 or the bag 12 can be performed by the three-way cock 10b.
As described above, rare cells can be captured by the cell separation material in the cell separation filter 1.
 次に、前記細胞分離フィルター1内の細胞分離材に捕捉された希少細胞を回収する際には、バッグ24から回収溶液を、前記出口9を経て細胞分離フィルター1に導入し、希少細胞を前記細胞分離材から分離させて懸濁液として前記回収バッグ20に回収する。
 また、前記懸濁液の液量が多い場合には、例えば、回収バッグ20を前記細胞分離システム13から取り外して遠心分離処理することで希少細胞を沈降させてから、再度前記細胞分離システム13に取り付け、回収バッグ20内の上清の液体を前記回収バッグ等に回収された液体を回収する手段21から排出してもよい。
Next, when collecting the rare cells captured by the cell separation material in the cell separation filter 1, the recovered solution is introduced from the bag 24 into the cell separation filter 1 through the outlet 9, and the rare cells are introduced into the cell separation filter 1. It is separated from the cell separation material and collected in the collection bag 20 as a suspension.
Further, when the amount of the suspension is large, for example, the collection bag 20 is removed from the cell separation system 13 and centrifuged to settle rare cells, and then the cell separation system 13 is returned to the cell separation system 13 again. The supernatant liquid in the collection bag 20 may be attached and discharged from the means 21 for collecting the liquid collected in the collection bag or the like.
 前記細胞分離システムにおいて、前記細胞回収バッグは上記記載の各溶液の入口や出口に接続されることで、無菌的かつ閉鎖系で細胞を分離することが可能となる。また各バッグは使用後に切り離して使えることが好ましく、一般的に使用されている血液バッグのような形状をしていてもよいが、平板状のカートリッジ方式等でもよい。各バッグの形態としては、必要に応じて細胞培養可能なバッグ、凍結保存耐性を有するバッグ等を選択してもよい。 In the cell separation system, the cell collection bag is connected to the inlet and outlet of each solution described above, so that cells can be separated in a sterile and closed system. Each bag is preferably used after being used, and may be shaped like a commonly used blood bag, but may be a flat cartridge type. As the form of each bag, a bag capable of cell culture, a bag having cryopreservation resistance, and the like may be selected as necessary.
 以上の細胞分離方法は、従来の遠心分離法に比して希少細胞に与えるストレスが非常に低いため、回収液に含まれる希少細胞はそのまま培養可能な状態となっている。 In the above cell separation method, the stress applied to the rare cells is very low as compared with the conventional centrifugation method, and therefore, the rare cells contained in the collected solution can be cultured as they are.
 また、前記希少細胞は、凍結保存用チューブ等に入れた状態で、液体窒素やディープフリーザーなどの極低温下で凍結保存してもよい。
 希少細胞を凍結保存する際は、凍結によるダメージから希少細胞を保護する目的で、前記回収液に凍結保護剤が添加される。添加される凍結保護剤の種類は特に制限されないが、ジメチルスルホキシド、デキストラン、アルブミン、ヒドロキシエチルスターチ等が使用できる。前記凍結保護剤は単独で使用してもよいが数種を組み合わせて使用してもよい。
Further, the rare cells may be cryopreserved at a cryogenic temperature such as liquid nitrogen or a deep freezer while being put in a cryopreservation tube or the like.
When the rare cells are cryopreserved, a cryoprotectant is added to the collected solution for the purpose of protecting the rare cells from damage caused by freezing. The type of cryoprotectant added is not particularly limited, and dimethyl sulfoxide, dextran, albumin, hydroxyethyl starch, and the like can be used. The cryoprotectant may be used alone or in combination of several kinds.
 前記凍結保存方法において、保存時の温度は特に限定されないが、希少細胞の活性の低下を防ぐために-196℃から-30℃であることが好ましく、-196℃から-50℃であることがより好ましく、-196℃から-80℃であることがさらに好ましい。 In the cryopreservation method, the temperature at the time of storage is not particularly limited, but is preferably −196 ° C. to −30 ° C., more preferably −196 ° C. to −50 ° C. in order to prevent a decrease in the activity of rare cells. The temperature is preferably -196 ° C to -80 ° C.
 凍結保存後の希少細胞の生存率は、80%以上であることが好ましく、85%以上であることがより好ましい。 The survival rate of rare cells after cryopreservation is preferably 80% or more, and more preferably 85% or more.
 本発明において回収される希少細胞としては、腫瘍細胞、幹細胞、内皮細胞、胎児細胞などが挙げられる。 Examples of rare cells collected in the present invention include tumor cells, stem cells, endothelial cells, fetal cells and the like.
 以下、実施例において本発明に関して詳細に述べるが、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in detail in Examples, but the present invention is not limited only to the following Examples.
 (実施例1~27、比較例1~4)
 図1、2に示すように、内径26mmの円筒形の容器本体(2)に、直径26mmの丸型にカットした不織布(4)を充填し、前記容器本体(2)の上下の開口部にノズル付き押え部材(3)を差し込み、その上からキャップ(5)でネジ止めして細胞分離フィルター(1)を作製した。
 なお、各実施例および比較例において使用した不織布については、樹脂の種類、不織布の製法、平均繊維径、圧縮エネルギーWC、通気度、厚み、密度、通気度係数Mを表1に示す。また、細胞分離フィルターに充填した細胞分離材全体の厚み、充填密度、充填率、平均孔径を表1に示す。
(Examples 1 to 27, Comparative Examples 1 to 4)
As shown in FIGS. 1 and 2, a cylindrical container body (2) having an inner diameter of 26 mm is filled with a nonwoven fabric (4) cut into a round shape with a diameter of 26 mm, and the upper and lower openings of the container body (2) are filled. The holding member with nozzle (3) was inserted and screwed with a cap (5) from above to produce a cell separation filter (1).
In addition, about the nonwoven fabric used in each Example and the comparative example, the kind of resin, the manufacturing method of a nonwoven fabric, an average fiber diameter, compression energy WC, air permeability, thickness, density, and air permeability coefficient M are shown in Table 1. Table 1 shows the thickness, packing density, packing rate, and average pore diameter of the whole cell separating material packed in the cell separation filter.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、前記細胞分離フィルターを用いて、希少細胞と希少細胞以外の他の細胞(赤血球、血小板および白血球)(以下、夾雑細胞と表記する)の分離検討を行った。希少細胞は、モデル細胞として、ヒト前立腺がん細胞株PC3、ヒト乳がん細胞株MCF-7、ヒト肺がん細胞株A549、ヒト脂肪由来幹細胞(adipose-derived stem cells;ASC)を用いた。なお、希少細胞の回収率および夾雑細胞の除去率を明確に区別するため、希少細胞の回収率の検討では夾雑細胞が含まれない実験系とし、夾雑細胞の除去率の検討では希少細胞が含まれない実験系とした。 Next, separation examination of rare cells and cells other than rare cells (red blood cells, platelets and white blood cells) (hereinafter referred to as contaminated cells) was performed using the cell separation filter. As the rare cells, human prostate cancer cell line PC3, human breast cancer cell line MCF-7, human lung cancer cell line A549, and human adipose-derived stem cells (ASC) were used as model cells. In order to clearly distinguish the recovery rate of rare cells and the removal rate of contaminated cells, the recovery system for rare cells should be an experimental system that does not include contaminated cells, and the removal rate of contaminated cells must include rare cells. The experimental system was not possible.
希少細胞の回収率の検討では、以下の手順で希少細胞を含む液体から希少細胞を回収した。
(1)希少細胞を懸濁した液体を、前記細胞分離フィルターの入口から通液させた。表2に、通液した希少細胞の種類と細胞数、細胞を懸濁させた溶液の種類と液量、細胞懸濁液の通液速度を示す。
(2)前記工程後に、洗浄溶液を前記細胞分離フィルターの入口から通液させた。表2に、洗浄溶液の種類と液量、洗浄溶液の通液速度を示す。
(3)前記工程後に、回収溶液を前記細胞分離フィルターの出口から通液させて、前記細胞分離フィルターの入口から希少細胞豊富分画を回収した。表2に、回収溶液の種類と液量を示す。
(4)前記工程で得られた希少細胞豊富分画中の希少細胞数を、細胞自動計測装置(GEヘルスケア、CYTORECON)により計測した。
In the examination of the rare cell recovery rate, the rare cells were collected from the liquid containing the rare cells by the following procedure.
(1) A liquid in which a rare cell was suspended was passed through the inlet of the cell separation filter. Table 2 shows the type and number of rare cells that passed through, the type and volume of the solution in which the cells were suspended, and the flow rate of the cell suspension.
(2) After the step, the washing solution was passed through the inlet of the cell separation filter. Table 2 shows the type and amount of the cleaning solution, and the flow rate of the cleaning solution.
(3) After the step, the recovered solution was passed through the outlet of the cell separation filter, and the rare cell-rich fraction was recovered from the inlet of the cell separation filter. Table 2 shows the type and amount of the recovered solution.
(4) The number of rare cells in the rare cell-rich fraction obtained in the above step was measured with an automatic cell counting device (GE Healthcare, CYTORECON).
 夾雑細胞の除去率の検討では、以下の手順で夾雑細胞を含む液体から夾雑細胞を除去した。
(1)ヒト末梢血を前記細胞分離フィルターの入口から通液させた。表2に、通液したヒト末梢血の液量と通液速度を示す。
(2)前記工程後に、洗浄溶液を前記細胞分離フィルターの入口から通液させた。表2に、洗浄溶液の種類と液量、洗浄溶液の通液速度を示す。
(3)前記工程後に、回収溶液を前記細胞分離フィルターの出口から通液させて、フィルター内に残存していた夾雑細胞を前記細胞分離フィルターの入口から回収し、夾雑細胞分画とした。表2に、回収溶液の種類と液量を示す。
(4)フィルターに通液する前の末梢血中の血球系細胞数、および前記工程で得られた夾雑細胞分画中の血球系細胞数を、血球計数装置(シスメックス、K-4500)により計測した。ここで、血球系細胞とは、赤血球、白血球、血小板を表す。
In the examination of the removal rate of the contaminated cells, the contaminated cells were removed from the liquid containing the contaminated cells by the following procedure.
(1) Human peripheral blood was passed through the inlet of the cell separation filter. Table 2 shows the volume and speed of human peripheral blood that has passed through.
(2) After the step, the washing solution was passed through the inlet of the cell separation filter. Table 2 shows the type and amount of the cleaning solution, and the flow rate of the cleaning solution.
(3) After the step, the recovered solution was passed through the outlet of the cell separation filter, and the contaminating cells remaining in the filter were recovered from the inlet of the cell separation filter to obtain a contaminated cell fraction. Table 2 shows the type and amount of the recovered solution.
(4) The number of blood cells in the peripheral blood before passing through the filter and the number of blood cells in the contaminated cell fraction obtained in the above step are measured with a blood cell counter (Sysmex, K-4500). did. Here, the blood cell represents a red blood cell, a white blood cell, and a platelet.
希少細胞の回収率および夾雑細胞の除去率を表3に示す。希少細胞の回収率は、細胞分離フィルターから回収した細胞数をフィルターに通液した細胞数で割ることにより算出した。夾雑細胞の除去率は、細胞分離フィルターから回収した細胞数をフィルターに通液した細胞数で割った値(夾雑細胞回収率)を、1から引くことにより算出した。 Table 3 shows the collection rate of rare cells and the removal rate of contaminating cells. The rare cell recovery rate was calculated by dividing the number of cells recovered from the cell separation filter by the number of cells passed through the filter. The removal rate of contaminating cells was calculated by subtracting from 1 the value obtained by dividing the number of cells recovered from the cell separation filter by the number of cells passed through the filter (contaminated cell recovery rate).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果より、実施例1~27の細胞分離フィルターは、希少細胞の種類によらず、いずれも希少細胞の回収率が35%以上と、比較例1~4に比べて高くなっている。また、実施例1~17の結果から、白血球の除去率が51%以上、赤血球の除去率が98%以上、血小板の除去率が79%以上と夾雑細胞も除去できていることがわかる。 From the results shown in Table 3, the cell separation filters of Examples 1 to 27 have a high recovery rate of 35% or more compared to Comparative Examples 1 to 4, regardless of the type of rare cells. Yes. From the results of Examples 1 to 17, it can be seen that leukocyte removal rate is 51% or more, red blood cell removal rate is 98% or more, and platelet removal rate is 79% or more, so that contaminated cells can also be removed.
 実施例の中でも、細胞分離フィルターに充填されている細胞分離材の充填密度が1.0×10g/m以上である実施例1~4、6~23、26、27の細胞分離フィルターは、希少細胞回収率が43%以上と高くなっており、加えて細胞分離材の通気度係数Mが300以下となっている実施例1~4、6~12、15~23、26、27の細胞分離フィルターは希少細胞回収率が51%以上とさらに高くなっていることがわかる。 Among the Examples, the cell separation filters according to Examples 1 to 4, 6 to 23, 26, and 27 in which the packing density of the cell separation material packed in the cell separation filter is 1.0 × 10 5 g / m 3 or more. In Examples 1 to 4, 6 to 12, 15 to 23, 26, and 27, the rare cell recovery rate is as high as 43% or more, and the air permeability coefficient M of the cell separation material is 300 or less. It can be seen that the cell separation filter has a higher rare cell recovery rate of 51% or more.
 さらに、希少細胞の一種である前立腺がん細胞株PC3の回収率の結果では、実施例1~4、6、9、11は、希少細胞の回収率が70%以上と顕著に高く、かつ白血球の除去率が90%以上、赤血球の除去率が99%以上、血小板の除去率が95%以上と高くなっており、希少細胞の濃縮効率が優れた細胞分離フィルターとなっている。 Furthermore, in the results of the recovery rate of prostate cancer cell line PC3, which is a kind of rare cell, Examples 1 to 4, 6, 9, and 11 have a significantly high recovery rate of rare cells of 70% or more, and leukocytes. Removal rate of 90% or more, red blood cell removal rate of 99% or more, and platelet removal rate of 95% or more, which is a cell separation filter with excellent rare cell concentration efficiency.
 また、実施例26、27の細胞分離フィルターでは、がん細胞の種類によらず、回収率が68%以上と高くなっていることから、様々ながん種のがん患者の検査診断に利用できる細胞分離フィルターであると考えられる。 Moreover, in the cell separation filters of Examples 26 and 27, the recovery rate is as high as 68% or more regardless of the type of cancer cell, and thus it is used for examination diagnosis of cancer patients of various cancer types. It is thought that it is a cell separation filter that can.
 一方、同じ不織布を使用している実施例1、2、実施例3、4、実施例5、6、実施例7、8、実施例9、10、実施例16、17、実施例20、21のそれぞれの結果を比べると、いずれも細胞分離フィルターの充填密度、充填率を高く調整し、且つ細胞分離フィルターの平均孔径を小さくすることで、希少細胞の回収率が向上することがわかる。
 また、実施例23、24、25の結果から、圧縮エネルギーが1.2J/m以下、密度が6.5×10g/m以上、通気度係数Mが300以下の不織布を用いて、充填密度を1.0×10g/m以上に調整した実施例23では、他の実施例24、25に比べて、希少細胞の回収率が有意に向上することがわかる。
On the other hand, Example 1, 2, Example 3, 4, Example 5, 6, Example 7, 8, Example 9, 10, Example 16, 17, Example 20, 21 using the same nonwoven fabric. Comparing these results, it can be seen that by adjusting the packing density and packing rate of the cell separation filter to be high and reducing the average pore size of the cell separation filter, the recovery rate of rare cells is improved.
Moreover, from the results of Examples 23, 24, and 25, using a nonwoven fabric having a compression energy of 1.2 J / m 2 or less, a density of 6.5 × 10 4 g / m 3 or more, and an air permeability coefficient M of 300 or less. In Example 23 in which the packing density is adjusted to 1.0 × 10 5 g / m 3 or more, it can be seen that the recovery rate of rare cells is significantly improved as compared with other Examples 24 and 25.
 一方、圧縮エネルギーWCが3.6J/mである細胞分離材を用いた比較例1~4の細胞分離フィルターでは、赤血球、血小板、白血球の除去率が高くなっているものの、希少細胞の回収率が15.1%以下と顕著に低くなっている。 On the other hand, in the cell separation filters of Comparative Examples 1 to 4 using the cell separation material having a compression energy WC of 3.6 J / m 2 , although the removal rate of red blood cells, platelets and white blood cells is high, the collection of rare cells The rate is remarkably low at 15.1% or less.
 したがって、本発明の細胞分離材を充填した細胞分離フィルターを用いることで、腫瘍細胞や幹細胞などの希少細胞を選択的に効率よく回収することができることがわかる。 Therefore, it can be seen that rare cells such as tumor cells and stem cells can be selectively and efficiently recovered by using the cell separation filter filled with the cell separation material of the present invention.
 1 細胞分離フィルター
 2 容器本体
 3 ノズル付き押え部材
 4 細胞分離材
 5 蓋
 6 ノズル口
 7 シール材
 8 入口
 9 出口
 10 三方活栓
 11 希少細胞を含有する液体を収容しているバッグ
 12 洗浄溶液を収容しているバッグ
 13 細胞分離システム
 20 細胞分離フィルター1から回収した液体を収容するバッグ(回収バッグ)
 21 回収バッグ等に回収された液体を回収する手段(シリンジ等)
 23 細胞分離フィルター1を通過した液体を収容するバッグ(廃液バッグ)
 24 回収溶液を収容しているバッグ
 T 細胞分離フィルター1に充填されている細胞分離材4全体の厚み
 D 細胞分離フィルター1に導入された液体が流れる方向
 
DESCRIPTION OF SYMBOLS 1 Cell separation filter 2 Container body 3 Holding member with nozzle 4 Cell separation material 5 Lid 6 Nozzle port 7 Sealing material 8 Inlet 9 Outlet 10 Three-way stopcock 11 Bag containing liquid containing rare cells 12 Containing washing solution 13 Cell separation system 20 Bag for collecting liquid recovered from the cell separation filter 1 (Recovery bag)
21 Means for collecting liquid collected in a collection bag (syringe, etc.)
23 Bag for storing liquid that has passed through the cell separation filter 1 (waste liquid bag)
24 Bag containing the recovery solution T Thickness of the whole cell separation material 4 filled in the cell separation filter 1 D Flow direction of the liquid introduced into the cell separation filter 1

Claims (22)

  1.  平均繊維径1.0μm以上、50μm以下の繊維から構成され、且つ通気度が10cc/cm/sec以上、400cc/cm/sec以下および圧縮エネルギーWCが3.5J/m以下である細胞分離材。 A cell having an average fiber diameter of 1.0 μm or more and 50 μm or less, an air permeability of 10 cc / cm 2 / sec or more, 400 cc / cm 2 / sec or less, and a compression energy WC of 3.5 J / m 2 or less Separation material.
  2.  前記細胞分離材の密度が6.5×10g/m以上、1.5×10g/m以下である請求項1に記載の細胞分離材。 The cell separation material according to claim 1, wherein the density of the cell separation material is 6.5 × 10 4 g / m 3 or more and 1.5 × 10 5 g / m 3 or less.
  3.  前記細胞分離材の通気度(cc/cm/sec)と前記細胞分離材の厚み(mm)との積である通気度係数Mが36以上、300以下である請求項1または2に記載の細胞分離材。 The air permeability coefficient M, which is the product of the air permeability (cc / cm 2 / sec) of the cell separator and the thickness (mm) of the cell separator, is 36 or more and 300 or less. Cell separation material.
  4.  前記細胞分離材の厚みが0.1mm以上、3.5mm以下である請求項1~3のいずれか1項に記載の細胞分離材。 The cell separation material according to any one of claims 1 to 3, wherein a thickness of the cell separation material is 0.1 mm or more and 3.5 mm or less.
  5.  前記細胞分離材の圧縮エネルギーWCが0.05J/m以上、1.2J/m以下である請求項1~4のいずれか1項に記載の細胞分離材。 The cell separation material according to any one of claims 1 to 4, wherein the compression energy WC of the cell separation material is 0.05 J / m 2 or more and 1.2 J / m 2 or less.
  6.  前記細胞分離材が不織布である請求項1~5のいずれか1項に記載の細胞分離材。 The cell separation material according to any one of claims 1 to 5, wherein the cell separation material is a nonwoven fabric.
  7.  前記不織布がスパンレース不織布、スパンボンド不織布またはメルトブローン不織布である請求項6に記載の細胞分離材。 The cell separation material according to claim 6, wherein the nonwoven fabric is a spunlace nonwoven fabric, a spunbond nonwoven fabric or a meltblown nonwoven fabric.
  8.  前記細胞分離材を構成する繊維が、ポリエステル、レーヨン、ポリオレフィン、ビニロン、ポリスチレン、アクリル、ナイロンおよびポリウレタンからなる群より選ばれる少なくとも1種の合成高分子からなる請求項1~7のいずれか1項に記載の細胞分離材。 The fiber constituting the cell separation material comprises at least one synthetic polymer selected from the group consisting of polyester, rayon, polyolefin, vinylon, polystyrene, acrylic, nylon, and polyurethane. The cell separation material described in 1.
  9.  前記細胞分離材を構成する繊維が、ポリエステルおよびポリオレフィン;レーヨンおよびポリオレフィン;ポリエステルおよびレーヨン;またはポリエステル、レーヨンおよびビニロンの合成高分子の組み合わせからなる請求項8に記載の細胞分離材。 The cell separation material according to claim 8, wherein the fibers constituting the cell separation material comprise a combination of polyester and polyolefin; rayon and polyolefin; polyester and rayon; or a synthetic polymer of polyester, rayon and vinylon.
  10.  請求項1~9のいずれか1項に記載の細胞分離材が、入口と出口を供えた容器に複数枚積層して充填されていることを特徴とする細胞分離フィルター。 A cell separation filter, wherein a plurality of the cell separation materials according to any one of claims 1 to 9 are stacked and filled in a container having an inlet and an outlet.
  11.  前記細胞分離材が、圧縮された状態で充填されている請求項10に記載の細胞分離フィルター。 The cell separation filter according to claim 10, wherein the cell separation material is filled in a compressed state.
  12.  前記細胞分離材の充填率(充填前の細胞分離材全体の厚み/充填後の細胞分離材全体の厚み)が1以上、10以下である請求項10または11に記載の細胞分離フィルター。 The cell separation filter according to claim 10 or 11, wherein a filling rate of the cell separation material (thickness of the whole cell separation material before filling / total thickness of the cell separation material after filling) is 1 or more and 10 or less.
  13.  前記細胞分離材の充填密度(充填されている細胞分離材全体の重量/充填されている細胞分離材全体の体積)が1.0×10g/m以上、1.0×10g/m以下である請求項10~12のいずれか1項に記載の細胞分離フィルター。 The packing density of the cell separation material (weight of the whole cell separation material / volume of the whole cell separation material) is 1.0 × 10 5 g / m 3 or more, 1.0 × 10 6 g The cell separation filter according to any one of claims 10 to 12, which is / m 3 or less.
  14.  充填されている前記細胞分離材全体の平均孔径が1μm以上、70μm以下である請求項10~13のいずれか1項に記載の細胞分離フィルター 。 The cell separation filter cage according to any one of claims 10 to 13, wherein an average pore diameter of the whole cell separation material filled is 1 µm or more and 70 µm or less.
  15.  液体が流れる方向に対する、充填されている前記細胞分離材全体の厚みが1mm以上、30mm以下である請求項10~14のいずれか1項に記載の細胞分離フィルター。 The cell separation filter according to any one of claims 10 to 14, wherein a thickness of the whole cell separation material filled in a direction in which the liquid flows is 1 mm or more and 30 mm or less.
  16.  希少細胞を含む液体を通液させることにより、希少細胞を捕捉し、且つ赤血球、白血球および血小板を除去するための請求項10~15のいずれか1項に記載の細胞分離フィルター。 The cell separation filter according to any one of claims 10 to 15, which captures rare cells and removes red blood cells, white blood cells and platelets by passing a liquid containing rare cells.
  17.  請求項10~16のいずれか1項に記載の細胞分離フィルターに希少細胞を含む液体を通液させて、前記細胞分離材に希少細胞を豊富に含む分画を捕捉させる工程を含む細胞分離方法。 A cell separation method comprising a step of passing a liquid containing rare cells through the cell separation filter according to any one of claims 10 to 16, and capturing a fraction rich in rare cells in the cell separation material. .
  18.  前記液体が血液、骨髄、臍帯血、月経血、腹膜液、胸膜液、リンパ液、尿、唾液または組織抽出物である請求項17に記載の細胞分離方法。 The cell separation method according to claim 17, wherein the liquid is blood, bone marrow, umbilical cord blood, menstrual blood, peritoneal fluid, pleural fluid, lymph fluid, urine, saliva, or tissue extract.
  19.  前記液体が血液、臍帯血または月経血であり、下記(a)~(c)工程を含有する請求項17または18に記載の細胞分離方法。
    (a)希少細胞を含む液体を前記細胞分離フィルターの入口から通液させる工程
    (b)前記(a)工程後に洗浄溶液を前記細胞分離フィルターの入口から通液させる洗浄工程
    (c)前記(b)工程後に回収溶液を前記細胞分離フィルターの出口から通液させて、前記細胞分離フィルターの入口から希少細胞豊富分画を回収する希少細胞回収工程
    The cell separation method according to claim 17 or 18, wherein the liquid is blood, umbilical cord blood or menstrual blood, and comprises the following steps (a) to (c).
    (A) A step of passing a liquid containing rare cells from the inlet of the cell separation filter (b) A washing step of passing a washing solution from the inlet of the cell separation filter after the step (a) (c) The (b ) After the step, a rare cell-recovering step in which a recovery solution is passed through the outlet of the cell separation filter and a rare cell-rich fraction is recovered from the inlet of the cell separation filter.
  20.  前記(a)工程および(b)工程において前記細胞分離フィルターの出口から通過させた細胞分画(通過細胞分画)を、前記細胞分離フィルターの入口から複数回通液し、さらに前記(c)工程を実施することにより、通過細胞分画中に混入した希少細胞を含む分画を再回収する工程を有する請求項19に記載の細胞分離方法。 The cell fraction passed from the outlet of the cell separation filter in the steps (a) and (b) (passed cell fraction) is passed through the inlet of the cell separation filter a plurality of times, and (c) The cell separation method according to claim 19, further comprising a step of re-collecting a fraction containing rare cells mixed in the passing cell fraction by performing the step.
  21.  前記(c)工程において回収した希少細胞が培養可能である請求項19または20に記載の細胞分離方法。 21. The cell separation method according to claim 19 or 20, wherein the rare cells collected in the step (c) can be cultured.
  22.  請求項1~9のいずれか1項に記載の細胞分離材、もしくは請求項10~16のいずれか1項に記載の細胞分離フィルター、もしくは請求項17~21のいずれか1項に記載の細胞分離方法によって回収した希少細胞豊富分画であって、赤血球および血小板が60%以上除去されており、かつ白血球が50%以上除去されており、かつ希少細胞が培養可能である希少細胞豊富分画。
     
     
    The cell separation material according to any one of claims 1 to 9, the cell separation filter according to any one of claims 10 to 16, or the cell according to any one of claims 17 to 21. A rare cell-rich fraction collected by a separation method, wherein 60% or more of red blood cells and platelets have been removed, and 50% or more of white blood cells have been removed, and rare cells can be cultured. .

PCT/JP2015/075602 2014-09-24 2015-09-09 Cell separation material and cell separation method WO2016047444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550096A JP6707031B2 (en) 2014-09-24 2015-09-09 Cell separation material and cell separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014193734 2014-09-24
JP2014-193734 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047444A1 true WO2016047444A1 (en) 2016-03-31

Family

ID=55580971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075602 WO2016047444A1 (en) 2014-09-24 2015-09-09 Cell separation material and cell separation method

Country Status (2)

Country Link
JP (1) JP6707031B2 (en)
WO (1) WO2016047444A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038060A1 (en) * 2016-08-26 2018-03-01 学校法人東京理科大学 Cell separation method and cell separator
WO2018221496A1 (en) * 2017-06-02 2018-12-06 日立化成株式会社 Method for separating rare cells in blood sample and method for analyzing genes of said cells
JPWO2018003476A1 (en) * 2016-06-30 2019-01-17 富士フイルム株式会社 Cell suspension membrane separation method and cell culture apparatus
JP2019024426A (en) * 2017-07-31 2019-02-21 株式会社カネカ Cell separation device and method of obtaining cell-containing liquid comprising monocytes
US11512275B2 (en) 2017-05-12 2022-11-29 Fujifilm Corporation Separation substrate, cell separation filter, and method for producing platelet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046501A1 (en) * 2005-10-21 2007-04-26 Kaneka Corporation Stem cell separating material and method of separation
JP2011010581A (en) * 2009-06-30 2011-01-20 Kaneka Corp Stem cell separator, separation filter for separating stem cell, method of separating stem cell using separator or separation filter, and method of recovering stem cell
JP2011010582A (en) * 2009-06-30 2011-01-20 Kaneka Corp Filter for separating adult stem cell, and method of separating the same
JP2013036818A (en) * 2011-08-05 2013-02-21 Kaneka Corp Method of concentrating tumor cell and separation material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046501A1 (en) * 2005-10-21 2007-04-26 Kaneka Corporation Stem cell separating material and method of separation
JP2011010581A (en) * 2009-06-30 2011-01-20 Kaneka Corp Stem cell separator, separation filter for separating stem cell, method of separating stem cell using separator or separation filter, and method of recovering stem cell
JP2011010582A (en) * 2009-06-30 2011-01-20 Kaneka Corp Filter for separating adult stem cell, and method of separating the same
JP2013036818A (en) * 2011-08-05 2013-02-21 Kaneka Corp Method of concentrating tumor cell and separation material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOU S. ET AL.: "Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures.", ADV. MATER., vol. 25, no. 11, 2013, pages 1547 - 1551, XP008176461 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018003476A1 (en) * 2016-06-30 2019-01-17 富士フイルム株式会社 Cell suspension membrane separation method and cell culture apparatus
US11492578B2 (en) 2016-06-30 2022-11-08 Fujifilm Corporation Membrane separation method of cell suspension, and cell culture device
WO2018038060A1 (en) * 2016-08-26 2018-03-01 学校法人東京理科大学 Cell separation method and cell separator
JPWO2018038060A1 (en) * 2016-08-26 2019-07-18 学校法人東京理科大学 Cell separation method and cell separation apparatus
JP7039801B2 (en) 2016-08-26 2022-03-23 学校法人東京理科大学 Cell separation method and cell separation device
US11512275B2 (en) 2017-05-12 2022-11-29 Fujifilm Corporation Separation substrate, cell separation filter, and method for producing platelet
WO2018221496A1 (en) * 2017-06-02 2018-12-06 日立化成株式会社 Method for separating rare cells in blood sample and method for analyzing genes of said cells
WO2018220835A1 (en) * 2017-06-02 2018-12-06 日立化成株式会社 Method for separating rare cells in blood sample and method for analyzing genes of said cells
JP2019024426A (en) * 2017-07-31 2019-02-21 株式会社カネカ Cell separation device and method of obtaining cell-containing liquid comprising monocytes

Also Published As

Publication number Publication date
JP6707031B2 (en) 2020-06-10
JPWO2016047444A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6208186B2 (en) Blood component separation system, separation material
WO2016047444A1 (en) Cell separation material and cell separation method
EP0397403B1 (en) Device and method for depletion of the leucocyte content of blood and blood components
US5344561A (en) Device for depletion of the leucocyte content of blood and blood components
US5229012A (en) Method for depletion of the leucocyte content of blood and blood components
JP4587959B2 (en) Method for preparing cell concentrate and cell composition
JP5944832B2 (en) Leukocyte or mononuclear cell separation method, separation material
JP5975985B2 (en) Mononuclear cell preparation material, and mononuclear cell preparation method using the preparation material
JP5336109B2 (en) Methods for enriching mononuclear cells and platelets
Singh et al. Leukocyte depletion for safe blood transfusion
JP6143746B2 (en) Nucleated cell capture filter or nucleated cell preparation method using the same
JP2013036818A (en) Method of concentrating tumor cell and separation material
WO2016002505A1 (en) Filter having optimized external shape of ridges inside filter
JP5785713B2 (en) Leukocyte fraction collection device
WO2014119529A1 (en) Method for removing erythrocytes
JP2012080821A (en) Method of concentrating nucleated cell component in blood
JP2003202334A (en) Sample for cell diagnosis and method and device for preparing the same
JPS5854130B2 (en) Leukocyte separation method
JP3635654B2 (en) Blood component collection device
JP4135894B2 (en) Method, recovery device and recovery system for recovering blood from which leukocytes remaining on the leukocyte removal filter have been removed
JP2019024426A (en) Cell separation device and method of obtaining cell-containing liquid comprising monocytes
JPH11267196A (en) Blood component sampling method and sampling apparatus therefor
JP2004329034A (en) Method for separating nucleated cell
JP2007117705A (en) Monocyte selecting and capturing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844509

Country of ref document: EP

Kind code of ref document: A1