WO2018221496A1 - Method for separating rare cells in blood sample and method for analyzing genes of said cells - Google Patents

Method for separating rare cells in blood sample and method for analyzing genes of said cells Download PDF

Info

Publication number
WO2018221496A1
WO2018221496A1 PCT/JP2018/020498 JP2018020498W WO2018221496A1 WO 2018221496 A1 WO2018221496 A1 WO 2018221496A1 JP 2018020498 W JP2018020498 W JP 2018020498W WO 2018221496 A1 WO2018221496 A1 WO 2018221496A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
filter
blood sample
blood
rare
Prior art date
Application number
PCT/JP2018/020498
Other languages
French (fr)
Japanese (ja)
Inventor
清太 中村
勝也 遠藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2018221496A1 publication Critical patent/WO2018221496A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler

Definitions

  • the present invention relates to a method for separating rare cells in a blood sample and a method for analyzing genes of the cells.
  • the blood may contain a small amount of cells other than these blood cells, as well as red blood cells, white blood cells, and platelets.
  • cancer cells called circulating tumor cells (CTC) may exist in the blood of cancer patients.
  • the primary cancer cells circulate in the body as a CTC in the flow of blood or lymph and metastasize to other organ tissues. Therefore, cancer metastasis can be detected early by detecting CTC in the blood sample.
  • Circulating endothelial cells (CEC) are present in the peripheral blood.
  • CEC is an endothelial cell (mature cell) that has been detached from the blood vessel wall due to metabolism, and the number of CEC is known to increase due to many diseases such as cardiovascular disease, infectious disease, immune disease, and cancer. .
  • a technique for separating and analyzing these rare cells is required.
  • a method of separating rare cells in blood there is a method of separating rare cells using a filter based on differences in cell size and deformability (for example, Patent Document 1).
  • a blood sample is filtered.
  • rare cells are trapped on the filter while blood cells pass through the pores of the filter and are removed along with the filtrate.
  • RNA analysis of cells can be performed by extracting RNA from cells, reverse transcription, and then amplifying (reverse transcription PCR).
  • many RNAs derived from impurities remaining without separation or transcription products thereof are derived from the gene to be analyzed.
  • the RNA or its transcription product is buried, or the presence of a component that prevents gene amplification in the contaminant does not sufficiently amplify the transcription product, so that gene analysis cannot be performed.
  • efficiency was poor. Accordingly, an object of the present invention is to separate rare cells from a blood sample and to analyze the genes of the separated rare cells so that efficient gene analysis of rare cells can be performed.
  • the method for separating rare cells in a blood sample according to the present invention includes a step of filtering a blood sample with a filter to capture the cells on the filter, a step of bringing a hemolytic agent into contact with the cells captured on the filter, And the hemolytic agent comprises ammonium chloride or cyclic amine.
  • the method for analyzing a gene of a rare cell in a blood sample according to the present invention includes a step of analyzing the gene of a rare cell isolated by the above method.
  • the rare cell may be a circulating cancer cell in the blood.
  • the filter may include a substrate and a plurality of through holes provided on the substrate.
  • the rare cells and erythrocytes are separated using a specific hemolytic agent, the rare cells are separated from the blood sample so that efficient gene analysis of the rare cells is possible. Can do.
  • FIG. 1 It is a schematic diagram which shows one Embodiment of Forter. It is a perspective view which shows one Embodiment of a cell capture
  • the method of separating rare cells in a blood sample according to the present invention includes a step of filtering a blood sample with a filter and capturing the cells on the filter (filtration step), and contacting a hemolyzing agent with the cells captured on the filter A process (hemolysis process).
  • blood collected from a subject may be used as it is, or blood diluted with a buffer solution such as phosphate buffered saline (PBS) or other suitable medium may be used.
  • a buffer solution such as phosphate buffered saline (PBS) or other suitable medium
  • CTAD phosphate buffered saline
  • additives usually added to the blood sample such as CTAD (citrate, theophylline, adenosine, dipyridamole) may be added within a range not impairing the effects of the present invention.
  • CTAD cetylline
  • “Rare cells” are specific types of cells contained in the blood, and usually the number of cells is extremely small relative to the total number of all cells in the blood. Rare cells are, for example, cancer cells such as CTC or cancer stem cells, endothelial cells such as CEC, and stem cells such as hematopoietic stem cells.
  • cells in the blood sample are captured on the filter by filtering the blood sample with a filter.
  • “capturing” means that a blood sample is filtered through a filter, and cells in the blood sample remain on the filter.
  • rare cells are captured on the filter, while many of the blood cells pass through the pores of the filter and are removed along with the filtrate.
  • the number of blood cells in the blood sample is much larger than the number of rare cells, some blood cells also remain on the filter together with the rare cells.
  • the filter is not particularly limited as long as it can capture rare cells present in the blood sample, and a conventionally known filter can be used.
  • FIG. 1 shows an example of the filter.
  • the filter 105 may be, for example, a metal or resin filter, and includes a substrate 107 and a plurality of through-holes 106 provided on the substrate 107 and having a hole diameter corresponding to the diameter of a rare cell.
  • the substrate 107 may be a thin film having a thickness of 3 ⁇ m to 50 ⁇ m, 5 ⁇ m to 40 ⁇ m, or 5 ⁇ m to 30 ⁇ m, for example.
  • the opening shape of the through hole 106 may be, for example, a circle, an ellipse, a square, a rectangle, a rounded rectangle, or a polygon.
  • a rounded rectangle is a shape having a rectangle and two semicircles that have the same radius as the short side of the rectangle and that are adjacent to each other and are adjacent to the two short sides of the rectangle.
  • the arrangement of the through holes 106 may be an aligned arrangement as shown in FIG. 1, a zigzag arrangement, or a random arrangement in which the through holes 106 are arranged at arbitrary positions.
  • the hole diameter of the through hole 106 is the maximum value of the diameter of a sphere that can pass through the through hole 106.
  • the pore diameter of the through hole 106 is preferably 5 ⁇ m to 15 ⁇ m, more preferably 6 ⁇ m to 12 ⁇ m, and even more preferably 7 ⁇ m to 10 ⁇ m.
  • the cells may be washed after the filtration step (washing step).
  • the washing step is performed, for example, by bringing a washing solution containing a known buffer solution such as PBS into contact with cells.
  • the washing solution may contain additives such as bovine serum albumin (BSA) or EDTA. Washing is not limited to after the filtration step, but can be appropriately performed before the filtration step and after the hemolysis step.
  • BSA bovine serum albumin
  • the hemolyzing agent is brought into contact with the cells captured on the filter.
  • This can be done, for example, by filtering the hemolytic agent through a filter in which the cells are captured.
  • the hemolytic agent including the hemolyzed red blood cells is removed through the filter's through-holes, so that the freshly collected hemolytic agent is continuously contacted with the cells captured on the filter.
  • red blood cells can be efficiently hemolyzed with a small amount of hemolytic agent.
  • the flow rate for filtering the hemolytic agent is preferably 10 ⁇ L / min to 3000 ⁇ L / min, more preferably 20 ⁇ L / min to 1000 ⁇ L / min from the viewpoint of minimizing damage to rare cells and from the viewpoint of efficiently lysing red blood cells.
  • the hemolytic agent contains ammonium chloride or cyclic amine as a component (haemolytic component) having an action of hemolyzing red blood cells.
  • cyclic amines include pyrrolidine, heterocyclic N-alkylamine oxide, and lipogramistin A.
  • the hemolysis component may be used alone or in combination of two or more. By using the hemolytic agent containing the specific hemolytic component, it is possible to efficiently analyze the gene of a rare cell separated from a blood sample.
  • the hemolytic agent is preferably a hemolytic agent that does not contain a compound having a fixing action (fixing agent) such as formaldehyde.
  • the concentration of the hemolytic component in the hemolytic agent is, for example, 0.1% by mass to 10% by mass, 0.5% by mass to 5% by mass, or 0 based on the total amount of the hemolytic agent. It may be from 8% to 3% by weight.
  • the hemolytic agent is a component that is usually added to the hemolytic agent, such as hydrochloric acid, sodium chloride, potassium chloride, disodium hydrogen phosphate, and potassium dihydrogen phosphate, as long as the effects of the present invention are not impaired May be added.
  • the cartridge shown in FIGS. 2 and 3 can be used.
  • a method for separating rare cells in a blood sample using a cartridge according to an embodiment of the present invention will be described.
  • a cell capture cartridge (cartridge) 100 shown in FIGS. 2 and 3 has a housing having an inlet 130 to which an inflow pipe 125 into which a liquid flows is connected and an outlet 140 to which an outflow pipe 135 from which a liquid flows out is connected.
  • the body 120 and the filter 105 shown in FIG. 1 are provided.
  • the filter 105 is fixed by a casing 120 including an upper member 110 and a lower member 115.
  • a blood sample, a hemolyzing agent, a washing solution, and other reaction solutions are introduced into the housing 120 through the inflow pipe 125, and are discharged to the outside through the filter 105 through the outflow pipe 135.
  • Such a liquid flow can be created, for example, by connecting a pump upstream of the inflow pipe 125 or downstream of the outflow pipe 135. Further, a cock may be provided upstream of the inflow pipe 125 and / or downstream of the outflow pipe 135 to control the flow of the liquid.
  • a blood sample is introduced into the cartridge 100 from the inflow tube 125, and the blood sample is filtered by the filter 105 (filtration process). Rare cells in the blood sample cannot pass through the through hole 106 of the filter 105 and remain on the surface of the filter 105. Most components in the blood sample including red blood cells pass through the through-hole 106 and are discharged out of the cartridge 100, but some red blood cells remain on the surface of the filter 105 together with rare cells.
  • the filter 105 may be cleaned by passing a cleaning solution through the filter 105.
  • a hemolytic agent is introduced into the cartridge 100, and the hemolytic agent is filtered through the filter 105 (hemolysis step).
  • the flow rate of the hemolytic agent is adjusted so that the cells on the filter 105 are in contact with the hemolytic agent for a predetermined time.
  • Red blood cells hemolyzed by the hemolytic agent pass through the through-hole 106 together with the hemolytic agent, and are discharged out of the cartridge 100.
  • the filter 105 may be cleaned by passing a cleaning solution through the filter 105.
  • the present invention provides, as one aspect thereof, a method for preparing a rare cell sample for gene analysis from a blood sample.
  • the gene of rare cells can be analyzed by a known method, for example, by the following method. First, RNA is extracted from the cells separated by the above method, isolated and purified, and then the cDNA of the desired gene is amplified by reverse transcription PCR.
  • the gene to be analyzed is not limited and may be the entire genome or a specific gene. For example, when the rare cell is CTC, the HER2 gene known to be overexpressed in cancer cells may be analyzed.
  • the expression of the target gene in rare cells can be analyzed using the results of reverse transcription PCR, and further analysis of the target gene can be performed using the amplification product.
  • the rare cell sample isolated by the method of the present invention or the rare cell sample prepared by the method of the present invention can sufficiently amplify the cDNA of the gene of the rare cell, the gene analysis as described above is efficient. Can be done automatically.
  • a CTC capturing device 60 shown in FIG. 4 is a device that captures CTC contained in a sample by filtering a sample such as a blood sample with a filter.
  • the CTC capturing device 60 includes a filter unit 1 having a cell capturing cartridge 100 shown in FIG. 3 inside, a processing liquid channel 3 for supplying a processing liquid to the filter unit 1, and a sample channel 4 for supplying a sample to the filter unit 1.
  • the filter 105 in the cell trapping cartridge 100 includes a plurality of through holes on a thin metal substrate having a thickness of 18 ⁇ m.
  • the through holes have an opening shape having a major axis of 100 ⁇ m and a minor axis of 8 ⁇ m, and are arranged in alignment.
  • a plurality of processing liquid storage containers 5 containing different processing liquids are provided on the upstream side of the processing liquid flow path 3.
  • Examples of the processing liquid that is put into the processing liquid storage container 5 include a cleaning liquid for cleaning the hemolytic agent and the rare cells captured by the filter 105.
  • a soft tube is inserted into each processing liquid storage container 5 to form individual processing liquid flow paths 6. These flow paths are connected to the selection valve 8, and the processing liquid connected to the processing liquid flow path 3 is selected by rotating the selection valve 8.
  • a reservoir 10 is connected to the sample flow path 4, and the sample is supplied to the reservoir 10.
  • the filter unit 1 is configured to supply either the processing liquid or the sample, and control of which liquid of the processing liquid and the sample is supplied is attached to each of the flow paths 3 and 4.
  • the pinch valves 12 and 13 are used for switching.
  • the treatment liquid and the sample are supplied by being sucked by a peristaltic pump 14 provided downstream of the filter unit 1.
  • the sample or the processing liquid flows through the processing liquid channel 3 or the sample channel 4 and is supplied to the filter unit 1, and then flows into the waste liquid tank 16.
  • Rare cells in the sample are captured by the filter 105 provided in the cell capturing cartridge 100 in the filter unit 1.
  • the above units are controlled by the control unit 48.
  • the selection valve 8 is controlled by the selection valve driver 49 based on an instruction from the control unit 48.
  • the pinch valves 12 and 13 are controlled by two valve drivers 50 connected to each other.
  • the driving of the peristaltic pump 14 is controlled by a pump driver 51.
  • SKBR3 HER2 positive
  • a cell line derived from human breast cancer contained in a culture flask was cultured at 37 ° C. in a carbon dioxide incubator. Trypsin-EDTA with a concentration of 0.25% was added to the culture flask, and the cultured cells attached to the flask were detached from the flask. After the detached cells were counted using a hemocytometer and a phase contrast microscope, a sample containing 100 cells was prepared. Cells were lysed by adding the sample to 0.7 mL of RNA extraction reagent and incubating for 5 minutes.
  • RNA was isolated from the cell lysate, and cDNAs of the HER2 gene and GAPDH gene were obtained from the purified RNA by reverse transcription. These cDNAs were amplified by pre-amplification, and real-time PCR was performed on the by-product to analyze the expression levels of the HER2 gene and the GAPDH gene.
  • the GAPDH gene is a housekeeping gene and was used as a reference gene for real-time PCR.
  • Reference Example 2 Samples were prepared by adding 100 cultured cells of Reference Example 1 to 1 mL of healthy human blood collected in a “BD Vacutainer (registered trademark) blood collection tube” containing CTAD solvent from Becton Dickinson and Company (BD) did. The expression levels of the HER2 gene and GAPDH gene were analyzed by the same method as in Reference Example 1.
  • Comparative Example 1 To a sample prepared by the same method as in Reference Example 2, 10 mL of a hemolytic agent having a formaldehyde concentration of 1% was added and incubated for 10 minutes. Thereafter, this was centrifuged at 400 g for 3 minutes, the supernatant was removed, and the pellet was suspended in a PBS solution containing 0.5% BSA and 2 mM EDTA (hereinafter referred to as “washing solution”). In the same manner as in Reference Example 1, RNA was isolated from the suspension, and the expression levels of the HER2 gene and GAPDH gene were analyzed.
  • the washing liquid was sent to the cell capture cartridge 100 to wash the filter 105.
  • the cell capture cartridge 100 was removed from the filter unit 1, and 0.7 mL of RNA extraction reagent was introduced into the cell capture cartridge 100 and incubated for 5 minutes to lyse the cells.
  • the cell lysate was collected, RNA was isolated by the same method as in Reference Example 1, and the expression levels of the HER2 gene and GAPDH gene were analyzed.
  • Example 1 Samples were prepared and analyzed for the expression levels of the HER2 gene and the GAPDH gene by the same method as in Comparative Example 2 except that a hemolytic agent having a cyclic amine pyrrolidine concentration of 2% by mass was used. .
  • Ct (Threshold Cycle) in Table 1 indicates the number of cycles of real-time PCR required until a signal having a constant intensity is detected.
  • Ct equivalent to Ct of the positive control (Reference Example 1) was obtained, and thus it was found that the cDNA of the HER2 gene was normally amplified.
  • Ct of Comparative Example 1 in which the sample was not filtered with a filter is equivalent to Ct of the negative control (Reference Example 2), so that it can be seen that the HER2 gene cDNA was not significantly amplified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

This method for separating rare cells in a blood sample comprises: a step for filtering the blood sample by using a filter and capturing cells on the filter; and a step for bringing the cells captured on the filter into contact with a hemolytic agent. The hemolytic agent includes ammonium chloride or a cyclic amine. The rare cells separated according to this invention can be subjected to genetic analysis efficiently.

Description

血液試料中の希少細胞を分離する方法及び該細胞の遺伝子を解析する方法Method for separating rare cells in blood sample and method for analyzing genes of the cells
 本発明は、血液試料中の希少細胞を分離する方法及び該細胞の遺伝子を解析する方法に関する。 The present invention relates to a method for separating rare cells in a blood sample and a method for analyzing genes of the cells.
 血液中には、赤血球、白血球、及び血小板とともに、これら血球細胞以外の細胞が僅かに含まれている場合がある。例えば、癌患者の血液中には、血中循環癌細胞(Circulating Tumor Cell、CTC)と呼ばれる癌細胞が存在する場合がある。原発巣の癌細胞は、CTCとして血液又はリンパ液の流れに乗って体内を循環し、他の臓器組織に転移する。したがって、血液試料中のCTCを検出することで、癌の転移を早期に発見することができる。また、末梢血液中には循環内皮細胞(Circulating Endothelial Cell、CEC)が存在する。CECは、代謝により血管壁から剥がれ落ちた内皮細胞(成熟細胞)であり、CECの数は、循環器疾患、感染症、免疫疾患、癌など、多くの疾患によって増加することが知られている。以上のように、疾患に関する多くの情報が希少細胞から得られるため、これら希少細胞を分離及び解析する技術が求められている。 The blood may contain a small amount of cells other than these blood cells, as well as red blood cells, white blood cells, and platelets. For example, cancer cells called circulating tumor cells (CTC) may exist in the blood of cancer patients. The primary cancer cells circulate in the body as a CTC in the flow of blood or lymph and metastasize to other organ tissues. Therefore, cancer metastasis can be detected early by detecting CTC in the blood sample. Circulating endothelial cells (CEC) are present in the peripheral blood. CEC is an endothelial cell (mature cell) that has been detached from the blood vessel wall due to metabolism, and the number of CEC is known to increase due to many diseases such as cardiovascular disease, infectious disease, immune disease, and cancer. . As described above, since a lot of information on diseases can be obtained from rare cells, a technique for separating and analyzing these rare cells is required.
 血液中の希少細胞を分離する方法として、フィルターを用いて、細胞のサイズ及び変形能の違いにより希少細胞を分離する方法がある(例えば、特許文献1)。この方法では、血液試料をフィルターでろ過する。ろ過により、希少細胞はフィルター上に捕捉される一方で、血球細胞はフィルターの孔を通過し、ろ液とともに除去される。 As a method of separating rare cells in blood, there is a method of separating rare cells using a filter based on differences in cell size and deformability (for example, Patent Document 1). In this method, a blood sample is filtered. By filtration, rare cells are trapped on the filter while blood cells pass through the pores of the filter and are removed along with the filtrate.
国際公開第2015/012315号International Publication No. 2015/012315
 一般に、細胞の遺伝子解析は、細胞からRNAを抽出し、これを逆転写、次いで増幅する(逆転写PCR)ことにより行うことができる。しかしながら、特許文献1に記載されるフィルターを用いた方法により血液試料から分離した希少細胞では、分離されずに残った夾雑物に由来する多数のRNA若しくはその転写産物に、解析対象の遺伝子に由来するRNA若しくはその転写産物が埋没してしまうことにより、又は、夾雑物中の遺伝子増幅を妨げる成分の存在により、転写産物が十分に増幅せず、よって、遺伝子解析を行うことができないか、できても効率が悪い場合があった。そこで、本発明は、希少細胞の効率的な遺伝子解析が可能となるように、血液試料から希少細胞を分離すること、及び、分離した希少細胞の遺伝子を解析することを目的とする。 Generally, gene analysis of cells can be performed by extracting RNA from cells, reverse transcription, and then amplifying (reverse transcription PCR). However, in the rare cells separated from the blood sample by the method using the filter described in Patent Document 1, many RNAs derived from impurities remaining without separation or transcription products thereof are derived from the gene to be analyzed. The RNA or its transcription product is buried, or the presence of a component that prevents gene amplification in the contaminant does not sufficiently amplify the transcription product, so that gene analysis cannot be performed. However, there were cases where efficiency was poor. Accordingly, an object of the present invention is to separate rare cells from a blood sample and to analyze the genes of the separated rare cells so that efficient gene analysis of rare cells can be performed.
 本発明者は、上記課題に鑑み、鋭意検討を行った結果、特許文献1の方法では、本来は除去されているべき赤血球が希少細胞とともにフィルター上に残存しており、この赤血球の存在が、逆転写PCRにおける転写産物の増幅を妨げていることを突き止めた。血液中の赤血球の数は希少細胞の数に比べて格段に多いため、特許文献1に記載されるような方法では、フィルター上に赤血球が残存しやすいことが原因であると、本発明者らは推測した。 As a result of intensive studies in view of the above problems, the present inventor has found that red blood cells that should be removed remain together with rare cells on the filter in the method of Patent Document 1, and the presence of the red blood cells It was found that it prevented the amplification of transcripts in reverse transcription PCR. Since the number of red blood cells in the blood is remarkably larger than the number of rare cells, the method described in Patent Document 1 suggests that red blood cells are likely to remain on the filter. Guessed.
 本発明に係る血液試料中の希少細胞を分離する方法は、血液試料をフィルターでろ過してフィルター上に細胞を捕捉する工程と、フィルター上に捕捉された細胞に溶血剤を接触させる工程と、を備え、溶血剤は、塩化アンモニウム又はサイクリックアミンを含む。また、本発明に係る血液試料中の希少細胞の遺伝子を解析する方法は、上記方法により分離された希少細胞の遺伝子を解析する工程を含む。希少細胞は血中循環癌細胞であってよい。フィルターは、基板と、基板上に設けられた複数の貫通孔と、を備えてもよい。 The method for separating rare cells in a blood sample according to the present invention includes a step of filtering a blood sample with a filter to capture the cells on the filter, a step of bringing a hemolytic agent into contact with the cells captured on the filter, And the hemolytic agent comprises ammonium chloride or cyclic amine. The method for analyzing a gene of a rare cell in a blood sample according to the present invention includes a step of analyzing the gene of a rare cell isolated by the above method. The rare cell may be a circulating cancer cell in the blood. The filter may include a substrate and a plurality of through holes provided on the substrate.
 本発明の方法によれば、特定の溶血剤を使用して希少細胞と赤血球とを分離するため、希少細胞の効率的な遺伝子解析が可能となるように、血液試料から希少細胞を分離することができる。 According to the method of the present invention, since rare cells and erythrocytes are separated using a specific hemolytic agent, the rare cells are separated from the blood sample so that efficient gene analysis of the rare cells is possible. Can do.
フォルターの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of Forter. 細胞捕捉カートリッジの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of a cell capture | acquisition cartridge. 図2におけるII-II線断面図である。It is the II-II sectional view taken on the line in FIG. CTC捕捉装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a CTC acquisition apparatus.
 本発明の、血液試料中の希少細胞を分離する方法は、血液試料をフィルターでろ過してフィルター上に細胞を捕捉する工程(ろ過工程)と、フィルター上に捕捉された細胞に溶血剤を接触させる工程(溶血工程)と、を備える。 The method of separating rare cells in a blood sample according to the present invention includes a step of filtering a blood sample with a filter and capturing the cells on the filter (filtration step), and contacting a hemolyzing agent with the cells captured on the filter A process (hemolysis process).
 血液試料としては、被験者から採取した血液をそのまま使用してもよいし、リン酸緩衝生理食塩水(PBS)等の緩衝液又はその他適当な媒体で希釈された血液を使用してもよい。血液試料には、本発明の効果を損なわない範囲で、CTAD(クエン酸、テオフィリン、アデノシン、ジピリダモール)など、血液試料に通常添加される添加剤が添加されていてもよい。一方、血液試料には、ヘパリン等、遺伝子解析を妨げる作用を有する添加剤は添加しないことが好ましい。 As a blood sample, blood collected from a subject may be used as it is, or blood diluted with a buffer solution such as phosphate buffered saline (PBS) or other suitable medium may be used. To the blood sample, additives usually added to the blood sample such as CTAD (citrate, theophylline, adenosine, dipyridamole) may be added within a range not impairing the effects of the present invention. On the other hand, it is preferable not to add an additive such as heparin that has an effect of hindering gene analysis to the blood sample.
 「希少細胞」は、血液に含まれる特定の種類の細胞のことであり、通常、その細胞数が、血液中の全細胞の総数に対して極めて少ないものをいう。希少細胞は、例えば、CTC又は癌幹細胞等の癌細胞、CEC等の内皮細胞、造血幹細胞等の幹細胞である。 “Rare cells” are specific types of cells contained in the blood, and usually the number of cells is extremely small relative to the total number of all cells in the blood. Rare cells are, for example, cancer cells such as CTC or cancer stem cells, endothelial cells such as CEC, and stem cells such as hematopoietic stem cells.
 ろ過工程では、血液試料をフィルターでろ過することにより、フィルター上に血液試料中の細胞を捕捉する。ここで、「捕捉」とは、血液試料をフィルターでろ過して、血液試料中の細胞をフィルター上に残留させることを意味する。血液試料中の細胞のうち、希少細胞はフィルター上に捕捉される一方で、血球細胞の多くは、フィルターの孔を通過し、ろ液とともに除去される。しかし、血液試料中の血球細胞の数は希少細胞の数に比べて格段に多いため、希少細胞とともに一部の血球細胞もフィルター上に残留する。 In the filtration step, cells in the blood sample are captured on the filter by filtering the blood sample with a filter. Here, “capturing” means that a blood sample is filtered through a filter, and cells in the blood sample remain on the filter. Of the cells in the blood sample, rare cells are captured on the filter, while many of the blood cells pass through the pores of the filter and are removed along with the filtrate. However, since the number of blood cells in the blood sample is much larger than the number of rare cells, some blood cells also remain on the filter together with the rare cells.
 フィルターは、血液試料中に存在する希少細胞を捕捉できるフィルターであれば特に限定されず、従来公知のフィルターを使用できる。図1にフィルターの一例を示す。フィルター105は、例えば金属又は樹脂製のフィルターであってよく、基板107と、基板107上に設けられた、希少細胞の直径に応じた孔径を有する複数の貫通孔106と、を備える。ここで、基板107は、例えば、3μm~50μm、5μm~40μm、又は5μm~30μmの厚みを有する薄膜であってよい。 The filter is not particularly limited as long as it can capture rare cells present in the blood sample, and a conventionally known filter can be used. FIG. 1 shows an example of the filter. The filter 105 may be, for example, a metal or resin filter, and includes a substrate 107 and a plurality of through-holes 106 provided on the substrate 107 and having a hole diameter corresponding to the diameter of a rare cell. Here, the substrate 107 may be a thin film having a thickness of 3 μm to 50 μm, 5 μm to 40 μm, or 5 μm to 30 μm, for example.
 貫通孔106の開口形状は、例えば、円、楕円、正方形、長方形、角丸長方形又は多角形であってよい。角丸長方形とは、長方形と、長方形の短辺と同じ長さの半径を有し長方形の2つの短辺それぞれに隣接して結合している2つの半円形と、を有する形状である。貫通孔106の配置は、図1に示すような整列配置であってもよく、千鳥配置であってもよく、貫通孔106が任意の位置に配置されたランダム配置であってもよい。貫通孔106の孔径は、貫通孔106を通過できる球の直径の最大値をいう。例えば、希少細胞がCTCである場合、貫通孔106の孔径は、好ましくは5μm~15μm、より好ましくは6μm~12μm、さらに好ましくは7μm~10μmである。 The opening shape of the through hole 106 may be, for example, a circle, an ellipse, a square, a rectangle, a rounded rectangle, or a polygon. A rounded rectangle is a shape having a rectangle and two semicircles that have the same radius as the short side of the rectangle and that are adjacent to each other and are adjacent to the two short sides of the rectangle. The arrangement of the through holes 106 may be an aligned arrangement as shown in FIG. 1, a zigzag arrangement, or a random arrangement in which the through holes 106 are arranged at arbitrary positions. The hole diameter of the through hole 106 is the maximum value of the diameter of a sphere that can pass through the through hole 106. For example, when the rare cell is CTC, the pore diameter of the through hole 106 is preferably 5 μm to 15 μm, more preferably 6 μm to 12 μm, and even more preferably 7 μm to 10 μm.
 ろ過工程の後、細胞を洗浄してもよい(洗浄工程)。洗浄工程は、例えば、PBS等の既知の緩衝液を含む洗浄液を細胞に接触させることで行う。洗浄液には、牛血清アルブミン(BSA)又はEDTA等の添加剤が含まれていてよい。洗浄は、ろ過工程の後に限らず、ろ過工程の前及び溶血工程の後にも適宜行うことができる。 The cells may be washed after the filtration step (washing step). The washing step is performed, for example, by bringing a washing solution containing a known buffer solution such as PBS into contact with cells. The washing solution may contain additives such as bovine serum albumin (BSA) or EDTA. Washing is not limited to after the filtration step, but can be appropriately performed before the filtration step and after the hemolysis step.
 続く溶血工程では、フィルター上に捕捉された細胞に溶血剤を接触させる。これは、例えば、溶血剤を、細胞が捕捉されたフィルターでろ過することにより行うことができる。溶血剤をフィルターでろ過することにより、溶血した赤血球を含む溶血剤はフィルターの貫通孔を通って除去されるため、フィルター上に捕捉された細胞に対して、新鮮な溶血剤を連続的に接触させることができる。したがって、この方法によれば、少ない量の溶血剤で、効率良く赤血球を溶血することができる。溶血剤をろ過する際の流速は、希少細胞へのダメージを最小限に抑える観点及び赤血球を効率良く溶血する観点から、10μL/分~3000μL/分が好ましく、20μL/分~1000μL/分がより好ましく、50μL/分~600μL/分がさらに好ましい。 In the subsequent hemolysis step, the hemolyzing agent is brought into contact with the cells captured on the filter. This can be done, for example, by filtering the hemolytic agent through a filter in which the cells are captured. By filtering the hemolytic agent through the filter, the hemolytic agent including the hemolyzed red blood cells is removed through the filter's through-holes, so that the freshly collected hemolytic agent is continuously contacted with the cells captured on the filter. Can be made. Therefore, according to this method, red blood cells can be efficiently hemolyzed with a small amount of hemolytic agent. The flow rate for filtering the hemolytic agent is preferably 10 μL / min to 3000 μL / min, more preferably 20 μL / min to 1000 μL / min from the viewpoint of minimizing damage to rare cells and from the viewpoint of efficiently lysing red blood cells. Preferably, 50 μL / min to 600 μL / min is more preferable.
 溶血剤は、赤血球を溶血する作用を有する成分(溶血成分)として、塩化アンモニウム又はサイクリックアミンを含む。サイクリックアミンの具体例としては、ピロリジン、ヘテロサイクリックN-アルキルアミンオキシド、リポグラミスチンA等が挙げられる。溶血成分は、1種単独で使用してもよく、複数種類を併用してもよい。上記特定の溶血成分を含む溶血剤を使用することで、血液試料から分離された希少細胞の遺伝子を効率的に解析することが可能となる。溶血剤は、ホルムアルデヒド等、固定化作用を有する化合物(固定剤)を含まない溶血剤であることが好ましい。 The hemolytic agent contains ammonium chloride or cyclic amine as a component (haemolytic component) having an action of hemolyzing red blood cells. Specific examples of cyclic amines include pyrrolidine, heterocyclic N-alkylamine oxide, and lipogramistin A. The hemolysis component may be used alone or in combination of two or more. By using the hemolytic agent containing the specific hemolytic component, it is possible to efficiently analyze the gene of a rare cell separated from a blood sample. The hemolytic agent is preferably a hemolytic agent that does not contain a compound having a fixing action (fixing agent) such as formaldehyde.
 赤血球を効率的に溶血する観点から、溶血剤中の上記溶血成分の濃度は、例えば、溶血剤全量基準で0.1質量%~10質量%、0.5質量%~5質量%、又は0.8質量%~3質量%であってよい。溶血剤には、上記溶血成分の他に、本発明の効果を損なわない範囲で、塩酸、塩化ナトリウム、塩化カリウム、リン酸水素二ナトリウム、リン酸二水素カリウムなど溶血剤に通常添加される成分を添加してもよい。 From the viewpoint of efficiently lysing erythrocytes, the concentration of the hemolytic component in the hemolytic agent is, for example, 0.1% by mass to 10% by mass, 0.5% by mass to 5% by mass, or 0 based on the total amount of the hemolytic agent. It may be from 8% to 3% by weight. In addition to the above hemolytic component, the hemolytic agent is a component that is usually added to the hemolytic agent, such as hydrochloric acid, sodium chloride, potassium chloride, disodium hydrogen phosphate, and potassium dihydrogen phosphate, as long as the effects of the present invention are not impaired May be added.
 なお、フィルター上に捕捉された細胞に対して固定剤を使用して、固定処理を行うことは好ましくない。 Note that it is not preferable to use a fixative for the cells trapped on the filter to perform the fixing treatment.
 上記の方法により血液試料中の希少細胞を分離するときは、例えば、図2及び図3に示すカートリッジを用いることができる。以下、本発明の一実施形態であって、カートリッジを使用して血液試料中の希少細胞を分離する方法について述べる。 When separating rare cells in a blood sample by the above method, for example, the cartridge shown in FIGS. 2 and 3 can be used. Hereinafter, a method for separating rare cells in a blood sample using a cartridge according to an embodiment of the present invention will be described.
 図2及び図3に示す細胞捕捉カートリッジ(カートリッジ)100は、液体が流入する流入管125が接続された流入口130と、液体が流出する流出管135が接続された流出口140とを有する筐体120と、図1に示すフィルター105とを備える。フィルター105は、上部部材110及び下部部材115から構成される筐体120により固定されている。血液試料、溶血剤、洗浄液及びその他の反応液は、流入管125を通って筐体120の内部に導入され、フィルター105を通って、流出管135から外部に排出される。このような液体の流れは、例えば、流入管125の上流又は流出管135の下流にポンプを接続することにより作り出すことができる。また、流入管125の上流及び/又は流出管135の下流にコックを設け、液体の流れを制御してもよい。 A cell capture cartridge (cartridge) 100 shown in FIGS. 2 and 3 has a housing having an inlet 130 to which an inflow pipe 125 into which a liquid flows is connected and an outlet 140 to which an outflow pipe 135 from which a liquid flows out is connected. The body 120 and the filter 105 shown in FIG. 1 are provided. The filter 105 is fixed by a casing 120 including an upper member 110 and a lower member 115. A blood sample, a hemolyzing agent, a washing solution, and other reaction solutions are introduced into the housing 120 through the inflow pipe 125, and are discharged to the outside through the filter 105 through the outflow pipe 135. Such a liquid flow can be created, for example, by connecting a pump upstream of the inflow pipe 125 or downstream of the outflow pipe 135. Further, a cock may be provided upstream of the inflow pipe 125 and / or downstream of the outflow pipe 135 to control the flow of the liquid.
 まず、血液試料を流入管125からカートリッジ100内に導入して、血液試料をフィルター105でろ過する(ろ過工程)。血液試料中の希少細胞はフィルター105の貫通孔106を通過できず、フィルター105表面に残留する。赤血球を含む血液試料中のほとんどの成分は、貫通孔106を通過し、カートリッジ100の外へと排出されるが、一部の赤血球は希少細胞とともにフィルター105表面に残留する。次いで、洗浄液をフィルター105に通液してフィルター105を洗浄してもよい。 First, a blood sample is introduced into the cartridge 100 from the inflow tube 125, and the blood sample is filtered by the filter 105 (filtration process). Rare cells in the blood sample cannot pass through the through hole 106 of the filter 105 and remain on the surface of the filter 105. Most components in the blood sample including red blood cells pass through the through-hole 106 and are discharged out of the cartridge 100, but some red blood cells remain on the surface of the filter 105 together with rare cells. Next, the filter 105 may be cleaned by passing a cleaning solution through the filter 105.
 フィルター105上に細胞が捕捉された後、溶血剤をカートリッジ100内に導入して、溶血剤をフィルター105でろ過する(溶血工程)。このとき、フィルター105上の細胞が溶血剤と所定時間接触するように、溶血剤の流速を調節する。溶血剤により溶血した赤血球は、溶血剤とともに貫通孔106を通過し、カートリッジ100の外へと排出される。次いで、洗浄液をフィルター105に通液してフィルター105を洗浄してもよい。以上の工程により、フィルター105表面に残留する赤血球の数を最小限に抑えて、希少細胞を分離することができる。 After the cells are captured on the filter 105, a hemolytic agent is introduced into the cartridge 100, and the hemolytic agent is filtered through the filter 105 (hemolysis step). At this time, the flow rate of the hemolytic agent is adjusted so that the cells on the filter 105 are in contact with the hemolytic agent for a predetermined time. Red blood cells hemolyzed by the hemolytic agent pass through the through-hole 106 together with the hemolytic agent, and are discharged out of the cartridge 100. Next, the filter 105 may be cleaned by passing a cleaning solution through the filter 105. Through the above steps, rare cells can be separated while minimizing the number of red blood cells remaining on the surface of the filter 105.
 上記方法により分離した希少細胞に対して、その後種々の解析を行うことができる。解析の種類を限定するわけではないが、上記の方法により分離した希少細胞は、希少細胞の遺伝子を解析する場合に特に有用である。すなわち、本発明は、その一側面として、血液試料から遺伝子解析用の希少細胞試料を調製する方法を提供するものであるともいえる。 Various analyzes can then be performed on the rare cells separated by the above method. Although the type of analysis is not limited, rare cells isolated by the above method are particularly useful when analyzing genes of rare cells. That is, it can be said that the present invention provides, as one aspect thereof, a method for preparing a rare cell sample for gene analysis from a blood sample.
 希少細胞の遺伝子は、公知の方法により解析をすることができ、例えば、次のような方法により解析することができる。まず、上記の方法により分離した細胞からRNAを抽出し、これを単離及び精製した後、逆転写PCRにより所望の遺伝子のcDNAを増幅する。解析対象の遺伝子は限定されず、全ゲノムであってもよいし、特定の遺伝子であってもよい。例えば、希少細胞がCTCである場合、癌細胞において過剰に発現することが知られているHER2遺伝子を解析対象としてもよい。逆転写PCRの結果を利用して希少細胞における対象遺伝子の発現を解析することもできるし、増幅産物を利用して対象遺伝子のさらなる解析を行うこともできる。 The gene of rare cells can be analyzed by a known method, for example, by the following method. First, RNA is extracted from the cells separated by the above method, isolated and purified, and then the cDNA of the desired gene is amplified by reverse transcription PCR. The gene to be analyzed is not limited and may be the entire genome or a specific gene. For example, when the rare cell is CTC, the HER2 gene known to be overexpressed in cancer cells may be analyzed. The expression of the target gene in rare cells can be analyzed using the results of reverse transcription PCR, and further analysis of the target gene can be performed using the amplification product.
 本発明の方法により分離された希少細胞又は本発明の方法により調製された希少細胞試料であれば、希少細胞の遺伝子のcDNAを十分に増幅することができるため、上記のような遺伝子解析を効率的に行うことが可能である。 Since the rare cell sample isolated by the method of the present invention or the rare cell sample prepared by the method of the present invention can sufficiently amplify the cDNA of the gene of the rare cell, the gene analysis as described above is efficient. Can be done automatically.
(CTC捕捉装置)
 以下、実施例で使用するCTC捕捉装置について、図3及び図4を参照しながら説明する。図4に示すCTC捕捉装置60は、血液試料等のサンプルをフィルターによってろ過することで、サンプル中に含まれるCTCを捕捉する装置である。
(CTC capture device)
Hereinafter, the CTC acquisition apparatus used in the embodiment will be described with reference to FIGS. A CTC capturing device 60 shown in FIG. 4 is a device that captures CTC contained in a sample by filtering a sample such as a blood sample with a filter.
 CTC捕捉装置60には、図3に示す細胞捕捉カートリッジ100を内部に備えるフィルターユニット1、フィルターユニット1に処理液を供給する処理液流路3、フィルターユニット1にサンプルを供給するサンプル流路4が設けられている。細胞捕捉カートリッジ100内のフィルター105は、厚み18μmの薄膜の金属の基板上に貫通孔を複数備える。貫通孔は、長径100μm、短径8μmの開口形状を有し、整列配置をとる。 The CTC capturing device 60 includes a filter unit 1 having a cell capturing cartridge 100 shown in FIG. 3 inside, a processing liquid channel 3 for supplying a processing liquid to the filter unit 1, and a sample channel 4 for supplying a sample to the filter unit 1. Is provided. The filter 105 in the cell trapping cartridge 100 includes a plurality of through holes on a thin metal substrate having a thickness of 18 μm. The through holes have an opening shape having a major axis of 100 μm and a minor axis of 8 μm, and are arranged in alignment.
 処理液流路3の上流側には、それぞれ異なる処理液が入った複数の処理液収納容器5が設けられている。処理液収納容器5に投入される処理液としては、例えば、溶血剤及びフィルター105に捕捉された希少細胞等を洗浄するための洗浄液が挙げられる。各処理液収納容器5にはそれぞれ軟質チューブが挿入されて個別の処理液流路6を形成している。これらの流路は選択バルブ8に接続されており、選択バルブ8を回転させることにより処理液流路3に接続する処理液が選択される。 A plurality of processing liquid storage containers 5 containing different processing liquids are provided on the upstream side of the processing liquid flow path 3. Examples of the processing liquid that is put into the processing liquid storage container 5 include a cleaning liquid for cleaning the hemolytic agent and the rare cells captured by the filter 105. A soft tube is inserted into each processing liquid storage container 5 to form individual processing liquid flow paths 6. These flow paths are connected to the selection valve 8, and the processing liquid connected to the processing liquid flow path 3 is selected by rotating the selection valve 8.
 サンプル流路4には、リザーバー10が接続されており、サンプルはこのリザーバー10に供給される。フィルターユニット1には、処理液及びサンプルのいずれか一方を供給する構成となっており、処理液及びサンプルのうちいずれの液体を供給するかの制御は流路3,4のそれぞれに取り付けられたピンチバルブ12,13よって切り替える。 A reservoir 10 is connected to the sample flow path 4, and the sample is supplied to the reservoir 10. The filter unit 1 is configured to supply either the processing liquid or the sample, and control of which liquid of the processing liquid and the sample is supplied is attached to each of the flow paths 3 and 4. The pinch valves 12 and 13 are used for switching.
 処理液及びサンプルの供給は、フィルターユニット1の下流に設けられたペリスタルティックポンプ14によって吸引することで行われる。サンプル又は処理液は、処理液流路3又はサンプル流路4の内部を流れてフィルターユニット1に供給され、その後廃液タンク16に流れ込む。サンプル中の希少細胞は、フィルターユニット1内の細胞捕捉カートリッジ100が備えるフィルター105に捕捉される。 The treatment liquid and the sample are supplied by being sucked by a peristaltic pump 14 provided downstream of the filter unit 1. The sample or the processing liquid flows through the processing liquid channel 3 or the sample channel 4 and is supplied to the filter unit 1, and then flows into the waste liquid tank 16. Rare cells in the sample are captured by the filter 105 provided in the cell capturing cartridge 100 in the filter unit 1.
 上記の各部は制御部48により制御される。具体的には、選択バルブ8の制御は、制御部48からの指示に基づいて選択バルブドライバ49により行われる。ピンチバルブ12,13は、それぞれに接続された2つのバルブドライバ50により制御される。ペリスタルティックポンプ14の駆動は、ポンプドライバ51により制御される。 The above units are controlled by the control unit 48. Specifically, the selection valve 8 is controlled by the selection valve driver 49 based on an instruction from the control unit 48. The pinch valves 12 and 13 are controlled by two valve drivers 50 connected to each other. The driving of the peristaltic pump 14 is controlled by a pump driver 51.
(参考例1)
 培養フラスコに入ったヒト乳癌由来の細胞株であるSKBR3(HER2陽性)を、二酸化炭素インキュベーター内で37℃で培養した。培養フラスコに、濃度0.25%のトリプシン-EDTAを添加し、フラスコに張り付いた培養細胞をフラスコから剥離した。剥離した細胞を血球計算盤及び位相差顕微鏡を用いて計数した後、100個の細胞を含むサンプルを調製した。0.7mLのRNA抽出試薬にサンプルを添加し、5分間インキュベーションすることにより細胞を溶解した。細胞溶解液からRNAを単離し、精製したRNAから逆転写反応によりHER2遺伝子及びGAPDH遺伝子のcDNAを得た。これらのcDNAをプレアンプリフィケーションにより増幅し、増副産物に対してリアルタイムPCRを行うことにより、HER2遺伝子及びGAPDH遺伝子の発現量を解析した。GAPDH遺伝子はハウスキーピング遺伝子であり、リアルタイムPCRのリファレンス遺伝子として使用した。
(Reference Example 1)
SKBR3 (HER2 positive), a cell line derived from human breast cancer, contained in a culture flask was cultured at 37 ° C. in a carbon dioxide incubator. Trypsin-EDTA with a concentration of 0.25% was added to the culture flask, and the cultured cells attached to the flask were detached from the flask. After the detached cells were counted using a hemocytometer and a phase contrast microscope, a sample containing 100 cells was prepared. Cells were lysed by adding the sample to 0.7 mL of RNA extraction reagent and incubating for 5 minutes. RNA was isolated from the cell lysate, and cDNAs of the HER2 gene and GAPDH gene were obtained from the purified RNA by reverse transcription. These cDNAs were amplified by pre-amplification, and real-time PCR was performed on the by-product to analyze the expression levels of the HER2 gene and the GAPDH gene. The GAPDH gene is a housekeeping gene and was used as a reference gene for real-time PCR.
(参考例2)
 ベクトン・ディッキンソン アンド カンパニー社(BD社)のCTAD溶剤入り「BDバキュテイナ(登録商標)採血管」に採血した健常者の血液1mLに、参考例1の培養細胞100個を添加することによりサンプルを調製した。参考例1と同様の手法により、HER2遺伝子及びGAPDH遺伝子の発現量を解析した。
(Reference Example 2)
Samples were prepared by adding 100 cultured cells of Reference Example 1 to 1 mL of healthy human blood collected in a “BD Vacutainer (registered trademark) blood collection tube” containing CTAD solvent from Becton Dickinson and Company (BD) did. The expression levels of the HER2 gene and GAPDH gene were analyzed by the same method as in Reference Example 1.
(比較例1)
 参考例2と同様の手法により調製したサンプルに、ホルムアルデヒドの濃度が1%の溶血剤10mLを添加し、10分間インキュベーションした。その後、これを400gにて3分間遠心し、上清を除去して、0.5%BSA及び2mM EDTAを含有したPBS溶液(以下、「洗浄液」という。)でペレットを懸濁した。参考例1と同様の手法により、懸濁液からRNAを単離し、HER2遺伝子及びGAPDH遺伝子の発現量を解析した。
(Comparative Example 1)
To a sample prepared by the same method as in Reference Example 2, 10 mL of a hemolytic agent having a formaldehyde concentration of 1% was added and incubated for 10 minutes. Thereafter, this was centrifuged at 400 g for 3 minutes, the supernatant was removed, and the pellet was suspended in a PBS solution containing 0.5% BSA and 2 mM EDTA (hereinafter referred to as “washing solution”). In the same manner as in Reference Example 1, RNA was isolated from the suspension, and the expression levels of the HER2 gene and GAPDH gene were analyzed.
(比較例2)
 参考例2と同様の手法により調製したサンプルから、CTC捕捉装置60を用いて、希少細胞を以下のように分離した。まず、リザーバー10に洗浄液を入れ、フィルターユニット1内の細胞捕捉カートリッジ100を洗浄液で満たした。続いて、サンプルをリザーバー10に導入し、流速600μL/分で細胞捕捉カートリッジ100に送液することにより、サンプルをろ過した。処理液収納容器5から洗浄液2mLを送液してフィルター105を洗浄した。その後、ホルムアルデヒドの濃度が1%の溶血剤を細胞捕捉カートリッジ100に送液し、細胞が捕捉されたフィルター105を10分間浸漬した。次いで、洗浄液を細胞捕捉カートリッジ100に送液してフィルター105を洗浄した。細胞捕捉カートリッジ100をフィルターユニット1から取り外し、細胞捕捉カートリッジ100内に0.7mLのRNA抽出試薬を導入して5分間インキュベーションすることにより細胞を溶解した。細胞溶解液を回収し、参考例1と同様の手法により、RNAを単離し、HER2遺伝子及びGAPDH遺伝子の発現量を解析した。
(Comparative Example 2)
Rare cells were separated from a sample prepared by the same method as in Reference Example 2 using a CTC capture device 60 as follows. First, a washing solution was put in the reservoir 10 and the cell capture cartridge 100 in the filter unit 1 was filled with the washing solution. Subsequently, the sample was introduced into the reservoir 10 and fed to the cell capture cartridge 100 at a flow rate of 600 μL / min, thereby filtering the sample. The filter 105 was cleaned by feeding 2 mL of the cleaning liquid from the processing liquid storage container 5. Thereafter, a hemolytic agent having a formaldehyde concentration of 1% was fed to the cell capture cartridge 100, and the filter 105 on which the cells were captured was immersed for 10 minutes. Next, the washing liquid was sent to the cell capture cartridge 100 to wash the filter 105. The cell capture cartridge 100 was removed from the filter unit 1, and 0.7 mL of RNA extraction reagent was introduced into the cell capture cartridge 100 and incubated for 5 minutes to lyse the cells. The cell lysate was collected, RNA was isolated by the same method as in Reference Example 1, and the expression levels of the HER2 gene and GAPDH gene were analyzed.
(実施例1)
 溶血剤として、サイクリックアミンであるピロリジンの濃度が2質量%の溶血剤を使用した以外は比較例2と同様の手法により、サンプルを調製して、HER2遺伝子及びGAPDH遺伝子の発現量を解析した。
Example 1
Samples were prepared and analyzed for the expression levels of the HER2 gene and the GAPDH gene by the same method as in Comparative Example 2 except that a hemolytic agent having a cyclic amine pyrrolidine concentration of 2% by mass was used. .
 結果を表1に示す。表1におけるCt(Threshold Cycle)は、一定の強度のシグナルが検出されるまでに要したリアルタイムPCRのサイクル数を示す。サイクリックアミンを含有する溶血剤を使用した実施例1においては、ポジティブコントロール(参考例1)のCtと同等のCtが得られたことから、HER2遺伝子のcDNAが正常に増幅されたことが分かる。これに対し、サンプルをフィルターでろ過しなかった比較例1のCtは、ネガティブコントロール(参考例2)のCtと同等であることから、HER2遺伝子のcDNAが有意に増幅しなかったことが分かる。また、ホルムアルデヒドを含有する溶血剤を使用した比較例2のCtは、参考例1のCtよりも大幅に大きいことから、HER2遺伝子のcDNAの増幅が妨げられたことが分かる。比較例2のように転写産物の増幅が遅いと、効率的に遺伝子解析をすることは難しい。
Figure JPOXMLDOC01-appb-T000001
The results are shown in Table 1. Ct (Threshold Cycle) in Table 1 indicates the number of cycles of real-time PCR required until a signal having a constant intensity is detected. In Example 1 using a hemolytic agent containing cyclic amine, Ct equivalent to Ct of the positive control (Reference Example 1) was obtained, and thus it was found that the cDNA of the HER2 gene was normally amplified. . On the other hand, Ct of Comparative Example 1 in which the sample was not filtered with a filter is equivalent to Ct of the negative control (Reference Example 2), so that it can be seen that the HER2 gene cDNA was not significantly amplified. Moreover, since Ct of the comparative example 2 using the hemolytic agent containing formaldehyde is significantly larger than Ct of the reference example 1, it turns out that amplification of cDNA of HER2 gene was prevented. If the transcription product is slowly amplified as in Comparative Example 2, it is difficult to efficiently analyze the gene.
Figure JPOXMLDOC01-appb-T000001
1…フィルターユニット、3、6…処理液流路、4…サンプル流路、5…処理液収納容器、8…選択バルブ、10…リザーバー、12,13…ピンチバルブ、14…ペリスタルティックポンプ、16…廃液タンク、48…制御部、49…選択バルブドライバ、50…バルブドライバ、51…ポンプドライバ、60…CTC捕捉装置、100…細胞捕捉カートリッジ、105…フィルター、106…貫通孔、107…基板、110…上部部材、115…下部部材、120…筐体、125…流入管、130…流入口、135…流出管、140…流出口。 DESCRIPTION OF SYMBOLS 1 ... Filter unit, 3, 6 ... Processing liquid flow path, 4 ... Sample flow path, 5 ... Processing liquid storage container, 8 ... Selection valve, 10 ... Reservoir, 12, 13 ... Pinch valve, 14 ... Peristaltic pump, 16 DESCRIPTION OF SYMBOLS ... Waste liquid tank, 48 ... Control part, 49 ... Selection valve driver, 50 ... Valve driver, 51 ... Pump driver, 60 ... CTC capture device, 100 ... Cell capture cartridge, 105 ... Filter, 106 ... Through-hole, 107 ... Substrate, DESCRIPTION OF SYMBOLS 110 ... Upper member, 115 ... Lower member, 120 ... Housing | casing, 125 ... Inflow pipe, 130 ... Inlet, 135 ... Outlet, 140 ... Outlet.

Claims (4)

  1.  血液試料中の希少細胞を分離する方法であって、
     血液試料をフィルターでろ過してフィルター上に細胞を捕捉する工程と、
     フィルター上に捕捉された細胞に溶血剤を接触させる工程と、を備え、
     溶血剤は、塩化アンモニウム又はサイクリックアミンを含む、
    方法。
    A method for separating rare cells in a blood sample,
    Filtering the blood sample with a filter and capturing cells on the filter;
    Contacting a hemolytic agent with cells trapped on the filter, and
    Hemolytic agents include ammonium chloride or cyclic amine,
    Method.
  2.  請求項1に記載の方法により分離された希少細胞の遺伝子を解析する工程を含む、
    血液試料中の希少細胞の遺伝子を解析する方法。
    Analyzing a gene of a rare cell isolated by the method according to claim 1,
    A method for analyzing genes of rare cells in blood samples.
  3.  希少細胞が血中循環癌細胞である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the rare cells are circulating cancer cells in the blood.
  4.  フィルターが、基板と、基板上に設けられた複数の貫通孔と、を備える、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the filter includes a substrate and a plurality of through holes provided on the substrate.
PCT/JP2018/020498 2017-06-02 2018-05-29 Method for separating rare cells in blood sample and method for analyzing genes of said cells WO2018221496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/020661 2017-06-02
PCT/JP2017/020661 WO2018220835A1 (en) 2017-06-02 2017-06-02 Method for separating rare cells in blood sample and method for analyzing genes of said cells

Publications (1)

Publication Number Publication Date
WO2018221496A1 true WO2018221496A1 (en) 2018-12-06

Family

ID=64454616

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/020661 WO2018220835A1 (en) 2017-06-02 2017-06-02 Method for separating rare cells in blood sample and method for analyzing genes of said cells
PCT/JP2018/020498 WO2018221496A1 (en) 2017-06-02 2018-05-29 Method for separating rare cells in blood sample and method for analyzing genes of said cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020661 WO2018220835A1 (en) 2017-06-02 2017-06-02 Method for separating rare cells in blood sample and method for analyzing genes of said cells

Country Status (1)

Country Link
WO (2) WO2018220835A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352125A (en) * 1998-05-07 1999-12-24 Immunotech Sa New reagent and method for dissolving erythrocyte
JP2002148255A (en) * 2000-09-14 2002-05-22 Immunotech Sa Multifunctional reagent for erythrocyte using carbamate and application thereof
WO2004056978A1 (en) * 2002-12-19 2004-07-08 Ivonex Gmbh Method for the separation of cell fractions
WO2010135603A2 (en) * 2009-05-20 2010-11-25 California Institute Of Technology Method for cancer detection, diagnosis and prognosis
WO2012173097A1 (en) * 2011-06-13 2012-12-20 日立化成工業株式会社 Agent for improving cancer cell adhesiveness
WO2014162810A1 (en) * 2013-04-04 2014-10-09 日立化成株式会社 Filter for capturing biological substance
WO2016047444A1 (en) * 2014-09-24 2016-03-31 株式会社カネカ Cell separation material and cell separation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352125A (en) * 1998-05-07 1999-12-24 Immunotech Sa New reagent and method for dissolving erythrocyte
JP2002148255A (en) * 2000-09-14 2002-05-22 Immunotech Sa Multifunctional reagent for erythrocyte using carbamate and application thereof
WO2004056978A1 (en) * 2002-12-19 2004-07-08 Ivonex Gmbh Method for the separation of cell fractions
WO2010135603A2 (en) * 2009-05-20 2010-11-25 California Institute Of Technology Method for cancer detection, diagnosis and prognosis
WO2012173097A1 (en) * 2011-06-13 2012-12-20 日立化成工業株式会社 Agent for improving cancer cell adhesiveness
WO2014162810A1 (en) * 2013-04-04 2014-10-09 日立化成株式会社 Filter for capturing biological substance
WO2016047444A1 (en) * 2014-09-24 2016-03-31 株式会社カネカ Cell separation material and cell separation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKACSOVA, G., SUBIK, J.: "The hemolytic activity of heterocyclic N-Alkyl Amine Oxides", EXPERIENTIA, vol. 33, no. 11, 1977, pages 1415 - 1416, XP055634507, DOI: 10.1007/BF01918776 *

Also Published As

Publication number Publication date
WO2018220835A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6453592B2 (en) Blood sample processing method
JP5704590B2 (en) Detection of circulating tumor cells using size-selective microcavity array
JP6234542B1 (en) Method for obtaining chromosomal DNA derived from fetal cells
EP2352533B1 (en) System and method for separating nucleated cells from body fluids
CN109642229A (en) Extracellular vesica is separated from biofluid and isolates the automatically and manually method of Cell-free DNA
JP2015165916A (en) Blood processing
EP2870233B1 (en) A method for filtering a biological sample
JP6619271B2 (en) Method for isolating or detecting rare cells
CN104833805A (en) Circulating tumor cell detection and identification kit and application thereof
AU2016212815B2 (en) Methods and systems for the detection and removal of pathogens from blood
EP0944829B1 (en) Selective lysis of cells
JP2018509895A (en) Processing blood samples to sequence circulating tumor cells
WO2018221496A1 (en) Method for separating rare cells in blood sample and method for analyzing genes of said cells
US20180100850A1 (en) Method for Collecting Rare Cells
CN109012207B (en) Cross flow filtration system for enriching circulating tumor cells
JP2017181096A (en) Method for capturing rare cell
CN108441471B (en) Method for separating rare cells in blood
JP2018059935A (en) Method of collecting rare cell
KR20200000792A (en) A size-based separation method for high concentration of extracellular vesicle from fluid sample
US7695966B2 (en) Method for the separation and sorting of different biological objects utilizing differences in their viscoelastic properties
Higuchi et al. Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes
JP7279542B2 (en) Method for quantifying target cells contained in a sample
WO2017130563A1 (en) Method for capturing rare cells
JP2018102289A (en) Method for obtaining fetal cell chromosomal dnas
JP6754345B2 (en) Magnetic labeling method and labeling device for particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP