WO1989002305A1 - Leucocyte-separating filter - Google Patents

Leucocyte-separating filter Download PDF

Info

Publication number
WO1989002305A1
WO1989002305A1 PCT/JP1988/000943 JP8800943W WO8902305A1 WO 1989002305 A1 WO1989002305 A1 WO 1989002305A1 JP 8800943 W JP8800943 W JP 8800943W WO 8902305 A1 WO8902305 A1 WO 8902305A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
blood
leukocyte
filter
present
Prior art date
Application number
PCT/JP1988/000943
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Naoi
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to KR1019890700881A priority Critical patent/KR890701183A/en
Priority to AU23823/88A priority patent/AU2382388A/en
Publication of WO1989002305A1 publication Critical patent/WO1989002305A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3633Blood component filters, e.g. leukocyte filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1669Cellular material
    • B01D39/1676Cellular material of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0439White blood cells; Leucocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size

Definitions

  • the present invention relates to a filter for separating leukocytes. More specifically, the present invention relates to a leukocyte separation filter that exhibits stable and efficient capture of leukocytes.o
  • red blood cell concentrate CRC
  • PC platelet-rich plasma
  • PPP platelet-poor plasma
  • the erythrocyte concentrate separated in this way is used as a component preparation of erythrocytes, and is widely used for component blood in patients who need erythrocytes.
  • the erythrocyte concentrate contains many white blood cells and platelets.
  • the concept of a so-called whole blood component is becoming established, and patients who need only red blood cells are transfused with a large amount of white blood cells and platelets together with the red blood cell concentrate. It has been problematic.
  • the white blood cells and platelets contained in the red blood cell fraction, such as red blood cell concentrate have side effects after transfusion. In order to prevent this, it is necessary to remove as much as possible. For this reason, more efforts have been made than before.
  • Methods for increasing the purity of red blood cell preparations include gravity centrifugation using the specific gravity difference of blood cells, use of a trapping material using the action of adhesion or adhesion of blood cells, and separation of white blood cells using a red blood cell agglutinating agent. The method is used.
  • the method using a trapping material is widely used because of its high leukocyte removal efficiency and the simplicity of the procedure.
  • Natural cellulose, polyester, boriamid, boriacrilonitrile, glass It is used in many cases where very small fibers such as fibers with a very small fiber diameter are packed in a column as they are, and those processed secondarily into nonwoven fabrics and the like.
  • an object of the present invention is to provide a novel filter for removing leukocytes.
  • Another object of the present invention is to provide a leukocyte removal filter which has high and stable capturing ability for leukocytes and can separate leukocytes more efficiently from blood.
  • Another object of the present invention is to provide a leukocyte removal filter capable of performing a safe leukocyte removal operation without fear of outflow of foreign matter during operation.
  • Another object of the present invention is to provide a filter for removing leukocytes, which simplifies the manufacturing process of the filter and has less variation in product performance.
  • the pore shape is substantially ft-circular
  • the average value of the minor axis is 3 to 30 oi
  • the average value of the major axis is 1.5 times or more the average value of the minor axis.
  • the present invention also provides a leukocyte separation filter wherein the porosity of the porous membrane is from 20 to 85%.
  • the present invention also provides a leukocyte separation filter in which the porous membrane is made of a fluororesin.
  • the porous membrane further comprises poly (vinyl chloride), polyvinylidene fluoride, polyvinyl chloride, polyvinylidene fluoride, tetrafluoroethylene copolymer, and vinylidene fluoride hexafluoropro Pyrene copolymer, vinylidene fluoride-propylene copolymer,
  • FIG. 1 shows a leukocyte separation filter selected from the group consisting of a trafluoroethylene-propylene copolymer and a tetrafluoroethylene-ethylene copolymer.
  • FIG. 1 is a cross-sectional view showing an embodiment of the leukocyte separation filter of the present invention
  • FIG. 2 is a circuit diagram showing a blood processing circuit incorporating the embodiment of the leukocyte separation filter of the present invention.
  • FIG. 3 is an electron micrograph showing the fine structure of one embodiment of the porous membrane used in the leukocyte separation filter of the present invention.
  • the leukocyte-removing filter of the present invention has a pore shape substantially in the shape of an ellipse, and the average value of its minor axis is 3 to 30 in. Further, the present invention is characterized by having a porous membrane having an average value of the major axis of which is at least 1.5 times the average value of the minor axis.
  • a leukocyte suspension such as blood or erythrocyte concentrate
  • the leukocytes contained in the leukocyte suspension have a pore diameter of 3 to 30 in the porous membrane. ⁇ m., so that they are trapped without passing through the pores.
  • the major axis of the pores is more than 1.5 times the minor axis and the pore area is relatively large.
  • the liquid permeation rate is fast enough to efficiently separate leukocytes.
  • the matrix of the porous membrane is stable due to its continuous structure, In addition, problems such as outflow of foreign matter from the porous body or channel channeling in the flow path do not essentially occur.
  • the pore shape is substantially oval, the average value of the minor axis is 3 to 30 ⁇ in, and the average value of the major axis is the average value of the minor axis. It is characterized by having a porous membrane that is at least 1.5 times as large as the above. In the porous membrane according to the present invention, the pore shape does not need to be strictly elliptical. If the pore has a similar shape to a circle in which the major axis and minor axis are different, some irregularities are present on the circumference. It may be one or a slit.
  • such a pore shape greatly affects the blood cell fractionation characteristics and the liquid permeation rate. That is, the particle size of the fraction depends on the minor diameter of the pores, while the liquid permeation rate depends on the area of the pores, so that the pore shape of the porous membrane is substantially oblong. Furthermore, if the relationship between the minor axis and the major axis is optimized, leukocytes contained in leukocyte suspensions such as blood and red blood cell concentrates can be efficiently captured with high precision. It becomes something.
  • the average value of the minor axis of the substantially oval pores is set to 3 to 30 m when the average value of the minor axis is less than 3 ⁇ ⁇ .
  • the average value of the major axis of the substantially oval pores is set to 1.5 times or more of the average value of the minor axis if the major axis is smaller than this. This is because an improvement in the pore area cannot be expected, and a desired filtration efficiency cannot be obtained.
  • the upper limit is not particularly limited, but is preferably about 5 times from the viewpoint of film strength.
  • the minor axis of the substantially oval-shaped pore is 3 to 15 ⁇ . Since the pores of the porous membrane according to the present invention are quite large, and the measurement by the mercury porosimeter method and the butanol impregnation method is not appropriate as the method for measuring the pore diameter, a measurement method using a microscope is preferable. Things. The average value of the major axis and minor axis of the pores described in this specification is obtained by measuring the major axis and minor axis of 50 randomly selected pores from electron micrographs, and arithmetically calculating them. It is the average value.
  • the porosity is preferably 20 to 85%, more preferably 40 to 80%.
  • the porosity of the porous membrane is an important factor that affects the membrane properties such as the liquid permeation rate. If the porosity exceeds 80%, the membrane strength may not be sufficient if the porosity exceeds 80%.
  • the material constituting the porous membrane according to the present invention is not particularly limited as long as it does not affect the blood components contained in the white blood cell suspension such as the blood to be processed and the red blood cell concentrate.
  • various resins such as fluororesin, olefin resin, vinyl chloride resin, acryl resin, vinyl acetate resin, polysulfone resin, and polycarbonate are preferably used.
  • fluororesins are preferred.
  • the fluororesin include various homopolymers and copolymers such as random copolymers, block copolymers, and graft copolymers.
  • Rifidani pinylidene, polyvinylidene vinyl, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer And vinylidene fluoride-propylene copolymer, tetrafluoroethylene-propylene copolymer, and tetrafluoroethylene-ethylene copolymer are preferred.
  • the average value of the minor axis is 3 to 3 ° in and the average of the major axis is The value is not particularly limited as long as the value can be 1.5 times or more the average value of the minor axis, but, for example, pores are formed by hot stretching after film formation.
  • a method may be employed in which the porous membrane obtained by a solvent extraction method or the like is further subjected to a stretching treatment so as to obtain a predetermined pore shape.
  • FIG. 1 is a cross-sectional view showing an embodiment of the leukocyte separation filter of the present invention.
  • the filter for leukocyte separation 1 is provided with a porous membrane 5 having the above-described configuration in a housing 4 having a blood inlet 2 and a blood outlet 3 in a housing 4. It is cut off and provided.
  • liquid-permeable supports 6a and 6b are provided before and after the porous membrane 5, It is optional to sandwich the porous membrane 5 between the support members 6a and 6b.
  • the leukocyte separation filter 1 is actually used, for example, incorporated in a circuit as shown in FIG. In the circuit shown in FIG.
  • the blood bag 7 containing the blood to be processed and the saline bag 8 containing the physiological saline are positioned above the leukocyte separation filter 1, and the clamps 9 respectively.
  • a, 9b are connected to the blood inlet 2 of the leukocyte separation filter 1 by the liquid guiding tubes 10a, 10b, and below the leukocyte separation filter 1.
  • a physiological saline collection bag 11 and a blood collection bag 12 for collecting the processed blood are located in the container, and a liquid guide tube 10 provided with clamps 9c and 9d, respectively.
  • e, 1 ⁇ d for leukocyte separation It is connected to the blood outlet 3 of the port 1.
  • the clamps 9b and 9c are opened, physiological saline is poured from the saline bag 8 into the filter 1 for leukocyte separation with the clamps 9a and 9d closed, and the leukocyte separation is performed. Priming inside filter 1 for use. The physiological saline used for the priming is collected in a physiological saline collection bag 10. After performing the priming, the clamps 9b and 9c are closed, and then the clamps 9a and 9d are opened. Then, the blood fluid flows from the blood bag 7 to the leukocyte separation filter 1.
  • the leukocyte separation filter 1 when the blood passes through the porous membrane 5 having the above configuration, the leukocyte component is captured by the porous membrane 5, and the leukocytes are separated.
  • the blood from which leukocyte components have been removed in this manner is collected in the communicating blood collection bag 12.
  • the remaining blood in the leukocyte separation filter 1 is pushed out again by flowing physiological saline into the blood collection bag 12 and collected in the blood collection bag 12.When almost all the blood has been collected, clamp 9d is closed and clamp 9c is closed. Then, the physiological saline used for blood collection is collected in the physiological saline collection bag 11 and the white blood cell separation operation is completed.
  • Example 15 parts by weight of vinylidene polyfluoride, 80 parts by weight of acetone and 5 parts by weight of glycerin were dissolved at 100 under pressure to form a uniform solution.
  • the resulting stock solution was cast on a glass plate, placed in a sealed container, 1 0 0 ° 1 the autogenous pressure C in the system. 5 ⁇ cell with pressure controls such that the K / cm 2 The ton was removed. After 2 hours, the pressure was returned to normal pressure, and the obtained film was simultaneously stretched in water at 85 ° C by 4.5 times in the X direction and 1.5 times in the Y direction.
  • the obtained film had an average minor axis of 3 ⁇ and an average major axis of 15 m, and had a porosity of 70% having oval pores.
  • the pore shape of this porous membrane was taken by electron micrograph of the porous membrane, and the short and long diameters of 50 randomly selected pores were measured. This is obtained by calculating the average value.
  • a leukocyte separation filter as shown in FIG. 1 was prepared, and CPD-added blood was applied to the leukocyte separation filter using a circuit as shown in FIG. Shed.
  • the leukocyte removal rate calculated from the blood cell counts before and after the treatment was 96%.
  • the pore shape is substantially oval, the average value of the minor axis is 3 to 3 0 111, and the average value of the major axis is 1.5 times the average value of the minor axis.
  • the filter for leukocyte separation is characterized by having a porous membrane as described above, it has a high and stable trapping ability for leukocytes, blood, and erythrocytes. It can efficiently separate leukocyte components from leukocyte suspensions such as concentrated liquids, and can safely perform leukocyte removal operation without fear of foreign matter entering due to falling off of the filter medium during operation. For example, it can provide a red blood cell fraction used in component transfusions with higher purity and safety, and greatly contributes to medical and medical fields.
  • the porosity of the porous membrane is 20 to 85%, and the porous membrane is made of fluororesin, more preferably polyfluoride.

Abstract

A leucocyte-separating filter is disclosed, which has a porous membrane having fine pores with substantially an oblong form of 3 to 30 mum in average shorter diameter and a long diameter-to-short diameter ratio (average) of 1.5 or more. Leucocytes contained in a leucocyte suspension are collected without passing through the fine pores since the short diameter of the porous membrane is small enough, whereas since the pores have an oblong form, suspension-passing rate is comparatively great to effectively separate leucocytes. In addition, since matrix of the porous membrane is of a continuous structure, it is stable, and problems of run-off of foreign matters from the porous body or channeling of flow path during the procedure do not substantially arise.

Description

明 細書 白血球分離用フィ ルター  Memo Book White blood cell separation filter
[技術分野] [Technical field]
本発明は白血球分離用フィルターに関するものである。 詳 しく述べると本発明は白血球に対して安定したかつ効率の よい捕捉能を示す白血球分離用フィルターに関するもので める o  The present invention relates to a filter for separating leukocytes. More specifically, the present invention relates to a leukocyte separation filter that exhibits stable and efficient capture of leukocytes.o
[背景技術]  [Background technology]
輪血の形態が従来の全血輪血から、 患者が必要と してい ,る成分のみを輸血する成分輸血へと変化して久しいが、 こ の成分輸血においては、 いかに分画した血液成分の純度を 高くするかが課題となってく る。  The form of ring blood has long changed from conventional whole blood ring blood to component blood transfusion, which requires only patients to transduce only the blood components.However, in this blood transfusion, how much The challenge is to increase the purity.
従来、 献血によって得られた血液は、 遠心操作によって 赤血球濃厚液 (C R C ) 、 濃縮血小板血漿 (P C ) および 乏血小板血漿 (P P P ) に分離される。 このようにして分 離された赤血球濃厚液は、 赤血球の成分製剤と して赤血球 を必要とする患者への成分輪血に広く用いられている力 <、 赤血球濃厚液は、 多く の白血球、 血小板を含み、 いわゆる 全成分血液であるとの考え方が定着しつつあり、 赤血球の みを必要としている患者に、 赤血球濃厚液の輪血により併 せて多量の白血球および血小板が輸血されていることが問 題視されている。 このように赤血球濃厚液のような赤血球 分画中に含まれる白血球および血小板は輸血後の副作用を 防止する上からも極力除去する必要があり、 このために従 前より多くの工夫がなされている。 Conventionally, blood obtained by donating blood is separated into red blood cell concentrate (CRC), platelet-rich plasma (PC) and platelet-poor plasma (PPP) by centrifugation. The erythrocyte concentrate separated in this way is used as a component preparation of erythrocytes, and is widely used for component blood in patients who need erythrocytes. <The erythrocyte concentrate contains many white blood cells and platelets. The concept of a so-called whole blood component is becoming established, and patients who need only red blood cells are transfused with a large amount of white blood cells and platelets together with the red blood cell concentrate. It has been problematic. Thus, the white blood cells and platelets contained in the red blood cell fraction, such as red blood cell concentrate, have side effects after transfusion. In order to prevent this, it is necessary to remove as much as possible. For this reason, more efforts have been made than before.
赤血球製剤の純度を高くする方法としては、 血球の比重 差を利用した重力遠心分離方法、 血球の粘着ないしは付着 等の作用を利用した捕捉材利用の方法、 赤血球凝集剤を用 いた白血球分離方法等の方法が使用されている。  Methods for increasing the purity of red blood cell preparations include gravity centrifugation using the specific gravity difference of blood cells, use of a trapping material using the action of adhesion or adhesion of blood cells, and separation of white blood cells using a red blood cell agglutinating agent. The method is used.
これらの方法の中で、 捕捉材利用の方法が白血球除去効 率の良さ、 手技の簡便なことなどから広く用いられている { 捕捉材としては天然セルロース、 ポリエステル、 ボリアミ ド、 ボリアク リロニト リル、 ガラス繊維などの繊維径の非 常に小さな繊維をカラム内にそのまま詰めたものゃ不織布 等に二次加工したものが多ぐの場合用いられている。 Among these methods, the method using a trapping material is widely used because of its high leukocyte removal efficiency and the simplicity of the procedure. ( Natural cellulose, polyester, boriamid, boriacrilonitrile, glass It is used in many cases where very small fibers such as fibers with a very small fiber diameter are packed in a column as they are, and those processed secondarily into nonwoven fabrics and the like.
しかしながら上述の方法において、 繊維そのものをカラ ムに詰める場合においては繊維を均一に充填するのがむず- かしく、 作製に手間がかかると同時に繊維の詰め方により 操作時におけるチヤ ンネリ ングの発生の恐れが大きく、 さ らに白血球の充分な捕捉を行なうように織維の充填密度を 高めると、 濾過時間を非常に長いものとしてしまい、 加え て、 繊維同志の絡合が充分でないために操作中に繊維が流 出してしまう恐れのあるものであった。 また繊維を不織布 等に二次加工した場合においては上記のごとき問題は起こ りにくいものの捕捉された血球による目詰まりが発生しや すいという問題の残るものであり、 白血球除去用フィ ルタ 一として充分かつ安定した性能を示す捕捉材は今だ得られ ていないのが現状である。 However, in the above-mentioned method, it is difficult to uniformly fill the fiber when the fiber itself is packed in a column, and it takes time and effort to manufacture the fiber. However, if the packing density of the fibers is increased so that the leukocytes are sufficiently trapped, the filtration time becomes very long, and in addition, during the operation due to insufficient entanglement of the fibers. There was a risk that fibers would flow out. When the fibers are processed into a nonwoven fabric or the like, the above-mentioned problems are unlikely to occur, but the clogged blood cells are liable to be clogged. The acquisition material which shows stable performance is still available It is not at present.
従って、 本発明は新規な白血球除去用フィ ルターを提供 することを目的とする。 本発明はまた白血球に対して高く かつ安定した捕捉能を有し、 血液中より効率よく 白血球を 分離し得る白血球除去用フィ ルターを提供することを目的 とする。 本発明はさ らに操作時における異物の流出の恐れ がなく 、 安全に白血球除去操作を行ない得る白血球除去用 フィ ルターを提供することを目的とする。 本発明はまたフ ィ ルターの製造工程を簡易なものと し、 かつ製品の性能の バラツキの少ない白血球除去用フィ ルターを提供すること を目的とする。  Accordingly, an object of the present invention is to provide a novel filter for removing leukocytes. Another object of the present invention is to provide a leukocyte removal filter which has high and stable capturing ability for leukocytes and can separate leukocytes more efficiently from blood. Another object of the present invention is to provide a leukocyte removal filter capable of performing a safe leukocyte removal operation without fear of outflow of foreign matter during operation. Another object of the present invention is to provide a filter for removing leukocytes, which simplifies the manufacturing process of the filter and has less variation in product performance.
[発明の開示]  [Disclosure of the Invention]
上記諸目的は、 細孔形状が実質的に ft円形をなし、 その 短径の平均値が 3〜 3 0 oi で、 また長径の平均値が短径 の平均値の 1 . 5倍以上である多孔質膜を有することを特 徴とする白血球分離用フィ ルターにより達成される。  The above objectives are as follows: the pore shape is substantially ft-circular, the average value of the minor axis is 3 to 30 oi, and the average value of the major axis is 1.5 times or more the average value of the minor axis. This is achieved by a leukocyte separation filter characterized by having a porous membrane.
本発明はまた多孔質膜の空孔率が 2 0〜 8 5 %である白 血球分離用フィ ルターを示すものである。 本発明はまた多 孔質膜がフッ素樹脂からなるものである白血球分離用フィ ルターを示すものである。 本発明はさ らに多孔質膜がポ リ フ ッィヒビニル、 ポ リ フッ化ビニリデン、 ポリ ト リ フルォ口 クロロ ビニル、 フッ化ビニリデン一テ トラフルォロェチレ ン共重合体、 フ ッ化ビニリデン一へキサフルォロプロ ピレ ン共重合体、 フ ッ化ビニリデンープロ ピレン共重合体、 テ トラフルォロエチレン—プロピレン共重合体およびテ トラ フルォ口エチレン—ェチレン共重合体からなる群から選ば れたいずれかのものである白血球分離用フィ ルターを示す ものである。 The present invention also provides a leukocyte separation filter wherein the porosity of the porous membrane is from 20 to 85%. The present invention also provides a leukocyte separation filter in which the porous membrane is made of a fluororesin. In the present invention, the porous membrane further comprises poly (vinyl chloride), polyvinylidene fluoride, polyvinyl chloride, polyvinylidene fluoride, tetrafluoroethylene copolymer, and vinylidene fluoride hexafluoropro Pyrene copolymer, vinylidene fluoride-propylene copolymer, FIG. 1 shows a leukocyte separation filter selected from the group consisting of a trafluoroethylene-propylene copolymer and a tetrafluoroethylene-ethylene copolymer.
[図面の簡単な説明]  [Brief description of drawings]
第 1図は本発明の白血球分離用フィ ルターの一実施態様を 示す断面図、 第 2図は本発明の白血球分離用フィ ルダーの —実施態様を組込んだ血液処理回路を示す回路図であり、 また第 3図は本発明の白血球分離用フィルターに用いられ る多孔質膜の一実施例の微細構造を表わす電子顕微鏡写真 である。 FIG. 1 is a cross-sectional view showing an embodiment of the leukocyte separation filter of the present invention, and FIG. 2 is a circuit diagram showing a blood processing circuit incorporating the embodiment of the leukocyte separation filter of the present invention. FIG. 3 is an electron micrograph showing the fine structure of one embodiment of the porous membrane used in the leukocyte separation filter of the present invention.
[発明を実施するための最良の形態] しかして、 本発明の白血球除去用フィルターは、 細孔形 状が実質的に長円形をなし、 その短径の平均値が 3〜 3 0 in で、 また長径の平均値が短径の平均値の 1 . 5倍以上 である多孔質膜を有することを特徵とするものである。 こ のような多孔質膜で血液もしく は赤血球濃厚液等の白血球 懸濁液を処理すると、 白血球懸濁液中に含まれる白血球は、 多孔質膜の細孔の短径が 3〜 3 0 μ m. と充分に小さいので 該細孔を通過することなく捕捉されるが、 一方、 細孔の長 径は短径の 1 .. 5倍以上であり細孔の面積は比較的大きな ものとなるために、 透液速度は充分早く、 効率よく 白血球 を分離できるものである。 さらに多孔質膜のマ ト リ ックス は連続組織であるために安定したものであり、 操作時にお ける該多孔体からの異物の流出あるいは流路のチヤ ンネ リ ングなどの問題も本質的に生じないものである。 BEST MODE FOR CARRYING OUT THE INVENTION The leukocyte-removing filter of the present invention has a pore shape substantially in the shape of an ellipse, and the average value of its minor axis is 3 to 30 in. Further, the present invention is characterized by having a porous membrane having an average value of the major axis of which is at least 1.5 times the average value of the minor axis. When a leukocyte suspension such as blood or erythrocyte concentrate is treated with such a porous membrane, the leukocytes contained in the leukocyte suspension have a pore diameter of 3 to 30 in the porous membrane. μm., so that they are trapped without passing through the pores. On the other hand, the major axis of the pores is more than 1.5 times the minor axis and the pore area is relatively large. In order to achieve this, the liquid permeation rate is fast enough to efficiently separate leukocytes. Furthermore, the matrix of the porous membrane is stable due to its continuous structure, In addition, problems such as outflow of foreign matter from the porous body or channel channeling in the flow path do not essentially occur.
以下、 本発明を実施態様に基づきより詳細に説明する。 本発明の白血球分離用フィ ルタ一は、 細孔形状が実質的 に長円形をなし、 その短径の平均値が 3〜 3 0 ^ in で、 ま た長径の平均値が短径の平均値の 1 . 5倍以上である多孔 質膜を有することを特徴とする ものである。 なお、 本発明 に係わる多孔質膜において、 細孔形状は厳密に長円形であ る必要はなく 、 細孔の長径と短径とが異なつた円類似形状 であれば円周に多少の凹凸があるものでも、 またスリ ッ ト 状のものでもよい。 しかして本発明の白血球分離用フィ ル ターにおいては、 このような細孔形状が血球の分画特性お よび透液速度に大きな影響を与えるものである。 すなわち、 分画粒子径は細孔の短径で左右され、 一方、 透液速度は細 孔面積により左右されるために、 多孔質膜の細孔形状を実 質的に長円形のものとな し、 さ らにその短径と長径との関 係を至適なものとすれば、 血液、 赤血球濃厚液等の白血球 懸濁液中に含まれる白血球を高い精度で効率よく 捕捉し得 る ものとなる ものである。  Hereinafter, the present invention will be described in more detail based on embodiments. In the filter for separating leukocytes of the present invention, the pore shape is substantially oval, the average value of the minor axis is 3 to 30 ^ in, and the average value of the major axis is the average value of the minor axis. It is characterized by having a porous membrane that is at least 1.5 times as large as the above. In the porous membrane according to the present invention, the pore shape does not need to be strictly elliptical. If the pore has a similar shape to a circle in which the major axis and minor axis are different, some irregularities are present on the circumference. It may be one or a slit. Thus, in the leukocyte separation filter of the present invention, such a pore shape greatly affects the blood cell fractionation characteristics and the liquid permeation rate. That is, the particle size of the fraction depends on the minor diameter of the pores, while the liquid permeation rate depends on the area of the pores, so that the pore shape of the porous membrane is substantially oblong. Furthermore, if the relationship between the minor axis and the major axis is optimized, leukocytes contained in leukocyte suspensions such as blood and red blood cell concentrates can be efficiently captured with high precision. It becomes something.
本発明に係わる多孔質膜において実質的に長円形をなす 細孔の短径の平均値を、 3〜 3 0 m とするのは、 短径の 平均値が 3 ^ ιη 未満のものであると血液、 赤血球濃厚液等 の白血球懸濁液を処理した際に白血球懸濁液中に含まれる 赤血球までもが捕捉されてしまい、 赤血球回収率が低下す fc るとともに圧倒的に多数である赤血球が捕捉されるために フィ ルターにおいて目詰まりを起こす原因となり、 一方、In the porous membrane according to the present invention, the average value of the minor axis of the substantially oval pores is set to 3 to 30 m when the average value of the minor axis is less than 3 ^ ιη. When processing leukocyte suspensions such as blood and erythrocyte concentrates, even red blood cells contained in leukocyte suspensions are trapped, and the red blood cell recovery rate decreases. As a result, overwhelmingly large numbers of red blood cells are caught and cause clogging in the filter.
3 0 ^ in を越えるものであると、 当然に細孔の長径もこれ を越えて細孔が大幅に大きなものとなるために白血球の捕 捉能が低下するとともに膜強度が低下し実用に供しなく な るためである。 また本発明に係わる多孔質膜において実質 的に長円形をなす細孔の長径の平均値を短径の平均値の 1 . 5倍以上とするのは、 これより長径の小さなものであると 細孔面積の向上が望めず、 所望の濾過効率を得れないため である。 なお上限と しては特に限定されないが、 膜強度の 観点から約 5倍程度までであることが好ま しい。 さらに本 発明に係わる多孔質膜において実質的に長円形をなす細孔 の短径は、 3〜 1 5 μ ιπ であることが望ま しい。 なお本発 明に係わる多孔質膜の細孔はかなり大きなものであり、 そ の孔径測定方法と して水銀ポロシメーター法ゃブタノール 含浸法による測定は適当でないため、 顕微鏡を用いた測定 方法が好ま しいものである。 本明細書中で述べられる細孔 の長径と短径の平均値は、 電子顕微鏡写真からラ ンダムに 選んだ 5 0個の細孔について長径および短径を測定し、 こ れを算術計算してその平均値と したものである。 If it exceeds 30 ^ in, the major diameter of the pores naturally exceeds this, and the pores become significantly larger.Therefore, the ability to capture leukocytes is reduced, and the membrane strength is reduced. It is because it disappears. In the porous membrane according to the present invention, the average value of the major axis of the substantially oval pores is set to 1.5 times or more of the average value of the minor axis if the major axis is smaller than this. This is because an improvement in the pore area cannot be expected, and a desired filtration efficiency cannot be obtained. The upper limit is not particularly limited, but is preferably about 5 times from the viewpoint of film strength. Further, in the porous membrane according to the present invention, it is desirable that the minor axis of the substantially oval-shaped pore is 3 to 15 μιπ. Since the pores of the porous membrane according to the present invention are quite large, and the measurement by the mercury porosimeter method and the butanol impregnation method is not appropriate as the method for measuring the pore diameter, a measurement method using a microscope is preferable. Things. The average value of the major axis and minor axis of the pores described in this specification is obtained by measuring the major axis and minor axis of 50 randomly selected pores from electron micrographs, and arithmetically calculating them. It is the average value.
さらに本発明に係わる多孔質膜において、 その空孔率は 2 0〜 8 5 %、 より望ま しく は 4 0〜 8 0 %であることが 好ま しい。 多孔質膜の空孔率は透液速度をはじめとする膜 特性に影響を与える重要な因子であり、 空孔率が 2 0 %に 満たないものは透液速度等の濾過性能が充分なものとなら ず、 一方、 空孔率が 8 0 %を越える ものは膜強度が充分な ものとならない恐れがあるためである。 Further, in the porous membrane according to the present invention, the porosity is preferably 20 to 85%, more preferably 40 to 80%. The porosity of the porous membrane is an important factor that affects the membrane properties such as the liquid permeation rate. If the porosity exceeds 80%, the membrane strength may not be sufficient if the porosity exceeds 80%.
本発明に係わる多孔質膜を構成する材質と しては、 処理 される血液、 赤血球濃厚液等の白血球懸濁液中に含まれる 血液成分に影響を与えがたいものであれば特に限定されず、 例えば、 フッ素樹脂、 ォレフィ ン系樹脂、 塩化ビニル系樹 脂、 アク リ ル系樹脂、 酢酸ビニル系樹脂、 ポ リ スルホ ン系 樹脂、 ポリ カーボネー ト等の各種の樹脂が用いられ得る力 好ま しく は、 その製造技術上および多孔質膜の物性の面か ら、 フッ素樹脂が好ま しい。 フッ素樹脂と しては、 各種の 単独重合体およびラ ンダム共重合体、 ブロ ッ ク共重合体、 グラフ ト共重合体などの共重合体が含まれるが、 特に、 ポ リ フッィ匕ビニル、 ポ リ フ ッィ匕ピニ リ デン、 ポ リ ト リ フルォ ロ グ口ロ ビニル、 フ ッ化ビニ リ デン一テ ト ラフルォロェチ レン共重合体、 フ ッ化ビニ リ デン—へキサフルォロプロ ピ レ ン共重合体、 フ ッ化ビニ リ デン—プロ ピレ ン共重合体、 テ トラフルォロエチレ ン—プロ ピレ ン共重合体およびテ ト ラフルォロエチレン一エチ レン共重合体が好ま しい。  The material constituting the porous membrane according to the present invention is not particularly limited as long as it does not affect the blood components contained in the white blood cell suspension such as the blood to be processed and the red blood cell concentrate. For example, various resins such as fluororesin, olefin resin, vinyl chloride resin, acryl resin, vinyl acetate resin, polysulfone resin, and polycarbonate are preferably used. In view of the manufacturing technology and the physical properties of the porous membrane, fluororesins are preferred. Examples of the fluororesin include various homopolymers and copolymers such as random copolymers, block copolymers, and graft copolymers. Rifidani pinylidene, polyvinylidene vinyl, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer And vinylidene fluoride-propylene copolymer, tetrafluoroethylene-propylene copolymer, and tetrafluoroethylene-ethylene copolymer are preferred.
さ らに上記のごとき材質を用いて細孔形状が実質的に長 円形をなす多孔質膜を得る方法と しては、 その短径の平均 値が 3〜 3 ◦ in で、 かつ長径の平均値が短径の平均値の 1 . 5倍以上である'ものとすることができれば、 特に限定 ' されないが、 例えば、 製膜後に熱延伸により細孔を形成す る、 あるいは、 溶媒抽出法などによって得られた多孔質膜 に更に延伸処理を施して細孔形状を所定のものとする方法 などが取られ得る。 Further, as a method of obtaining a porous membrane having a substantially oval pore shape using the above-mentioned materials, the average value of the minor axis is 3 to 3 ° in and the average of the major axis is The value is not particularly limited as long as the value can be 1.5 times or more the average value of the minor axis, but, for example, pores are formed by hot stretching after film formation. Alternatively, a method may be employed in which the porous membrane obtained by a solvent extraction method or the like is further subjected to a stretching treatment so as to obtain a predetermined pore shape.
第 1図は本発明の白血球分離用フィルターの一実施態様 を示す断面図である。 本実施態様において白血球分離用フ ィルター 1は、 血液流入口 2と血液流出口 3とを備えてな るハウジング 4内に上記したような構成を有する多孔質膜 5がハゥジング 4の内部空間を横切つて設けられているも のである。 なおこのような白血球分離用フィルター 1にお いて、 多孔質膜 5をハウジング 4内に保持するために、 例 えば多孔質膜 5の前後に通液性の支持材 6 a 、 6 b を設け、 該支持材 6 a 、 6 b により多孔質膜 5を挟持することは任 意である。 この白血球分離用フィルター 1は、 例^ば、 第 2図に示されるような回路中に組入れられて実際に使用さ れる。 第 2図に示される回路において、 処理しょうとする 血液を入れた血液バッグ 7および生理食塩水を入れた生理 食塩水バッグ 8が白血球分離用フィ ルター 1より上方に位 置させられ、 それぞれクレンメ 9 a 、 9 b を具備してなる 導液チュープ 1 0 a 、 1 0 b により白血球分離用フ ィ ルタ — 1の血液流入口 2に連通されており、 一方、 白血球分離 用フ ィ ルター 1の下方には生理食塩水回収用バッグ 1 1 と 処理された血液を回収するための血液回収用バッグ 1 2が 位置させられ、 それぞれク レンメ 9 c 、 9 d を具備してな る導液チユーブ 1 0 e 、 1 ◦ d により白血球分離用フ ィ ル ター 1 の血液流出口 3に連通されている。 白血球分離操作 は、 まずク レンメ 9 b 、 9 c を開き、 ク レンメ 9 a 、 9 d を閉じた状態で生理食塩水バッグ 8より生理食塩水を白血 球分離用フィ ルター 1 に流し、 白血球分離用フ ィ ルター 1 内をプライ ミ ングする。 なお、 プライ ミ ングに用いられた 生理食塩水は生理食塩水回収バッグ 1 0に回収される。 プ ライ ミ ングを行なった後に今度はク レンメ 9 b 、 9 c を閉 じてからク レンメ 9 a 、 9 d を開き、 血液バッグ 7より血 液を白血球分離用フ ィ ルター 1 に流す。 白血球分離用フィ ルター 1内において血液は上記のごとき構成を有する多孔 質膜 5を通過する際に該多孔質膜 5 によ り白血球成分を捕 捉され、 白血球を分離されたものとなる。 このよ う に白血 球成分を除去された血液は連通する血液回収バッグ 1 2に 回収される。 血液バッグ 7より血液を流し終わったなら、 白血球分離用フィルター 1内に残った血液を回収するため に、 さらにク レンメ 9 aを閉じた後ク レンメ 9 b を開き白 血球分離用フィ ルター 1内に再び生理食塩水を流して白血 球分離用フィルター 1内に残存する血液を押し出して血液 回収用バッグ 1 2に回収し、 ほぼ血液を回収し終えた時点 でク レンメ 9 d を閉じクレンメ 9 c を開いて血液回収に用 いた生理食塩水を生理食塩水回収用バッグ 1 1内に回収し て、 白血球分離操作を終える。 FIG. 1 is a cross-sectional view showing an embodiment of the leukocyte separation filter of the present invention. In the present embodiment, the filter for leukocyte separation 1 is provided with a porous membrane 5 having the above-described configuration in a housing 4 having a blood inlet 2 and a blood outlet 3 in a housing 4. It is cut off and provided. In such a leukocyte separation filter 1, in order to hold the porous membrane 5 in the housing 4, for example, liquid-permeable supports 6a and 6b are provided before and after the porous membrane 5, It is optional to sandwich the porous membrane 5 between the support members 6a and 6b. The leukocyte separation filter 1 is actually used, for example, incorporated in a circuit as shown in FIG. In the circuit shown in FIG. 2, the blood bag 7 containing the blood to be processed and the saline bag 8 containing the physiological saline are positioned above the leukocyte separation filter 1, and the clamps 9 respectively. a, 9b are connected to the blood inlet 2 of the leukocyte separation filter 1 by the liquid guiding tubes 10a, 10b, and below the leukocyte separation filter 1. A physiological saline collection bag 11 and a blood collection bag 12 for collecting the processed blood are located in the container, and a liquid guide tube 10 provided with clamps 9c and 9d, respectively. e, 1 ◦ d for leukocyte separation It is connected to the blood outlet 3 of the port 1. In the leukocyte separation operation, first, the clamps 9b and 9c are opened, physiological saline is poured from the saline bag 8 into the filter 1 for leukocyte separation with the clamps 9a and 9d closed, and the leukocyte separation is performed. Priming inside filter 1 for use. The physiological saline used for the priming is collected in a physiological saline collection bag 10. After performing the priming, the clamps 9b and 9c are closed, and then the clamps 9a and 9d are opened. Then, the blood fluid flows from the blood bag 7 to the leukocyte separation filter 1. In the leukocyte separation filter 1, when the blood passes through the porous membrane 5 having the above configuration, the leukocyte component is captured by the porous membrane 5, and the leukocytes are separated. The blood from which leukocyte components have been removed in this manner is collected in the communicating blood collection bag 12. After the blood has been flushed from the blood bag 7, in order to collect the blood remaining in the leukocyte separation filter 1, further close the clamp 9a, open the clamp 9b, and open the leukocyte separation filter 1. The remaining blood in the leukocyte separation filter 1 is pushed out again by flowing physiological saline into the blood collection bag 12 and collected in the blood collection bag 12.When almost all the blood has been collected, clamp 9d is closed and clamp 9c is closed. Then, the physiological saline used for blood collection is collected in the physiological saline collection bag 11 and the white blood cell separation operation is completed.
以下、 本発明を実施例によりさ に具体的に説明する。 実施例 ポ リ フッ化ビニリ デン 1 5重量部、 アセ ト ン 8 0重量部 およびグリセリ ン 5重量部を加圧下 1 0 0でで溶解せしめ 均一な溶液とした。 得られた原液をガラス板上に流延し、 密閉容器中に入れ、 1 0 0 °Cで系内の自己発生圧を 1 . 5 K / c m 2 になるように圧力コン トロールしながらァセ ト ンを除去した。 2時間経過した時点で常圧に戻し、 得ら れた膜を 8 5 °Cの水中で X方向に 4 . 5倍、 Y方向に 1 . 5倍同時に延伸した。 得られた膜は平均短径 3 ιτι、 平均 長径 1 5 mの長円形の細孔を有する空孔率 7 0 %のもの であった。 なおこの多孔質膜の細孔形状は第 3図に示すよ うに多孔質膜の電子顕微鏡写真を撮影し、 ラ ンダムに選ん だ 5 0個の細孔について短径および長径を測定し、 その平 均値を求めることにより得られたものである。 Hereinafter, the present invention will be described more specifically with reference to examples. Example 15 parts by weight of vinylidene polyfluoride, 80 parts by weight of acetone and 5 parts by weight of glycerin were dissolved at 100 under pressure to form a uniform solution. The resulting stock solution was cast on a glass plate, placed in a sealed container, 1 0 0 ° 1 the autogenous pressure C in the system. 5 § cell with pressure controls such that the K / cm 2 The ton was removed. After 2 hours, the pressure was returned to normal pressure, and the obtained film was simultaneously stretched in water at 85 ° C by 4.5 times in the X direction and 1.5 times in the Y direction. The obtained film had an average minor axis of 3ιτι and an average major axis of 15 m, and had a porosity of 70% having oval pores. As shown in Fig. 3, the pore shape of this porous membrane was taken by electron micrograph of the porous membrane, and the short and long diameters of 50 randomly selected pores were measured. This is obtained by calculating the average value.
このようにして得られた多孔質膜を用いて第 1図に示す ような白血球分離用フィルターを作成し、 さらに第 2図に 示すような回路を用いて該白血球分離用フィルターに C P D加血液を流した。 処理前後の血球数から白血球除去率を 求めたところ 9 6 %であった。  Using the porous membrane obtained in this manner, a leukocyte separation filter as shown in FIG. 1 was prepared, and CPD-added blood was applied to the leukocyte separation filter using a circuit as shown in FIG. Shed. The leukocyte removal rate calculated from the blood cell counts before and after the treatment was 96%.
[産業上の利用分野]  [Industrial applications]
以上述べたように本発明は 細孔形状が実質的に長円形 をなし、 その短径の平均値が 3〜 3 0 111 で、 また長径の 平均値が短径の平均値の 1 . 5倍以上である多孔質膜を有 することを特徴とする白血球分離用フィルタ一であるから、 白血球に対して高く安定した捕捉能を有し、 血液、 赤血球 濃厚液等の白血球懸濁液中より白血球成分を効率良く分離 し得るものであり、 また操作時における濾材の脱落による 異物の混入の恐れもなく安全に白血球除去操作を行ない得 る ものであり、 例えば成分輸血において用いられる赤血球 分画をより高純度で安全なものと して提供できる ものであ り、 医学 · 医療などの分野において大きな貢献をもたらす ものである。 As described above, in the present invention, the pore shape is substantially oval, the average value of the minor axis is 3 to 3 0 111, and the average value of the major axis is 1.5 times the average value of the minor axis. Since the filter for leukocyte separation is characterized by having a porous membrane as described above, it has a high and stable trapping ability for leukocytes, blood, and erythrocytes. It can efficiently separate leukocyte components from leukocyte suspensions such as concentrated liquids, and can safely perform leukocyte removal operation without fear of foreign matter entering due to falling off of the filter medium during operation. For example, it can provide a red blood cell fraction used in component transfusions with higher purity and safety, and greatly contributes to medical and medical fields.
さ らに本発明の白血球分離用フ ィ ルターにおいて、 多孔 質膜の空孔率が 2 0〜 8 5 %であり、 また多孔質膜がフ ッ 素榭脂、 より望ま しく はポ リ フッ化ビニル、 ポ リ フ ッ化ビ ニリ デン、 ポ リ ト リ フルォ口ク ロ口 ビニル、 フ ッ化ビニリ デン—テ トラフルォロエチレン共重合体、 フッ化ビニリデ ン—へキサフルォロプロ ピレ ン共重合体、 フ ッ化ビニリ デ ンープロ ピレン共重合体、 テ ト ラフルォロエチレ ン一プロ ピレン共重合体およびテ ト ラフルォロエチレ ン一エチレ ン 共重合体からなる群から選ばれたいずれかのものから構成 されるものであると、 より優れた物性を有すると共に白血 球をより効率よく捕捉できるものとなる。  Further, in the leukocyte separation filter of the present invention, the porosity of the porous membrane is 20 to 85%, and the porous membrane is made of fluororesin, more preferably polyfluoride. Vinyl, vinylidene fluoride, polyfluorinated mouth vinyl, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, It is composed of any one selected from the group consisting of vinylidene fluoride-propylene copolymer, tetrafluoroethylene-propylene copolymer, and tetrafluoroethylene-ethylene copolymer. Thus, it has more excellent physical properties and can capture leukocytes more efficiently.

Claims

請求の 範囲 The scope of the claims
1 . 細孔形状が実質的に長円形をなし、 その短径の平均 値が 3 〜 3 ◦ m で、 また長径の平均値が短径の平均値の 1 . 5倍以上である多孔質膜を有することを特徴とする白 血球分離用フィ ルター。  1. Porous membrane whose pore shape is substantially elliptical, whose average minor axis is 3 to 3 ° m, and whose average major axis is at least 1.5 times the average minor axis. A filter for separating white blood cells, comprising:
2 . 多孔質膜の空孔率が 2 0 〜 8 5 %である請求の範囲 第 1項に記載の白血球分離用フィ ルター。  2. The filter for separating leukocytes according to claim 1, wherein the porosity of the porous membrane is 20 to 85%.
3 . 多孔質膜がフッ素樹脂からなるものである請求の範 囲第 1項または第 2項に記載の白血球分離用フィルター。  3. The leukocyte separation filter according to claim 1, wherein the porous membrane is made of a fluororesin.
4 . 多孔質膜がポリフッ化ピニル、 ポリフッ化ピニリデ ン、 ポリ ト リ フルォロクロロ ビニル、 フッ化ピニリデンー テ トラフルォロエチレン共重合体、 フ ッ化ビニリデン -へ キサフルォ口プロピレン共重合体、 フッ化ピニリデン—プ ロピレン共重合体、 テ トラフルォロエチレン一プロピレン 共重合体およびテ トラフルォロエチレンー ェチレン共重合 体からなる群から選ばれたいずれかのものである請求の範 囲第 3項に記載の白血球分離用フィルター。  4. The porous membrane is made of poly (vinylidyl fluoride), poly (vinylidene fluoride), poly (trifluorochlorovinyl), poly (vinylidene fluoride) tetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride 4. The method according to claim 3, wherein the copolymer is any one selected from the group consisting of a propylene copolymer, a tetrafluoroethylene-propylene copolymer, and a tetrafluoroethylene-ethylene copolymer. White blood cell separation filter.
PCT/JP1988/000943 1987-09-18 1988-09-16 Leucocyte-separating filter WO1989002305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019890700881A KR890701183A (en) 1987-09-18 1988-09-16 White blood cell separation filter
AU23823/88A AU2382388A (en) 1987-09-18 1988-09-16 Leucocyte-separating filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62/232067 1987-09-18
JP62232067A JPS6475015A (en) 1987-09-18 1987-09-18 Filter for separating leukocytes

Publications (1)

Publication Number Publication Date
WO1989002305A1 true WO1989002305A1 (en) 1989-03-23

Family

ID=16933467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000943 WO1989002305A1 (en) 1987-09-18 1988-09-16 Leucocyte-separating filter

Country Status (3)

Country Link
JP (1) JPS6475015A (en)
KR (1) KR890701183A (en)
WO (1) WO1989002305A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419346A2 (en) * 1989-09-18 1991-03-27 Terumo Kabushiki Kaisha Filter for purification of platelets
EP0877648A1 (en) * 1996-09-25 1998-11-18 Baxter International Inc. System for filtering medical and biological fluids
US9713669B2 (en) 2013-12-26 2017-07-25 Fenwal, Inc. Method for sized-based cell separation using spinning membrane filtration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3173141T3 (en) * 2002-06-19 2019-11-25 Northwest Biotherapeutics Inc TANGENTIAL FLOW FILTERING UNIT AND METHODS FOR ENCOURAGING LEUKOCYTES
DE502007001929D1 (en) 2007-10-20 2009-12-17 Trumpf Sachsen Gmbh Mechanical arrangement for sheet metal working with a sheet metal processing device and with a transport device
WO2015046411A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446811A (en) * 1977-09-20 1979-04-13 Asahi Chem Ind Co Ltd Method for removing leukocytes from blood
JPS55136955A (en) * 1979-04-13 1980-10-25 Asahi Chem Ind Co Ltd Filter for catching and gathering leucocyte
JPS596231A (en) * 1982-07-05 1984-01-13 Mitsubishi Rayon Co Ltd Porous fluorocarbon resin membrane and its production
JPS5964055A (en) * 1982-08-30 1984-04-11 三菱レイヨン株式会社 Blood treating apparatus
JPS6139060B2 (en) * 1979-04-13 1986-09-02 Asahi Chemical Ind

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446811A (en) * 1977-09-20 1979-04-13 Asahi Chem Ind Co Ltd Method for removing leukocytes from blood
JPS55136955A (en) * 1979-04-13 1980-10-25 Asahi Chem Ind Co Ltd Filter for catching and gathering leucocyte
JPS6139060B2 (en) * 1979-04-13 1986-09-02 Asahi Chemical Ind
JPS596231A (en) * 1982-07-05 1984-01-13 Mitsubishi Rayon Co Ltd Porous fluorocarbon resin membrane and its production
JPS5964055A (en) * 1982-08-30 1984-04-11 三菱レイヨン株式会社 Blood treating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419346A2 (en) * 1989-09-18 1991-03-27 Terumo Kabushiki Kaisha Filter for purification of platelets
EP0419346A3 (en) * 1989-09-18 1991-06-19 Terumo Kabushiki Kaisha Filter for purification of platelets
US5234593A (en) * 1989-09-18 1993-08-10 Terumo Kabushiki Kaisha Filter for purification of platelets
EP0877648A1 (en) * 1996-09-25 1998-11-18 Baxter International Inc. System for filtering medical and biological fluids
EP0877648A4 (en) * 1996-09-25 2002-10-09 Baxter Int System for filtering medical and biological fluids
US9713669B2 (en) 2013-12-26 2017-07-25 Fenwal, Inc. Method for sized-based cell separation using spinning membrane filtration

Also Published As

Publication number Publication date
JPS6475015A (en) 1989-03-20
KR890701183A (en) 1989-12-19

Similar Documents

Publication Publication Date Title
JP2570906B2 (en) Systems and methods for treating biological fluids
US5601730A (en) Process and apparatus for removal of unwanted fluids from processed blood products
US5616254A (en) System and method for processing biological fluid
EP1267990B1 (en) Systems and methods for collecting leukocyte-reduced blood components, including plasma that is free or virtually free of cellular blood species
US5258126A (en) Method for obtaining platelets
JP2523938B2 (en) Platelet purification filter
US7140497B2 (en) Selective deleukocytation unit for a platelet product
US5707520A (en) Remover unit for use in filtration circuit for removing at least leukocyte
US5164087A (en) Leukocyte separator
EP0502213A1 (en) Leukocyte removal method and leukocyte removal filter system
EP0378684B1 (en) Leucocyte-separating process
EP0604590B1 (en) Gas plasma treated porous medium and method of separation using same
JPH0659304B2 (en) Blood component separation method
JPH0534337A (en) Filter for separating leucocyte
WO1989002305A1 (en) Leucocyte-separating filter
JP3461359B2 (en) Leukocyte removal filter system and leukocyte removal method
JP5036026B2 (en) Blood component separation device and method of use thereof
JP2918595B2 (en) White blood cell separator
JPH0651631B2 (en) Leukocyte separation material
JPH0645546B2 (en) White blood cell separation material manufacturing method
JPS6353825B2 (en)
JPH0531334A (en) Leukocyte removing filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE