JPS6144031B2 - - Google Patents

Info

Publication number
JPS6144031B2
JPS6144031B2 JP57045674A JP4567482A JPS6144031B2 JP S6144031 B2 JPS6144031 B2 JP S6144031B2 JP 57045674 A JP57045674 A JP 57045674A JP 4567482 A JP4567482 A JP 4567482A JP S6144031 B2 JPS6144031 B2 JP S6144031B2
Authority
JP
Japan
Prior art keywords
blood
overbody
upper space
bubble
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57045674A
Other languages
Japanese (ja)
Other versions
JPS58163372A (en
Inventor
Yoshiro Katsura
Yoshihiro Ii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57045674A priority Critical patent/JPS58163372A/en
Publication of JPS58163372A publication Critical patent/JPS58163372A/en
Publication of JPS6144031B2 publication Critical patent/JPS6144031B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

() 背景技術 (‐1) 技術分野 本発明は、開心術時における人工心肺装置、人
工腎臓装置、血球成分と血漿成分の分離装置等の
体外循環用血液回路を流れる血液より気泡を除去
する血液中気泡除去装置に関する。 (‐2) 従来技術及びその問題点 血液中気泡除去装置には血液中の気泡を過体
によつて捕捉し上昇させて除去する過体方式
と、血液滞留空間を設けて血流速度を小さくし血
液中の気泡が浮力で上昇する滞留方式及び過体
と血液滞留の組合せ方式とがある。第1図及び第
2図はそれぞれ従来の過方式の血液中気泡除去
装置である。第1図の装置は、容器本体1内が気
泡をはじき易いナイロン製であり網状の過体2
によつて被処理血液室3と処理血液室4と縦割り
に画され容器1の下部に各室に連通して血液入口
5及び血液出口6がありさらに容器本体1の頂部
に両室にそれぞれ連通した気泡出口7がある構成
である。しかして、血液入口5より被処理血液室
3に導入する血液は血流圧力によつて過体2を
通る際該過体2の孔径より大きい気泡が捕捉さ
れ処理血液室4に入り血液出口6より出ることに
なり、また過体2で捕捉された上記気泡は浮力
により上昇し容器本体1内の上部に一定量に集ま
る毎に気泡出口7より流出する。 第2図の装置は、下部側面の接線方向に血液入
口9があり下面部中央に血液出口10があり上部
中央に気泡出口11がある円筒形容器8内にナイ
ロン製で上部よりみて放射状でかつ筒状の過体
12を筒芯が縦軸となるように収容し過体12
の上部開放端を蓋板13で塞いだ構成である。 上記機構上、血液入口9より流入する血液は
過体12の周囲を旋回しながら上部へ向かう流れ
となり、前記旋回流は過体12を血液が通過す
る時の血流による圧力を小さくして微小気泡の圧
力による通過を避けさらには過体12より捉え
られた微小気泡を気泡出口11へ向かわせるもの
であり、その気泡分離機能は上記第1図の装置と
同じ過方式である。それぞれ大人用、小人用が
あり所定血液流量に対応した気泡除去機能を有す
る。しかるに、第1図及び第2図に示す各装置は
孔径が200μ内外の過体を使用すると微小気泡
が過体を容易に通過してしまうだけでなく気泡
塊が細かくくだかれて通過し安全性・信頼性が多
い。図1の装置では大流量で多量の空気が混入し
た場合気泡除去能は著しく低い。また孔径が50μ
〜150μの過体では微小気泡の除去が上記200μ
のものより総じてやや良くなる程度であるので異
物、凝集塊除去効果に重みをおいて20〜40μのフ
イルターを用い動脈フイルターとして使用される
が、動脈フイルターでは血小板や赤血球の破壊等
の血液の侵襲が大きくなると共に圧力損失が大き
くなるという欠点がある。さらに第2図の装置は
プライミング容量が約220mlであり大形である欠
点がある。 第3図は従来の血液滞留式の血液中気泡除去装
置である。該装置は微小気泡が浮上可能となるよ
うに血液流が小さくなる容積をもつた容器本体1
4の底面部を貫通して内端が容器14内の上下方
向の中程にくる血液入口15があり、また容器1
4の底部に血液出口16がありさらに容器14の
上面部に気泡出口17がある構成である。しかし
て、血液入口15より容器本体14内に導入され
る被処理血液は、容器本体14内ではゆるやかな
下降流となつて血液中の気泡の浮力により上昇を
許すので気泡の除去された処理血液となり血液出
口16より流出し、また容器本体14内を上昇す
る気泡は上部に一定量溜る毎に気泡出口17より
取出される。該装置は容器本体14を大型化し容
器を非常に大きくとれば、ある程度まで微小気泡
を分離除去できる。しかしこのことは必然的に体
外循環血液量及び補液量の増加を招き体内残存血
液量の減少に繋がり人体にとつて悪影響を及ぼす
ものである。実用化されているもののプライミン
グ量は250〜400ml程度に限られこれは微小気泡ま
で除去するのには充分な容積であるとはいえず、
また装置自体の小型化は、血液滞溜を利用する機
能上実用化に困難を伴うという欠点がある。 第4図aは従来の過体・血液滞溜方式の血液
中気泡除去装置であり、第4図bはその内部空間
に収納された過体22である。該装置は容器本
体18の下面部を貫通して血液入口19がありま
た容器本体18の下側部に血液出口20がありさ
らに容器本体18の上部中央に気泡出口21があ
り、容器本体18内には血液入口19の内端に接
続してナイロン製の筒状の過体22があり、ガ
イド棒23bが支持枠23aの上部に接続して該
過体22の内側中央へ垂下しており、該過体
22の外側空間が微小気泡が浮上可能となるよう
に血液流が小さくなる容積の処理血液室24とな
つている構成である。しかして、血液入口19よ
り導入される被処理血液はガイド棒23bの周り
を上昇し過体22を通過する際該過体22の
孔径よりも大きい気泡が過体内面に捕捉されて
一次処理血液となりさらに過体22の外側の処
理血液室24においてきわめてゆるやかな下降流
となつて過体22を通つた微小気泡の浮力によ
る上昇を許すので気泡の除去が一層促進された二
次処理血液となり血液出口20より流出し、また
過体22の内外を上昇する気泡は上部に一定量
溜る毎に気泡出口21より取出される。しかるに
該装置は過体22でその孔径より大きい気泡を
捕えても上記のように過体22の面が筒状であ
り、またガイド棒23bが該過体22の内側空
間に垂下しているためその内側空間の内容積が小
さくなることにより該内側空間を上昇する被処理
血液の流速が大きくなる。よつて上記過体22
で一担捕えられた気泡が血流により上昇させられ
該過体22の上方開口部分より該過体22の
外側へ向かう下降流と共に流れ出しそのまま血液
出口20へと向かう恐れがある上に、過体22
を通過した微小気泡の浮力上昇をも防げてしま
う。そこで処理血液室24の内容積を大にして流
速を弱め滞留効果による微小気泡の上昇を促す機
構をとればよいが、これは上記第3図の装置にお
いて説明したのと同様に即、体外循環血液量及び
補液量の増加に繋がり人体にとつて好ましくない
結果を生むことより避けるべきであるし一方では
装置の小型化を図りプライミング量を190mlより
小さくすると滞留効果による微小気泡の除去を望
めなくなるという欠点がある。 () 発明の目的 本発明は上述した点に鑑み鋭意に研究の末案出
したもので、気泡の浮力上昇作用と気泡と血液の
比重差に起因する遠心分離作用によつて気泡除去
を行うことができ特に上記従来装置に比してプラ
イミング容量を小さくでき装置の小形化が図れ体
外循環血液量及び補液量を小さくでき従来装置と
同じプライミング容量とすれば能力の向上が図
れ、また微小気泡を十分に除去できて安全性・信
頼性が高く、さらに気泡分離に対する過体の負
担が小さいため過体の孔径を大きくしても微小
気泡が除去でき、もつて過体による圧力損失を
少なくし能力の向上が図れ血小板や赤血球の破壊
等の血液の侵襲が減少し、さらにまた使用後の返
血時に装置内残存血液をほとんど無くすことがで
きる血液中気泡除去装置を提供するものである。 この目的は本発明によれば容器本体と、前記容
器本体内を上部空間と下部空間に画するように設
けられ多孔質体から成る過体と、前記容器本体
に前記上部空間と連通するように設けられ被処理
血液を前記上部空間に旋回流として導入できる液
入口と、前記容器本体に前記下部空間と連通する
ように設けられ前記過体を通過する処理血液を
送出する液出口と、前記容器本体に前記上部空間
の上部中央と連通するように設けられ前記上部空
間で分離される気泡を抜くための気泡出口とから
成る血液中気泡除去装置において、前記容器本体
で形成される前記上部空間は該上部空間の平面中
央を通る鉛直断面形状の上辺部分が中央に向つて
水平ないし上り勾配である扁平形状でありかつほ
ぼ円形な平面形状であることを特徴とする血液中
気泡除去装置によつて達成される。 即ち、本発明の血液中気泡除去装置は気泡を含
む血液を施回流とすることによつて血液流の気泡
の浮力上昇作用と遠心力の差による気液分離作用
で気泡を上部中央に集めて除去するものであり、
また過体に近い旋回流の下層部を気泡除去が十
分に促進した血液で占めるようにし、さらに導入
直後の血液中の気泡のように血液を旋回流とする
ことによつても上記浮力上昇作用及び上記気液分
離作用が十分に働らかず過体に近づく微小気泡
の一部を該過体に低い角度で衝突させて該過
体より離れる方向にはじき返し上部中央に集め、
もつて過体を通る過体の孔径より小さい微小
気泡の量を小さくしたものである。 上記発明の血液中気泡除去装置によれば、上記
血液の旋回流はその外周部では流速が大きく気液
分離作用が大きい血液が液入口より上部空間に導
入された直後であるので気泡分離が進んでいない
流れとなり、中央部に向うに連れて流速が遅くな
り気泡の浮力上昇が大きく作用して気泡分離が進
んだ流れとなる。しかして、液入口を過体より
離して設ける必要があり、過体が血液旋回流の
円周部に臨む場合は液入口を過体より上方に離
して設ける。 従つて本発明は、上記容器本体は上記上部空間
の円周部が上記過体によつて画されないように
上記上部空記の円周部を上・下・外方より包み込
む形状である実施態様とすることが望ましい。 () 本発明の具体的な説明 (‐1) 構成 本発明の血液中気泡除去装置の好ましい実施例
を第5図及び第6図に示す。この血液中気泡除去
装置は容器本体25と、該容器本体25内を上部
空間(被処理血液空間)26と下部空間(処理血
液空間)27に仕切る過体28と、前記容器本
体25に前記上部空間と連通するように設けられ
た液入口29及び気泡出口30と、前記容器本体
25に前記下部空間27と連通するように設けら
れた液出口31とから成つている。前記容器本体
26は、ポリカーボネート、スチロール、アクリ
ル樹脂、AS樹脂、メチルメタクリレート・ブタ
ジエン・スチレン等のプラスチツクスを用いて作
ることができるが気泡観察ができるよう透明であ
り生物学的安全性及び強度的安全性からポリカー
ボネートより作るのが好ましく、前記上部空間2
6の円周部が上記過体28によつて画されない
ように前記上部空間26の円周部を上・下・外方
より包み込む形状に形成されている。前記過体
28はナイロン、ポリエステル、ポリプロピレン
等のプラスチツクス製の多孔質体の網より成つて
おり血液の侵襲を防ぐ為約50μより大きい孔径の
ものが選ばれる。前記液入口29は被処理血液を
前記上部空間26の円周部より旋回流として導入
できるように前記容器本体25に設けられてい
る。前記気泡出口30は前記上部空間26の上部
中央と連通するように前記容器本体25に設けら
れ気泡抜き弁32を備えるものである。前記液出
口31は前記下部空間27と連通していれば良く
前記液入口29や前記過体28に対して適宜位
置となるように前記容器本体25に設けられる。
前記容器本体25で画される前記上部空間26は
該上部空間26の平面中央を通る鉛直断面形状の
上辺部分が中央に向つて上り勾配である扁平形状
である。即ち、該上部空間26を通じている前記
容器本体25は浮上してくる気泡を前記気泡出口
30に向つて流れ得る容器本体内面で前記上部空
間26の上側を画している。また、前記上部空間
26はほぼ円形な平面形状にされている。従つて
上記上部空間26、前記液入口29から導入され
る被処理血液が全容積を占めて施回流となり得る
円盤状となつている。上記上部空間26の容積、
液入口29及び液出口31のそれぞれの孔径、
過体28の面積は旋回流となる被処理血液がその
中の気泡の浮力上昇を妨げない所定流速以下とな
るように被処理液量と相関させて適宜に決められ
るものである。なお、上記上部空間26の上部中
応に一定量の気泡を溜め得る気泡溜り42を設け
るのが好ましい。 (‐2) 作用 上記血液中気泡除去装置は例えば人工心肺装置
においては人工肺と大動脈とを結ぶ血液回路の中
途に取付けるのが好ましい。上記血液中気泡除去
装置には被処理血液の導入に先立つて生理食塩
水、乳酸リンゲル等の補液がプライミングされ
る。そして、被処理血液を液入口29から上部空
間26に導入すると容器本体25内を過体28
で画される上部空間26が扁平で平面円形な円盤
状空間となつており液入口29が該上部空間26
に対し接線方向に連通しているので被処理血液は
該上部空間26の全容積を占めて旋回流となる。 一般に密閉容器内の気泡を含む液体は施回流を
起させると液体と気泡が比重の差により遠心力に
差を生じて気泡が浮力も手伝つて中央上層部に集
まつて気泡を自己破壊して一塊の空気を形成し、
従つて施回流の外周部ほど気泡を含まない液流と
なる。 しかし、本発明の血液中気泡除去装置は被処理
血液が液入口29から上部空間26に連通して導
入され過体28を通過して液出口31より流出
するので、上記上部空間26内の施回流はその外
周部にあつては気泡分離が進んでいない状態で多
くの気泡を含んでいる一方中心に行くに従つて血
液と気泡の分離が促進されることになる。 しかるに過体28は上記旋回流の外周部を外
れて上記施回流の下層部中央に位置して設けられ
ているので、該過体28が血液の侵襲を防止す
るため50μ以上の孔径の多孔質体より成つていて
も気泡分離が十分に促進された血液のみが該過
体28を通過して下部空間27に流入し液出口3
1より流出する。他方、上記上部空間26に旋回
流として導入された被処理血液中の気泡は気泡溜
り42に一定量集まる毎に気泡抜き弁32を開け
て気泡出口30より除去される。 () 本発明の変形例 (‐1) 第1変形例 第7図及び第8図に示す血液中気泡除去装置は
過体28が中心へ向かうに従つて血液出口31
へ向かうすり鉢状に画されている所が上記実施例
と異なり旋回速度が異状に速く分離された気泡の
渦が血液出口31方向にのびる場合該気泡の渦が
過体28へ接触するのを極力防止できるもので
あり気泡分離機能は上記実施例と変る所がない。 (‐2) 第2変形例 第9図に示す血液中気泡除去装置は、過体2
8が上側に凸となる球面状に設けられている所が
上記実施例と異なるもので気泡分離機能は上記実
施例と変る所がない。 (‐3) 第3変形例 第10図に示す血液中気泡除去装置は容器本体
25の上部空間26を画している上面部25aが
中央に向つて水平となつている所が上記実施例が
中央に向つて上り勾配となつているのと異なる。
しかし、該上面部25aが中央に向つて水平とな
つても遠心力による血液と気泡との分離作用によ
つて気泡が気泡出口30に向つて流れ得ることに
より、気泡分離機能は上記実施例と変る所がな
い。 (‐4) 第4変形例 第11図に示す血液中気泡除去装置は過体2
8が上部空間26の円周部を画するように設けら
れている所が上記実施例と異なる。この場合には
液入口29を過体28より上方に所要寸法離す
ように設けて上部空間26の血液旋回流の外周低
層部が十分に気泡除去を促進された血液で占める
ようにする。気泡分離機能は上記実施例と変わる
所がない。 () 実験結果 第12図は本発明の血液中気泡除去装置の気泡
除去能力を確認するための実験装置であり、第1
2図において、34は水温が25℃に保たれた恒温
槽、35はフラスコであり、35%グリセリン溶液
が充填されており該溶液は2.5センチポイズの粘
度でありこれは37℃におけるヘマトクリツト値
(Hct=血球量/血液量)35%の血液粘度に相当
する。36はグリセリン溶液中のゴミを捕捉する
フイルター、37はチユーブ回路をしごいて送液
するローラーポンプであり送液量を4/minと
してある。38は気泡注入手段として設けられた
目盛付注射器、39は被験用エアトラツプ、40
は超音波血流計であり前記被験用エアトラツプ3
9の直後に取付けられている。該超音波血流計4
0は三栄測器社製の1935型を使用しておりプロー
ブ平板貼付5形、周波数5MHzであり5mm/sのチ
ヤート速度でダイヤグラフを記録でき、感度は直
径が20μ程度の気泡を感知できるようになつてい
る。41は観察用エアトラツプであり第13図の
ような構造をしている。42はシリンダーであり
2000mlの容量を有し、43,44は三方活栓であ
り回路内を流れる溶液の方向を変更させる機能を
有し46は容量1000mlの観察用トラツプであり内
部に遮蔽板47を設けている。上記構造上三方活
栓43,44を操作し瞬間的にシリンダー42内
へ溶液を導入しシリンダー42内に導入された溶
液の流れが安定した時溶液内の気泡の上昇速度が
観察でき、また観察用トラツプ46は滞留効果に
より気泡を溜め、上端の目盛り付き細管部48で
溜つた気泡を測定しうる。 この実験は、本発明の効果を冒頭で述べた従来
装置と比較して本発明装置が方法を異にして気泡
除去ができることを確認するだけではなく、従来
装置と比較して本発明装置はプライミング量が小
さくかつ過体の孔径を大きくしても気浮除去能
力が高くなるという優れた効果があるとの認識に
立つて行つた。従つて前記被験用エアトラツプ3
9には第2図、第3図、第4図に示す従来装置並
びに第10図に示す本発明装置を取換えて使用し
各々について実験した。さらに本発明装置につい
ては孔径の異なる過体を張り換えて複数の実験
を行つた。 なお、各装置の具体的な形状及びプライミング
容量を決める寸法は各装置を示す図中に単位をmm
とする数値のみで表わしている。
() Background Art (-1) Technical Field The present invention relates to a method for removing air bubbles from blood flowing through an extracorporeal circulation blood circuit such as an artificial heart-lung machine, an artificial kidney machine, or a blood cell component and plasma component separation device during open-heart surgery. This invention relates to a bubble removing device. (-2) Prior art and its problems The blood bubble removal device uses an overbody method in which air bubbles in the blood are captured and removed by an overbody, and a blood retention space is provided to reduce the blood flow velocity. There are two methods: a retention method in which air bubbles in the blood rise due to buoyancy, and a combination method of overbody and blood retention. FIGS. 1 and 2 show conventional blood bubble removal devices using a filtration method, respectively. The device shown in FIG.
The container 1 is vertically divided into a blood chamber 3 to be processed and a blood chamber 4 to be processed, and a blood inlet 5 and a blood outlet 6 are provided at the bottom of the container 1 to communicate with each chamber. This configuration has a bubble outlet 7 that communicates with the air bubbles. Therefore, when the blood introduced into the blood chamber 3 to be processed from the blood inlet 5 passes through the overbody 2 due to blood flow pressure, air bubbles larger than the pore diameter of the overbody 2 are captured and enter the blood chamber 4 to be processed, which enters the blood outlet 6. The bubbles captured by the overbody 2 rise due to buoyancy and flow out from the bubble outlet 7 every time they collect in a certain amount at the upper part of the container body 1. The device shown in Fig. 2 consists of a cylindrical container 8 made of nylon, which has a blood inlet 9 in the tangential direction on the lower side, a blood outlet 10 in the center of the lower surface, and a bubble outlet 11 in the upper center. A cylindrical overbody 12 is accommodated so that the cylinder core becomes the vertical axis.
The upper open end of the cover plate 13 is closed. Due to the above mechanism, the blood flowing in from the blood inlet 9 flows upward while swirling around the overbody 12, and the swirling flow reduces the pressure caused by the blood flow when the blood passes through the overbody 12, resulting in a minute flow. This device avoids the passage of bubbles due to pressure, and also directs the microbubbles captured by the overbody 12 toward the bubble outlet 11, and its bubble separation function is the same as the device shown in FIG. 1 described above. There are two types for adults and children, each with a bubble removal function that corresponds to a predetermined blood flow rate. However, in the devices shown in Figures 1 and 2, if an overbody with a pore diameter of around 200 μm is used, not only will microbubbles easily pass through the overbody, but the air bubbles will be broken up into small pieces and pass through, resulting in safety issues.・Highly reliable. In the apparatus shown in FIG. 1, the ability to remove bubbles is extremely low when a large amount of air is mixed in at a large flow rate. Also, the pore diameter is 50μ
In the case of ~150μ overload, the removal of microbubbles is above 200μ
Since the overall performance is slightly better than that of the conventional arterial filter, a filter of 20 to 40μ is used as an arterial filter, with emphasis placed on the effect of removing foreign substances and aggregates. The disadvantage is that as the pressure increases, the pressure loss also increases. Furthermore, the device shown in FIG. 2 has a priming capacity of approximately 220 ml, which is disadvantageous in that it is large. FIG. 3 shows a conventional blood retention type blood bubble removal device. The device includes a container body 1 having a volume that reduces blood flow so that microbubbles can float.
There is a blood inlet 15 that penetrates the bottom of the container 14 and has an inner end located midway in the vertical direction inside the container 14.
A blood outlet 16 is provided at the bottom of the container 4, and an air bubble outlet 17 is provided at the top of the container 14. Therefore, the blood to be processed introduced into the container body 14 from the blood inlet 15 forms a gentle downward flow within the container body 14 and is allowed to rise due to the buoyancy of air bubbles in the blood, so that the treated blood is free of air bubbles. The air bubbles flowing out from the blood outlet 16 and rising inside the container body 14 are taken out from the air bubble outlet 17 every time a certain amount accumulates in the upper part. This device can separate and remove microbubbles to a certain extent by enlarging the container body 14 and making the container very large. However, this inevitably leads to an increase in the amount of extracorporeally circulating blood and fluid replacement, which leads to a decrease in the amount of blood remaining in the body, which has an adverse effect on the human body. Although it has been put into practical use, the priming volume is limited to about 250 to 400 ml, which cannot be said to be a sufficient volume to remove even the smallest bubbles.
Furthermore, miniaturization of the device itself has the disadvantage that it is difficult to put it into practical use due to its function of utilizing blood retention. FIG. 4a shows a conventional blood bubble removal device using an overbody/blood retention method, and FIG. 4b shows an overbody 22 housed in the internal space thereof. The device has a blood inlet 19 passing through the lower surface of the container body 18, a blood outlet 20 at the lower side of the container body 18, and an air bubble outlet 21 at the center of the upper part of the container body 18. has a nylon cylindrical overbody 22 connected to the inner end of the blood inlet 19, and a guide rod 23b is connected to the upper part of the support frame 23a and hangs down to the center of the inside of the overbody 22, The outer space of the overbody 22 is configured as a processing blood chamber 24 having a volume where the blood flow is small so that microbubbles can float. Thus, when the blood to be processed introduced from the blood inlet 19 rises around the guide rod 23b and passes through the overbody 22, air bubbles larger than the pore diameter of the overbody 22 are captured on the inner surface of the overbody, and the primary treated blood is Furthermore, in the processed blood chamber 24 outside the overbody 22, a very gentle downward flow is allowed to rise due to the buoyancy of the microbubbles that have passed through the overbody 22, resulting in secondary treated blood in which the removal of air bubbles is further promoted. Air bubbles flowing out from the outlet 20 and rising inside and outside the overbody 22 are taken out from the air bubble outlet 21 every time a certain amount accumulates in the upper part. However, in this device, even if the bubbles larger than the pore diameter are captured by the overbody 22, the surface of the overbody 22 is cylindrical as described above, and the guide rod 23b hangs down into the inner space of the overbody 22, so that the bubbles cannot be captured. As the internal volume of the inner space becomes smaller, the flow rate of the blood to be processed rising through the inner space increases. Therefore, the above-mentioned overbody 22
There is a risk that the air bubbles trapped in the blood flow will be raised by the blood flow, flow out from the upper opening of the overbody 22 with a downward flow toward the outside of the overbody 22, and head directly toward the blood outlet 20. 22
It also prevents the increase in buoyancy of microbubbles that have passed through. Therefore, a mechanism may be adopted that increases the internal volume of the blood processing chamber 24 to weaken the flow velocity and promote the rise of microbubbles due to the retention effect. This should be avoided because it leads to an increase in blood volume and fluid replacement volume, which produces unfavorable results for the human body.On the other hand, if the priming volume is made smaller than 190ml by miniaturizing the device, it will not be possible to remove microbubbles due to the retention effect. There is a drawback. () Purpose of the Invention The present invention was devised after intensive research in view of the above-mentioned points, and aims to remove air bubbles by the buoyancy increasing effect of air bubbles and the centrifugal separation effect caused by the difference in specific gravity between air bubbles and blood. In particular, compared to the conventional device mentioned above, the priming capacity can be made smaller, the device can be made more compact, the amount of extracorporeal circulating blood and fluid replacement can be reduced, and if the priming capacity is the same as the conventional device, the capacity can be improved, and microbubbles can be reduced. It is highly safe and reliable as it can remove the bubbles sufficiently, and since the burden of the excess body on bubble separation is small, even if the pore size of the excess body is increased, microbubbles can be removed, thereby reducing pressure loss due to the excess body. To provide a blood bubble removing device which can improve the performance of the device, reduce blood invasion such as destruction of platelets and red blood cells, and further eliminate almost all blood remaining in the device when returning blood after use. According to the present invention, this purpose is to include a container body, an overbody made of a porous material and provided to divide the container body into an upper space and a lower space, and a container body that communicates with the upper space. a liquid inlet provided in the container body to allow the blood to be processed to be introduced into the upper space as a swirling flow; a liquid outlet provided in the container body to communicate with the lower space and send out the processed blood passing through the body; In the blood bubble removal device, the blood bubble removal device includes an air bubble outlet provided in the main body so as to communicate with the upper center of the upper space and for removing air bubbles separated in the upper space, wherein the upper space formed by the container main body is By a blood bubble removing device characterized in that the upper side of the vertical cross-sectional shape passing through the center of the plane of the upper space has a flat shape with a horizontal or upward slope toward the center and a substantially circular planar shape. achieved. That is, the device for removing air bubbles in blood of the present invention collects the air bubbles in the upper center by circulating the blood containing air bubbles and using the buoyancy increasing effect of the air bubbles in the blood flow and the gas-liquid separation effect due to the difference in centrifugal force. It is intended to remove
In addition, the above-mentioned buoyancy increasing effect can also be achieved by ensuring that the lower part of the swirling flow, which is close to an overbody, is occupied by blood in which bubble removal has been sufficiently promoted, and by making the blood swirl like air bubbles in the blood immediately after introduction. and a part of the microbubbles that approach the overbody because the gas-liquid separation effect does not work sufficiently are collided with the overbody at a low angle, are repelled in a direction away from the overbody, and are collected in the upper center;
The amount of microbubbles smaller than the pore diameter of the overbody passing through the overbody is reduced. According to the device for removing bubbles in blood of the invention, the swirling flow of blood has a high flow velocity at the outer periphery and has a large gas-liquid separation effect immediately after the blood is introduced into the upper space from the liquid inlet, so that bubble separation progresses. The flow becomes slower toward the center, and the buoyancy of the bubbles increases significantly, resulting in a flow in which bubble separation progresses. Therefore, it is necessary to provide the liquid inlet at a distance from the overbody, and if the overbody faces the circumference of the swirling blood flow, the liquid inlet is provided above and away from the overbody. Therefore, the present invention provides an embodiment in which the container body has a shape that wraps around the circumferential portion of the upper space from above, below, and from the outside so that the circumferential portion of the upper space is not defined by the overbody. It is desirable to do so. () Specific description of the present invention (-1) Configuration A preferred embodiment of the blood bubble removal device of the present invention is shown in FIGS. 5 and 6. This blood bubble removal device includes a container main body 25, an overbody 28 that partitions the inside of the container main body 25 into an upper space (to-be-processed blood space) 26 and a lower space (processed blood space) 27, and an upper space in the container main body 25. It consists of a liquid inlet 29 and a bubble outlet 30 provided to communicate with the space, and a liquid outlet 31 provided in the container body 25 so as to communicate with the lower space 27. The container body 26 can be made of plastics such as polycarbonate, styrene, acrylic resin, AS resin, methyl methacrylate, butadiene, styrene, etc., but it is transparent so that air bubbles can be observed, and is biologically safe and strong. For safety reasons, it is preferable to make the upper space 2 from polycarbonate.
The circumferential portion of the upper space 26 is formed in a shape that wraps around the circumferential portion of the upper space 26 from above, below, and from the outside so that the circumferential portion of the upper space 26 is not defined by the overbody 28. The overbody 28 is made of a porous mesh made of plastic such as nylon, polyester, polypropylene, etc., and the pore size is selected to be larger than about 50 μm to prevent invasion of blood. The liquid inlet 29 is provided in the container body 25 so that the blood to be treated can be introduced from the circumference of the upper space 26 as a swirling flow. The bubble outlet 30 is provided in the container body 25 so as to communicate with the upper center of the upper space 26, and includes a bubble release valve 32. The liquid outlet 31 only needs to communicate with the lower space 27 and is provided in the container body 25 at an appropriate position relative to the liquid inlet 29 and the overbody 28.
The upper space 26 defined by the container body 25 has a flat shape in which an upper side portion of a vertical cross section passing through the center of the plane of the upper space 26 slopes upward toward the center. That is, the container body 25 passing through the upper space 26 defines the upper side of the upper space 26 with the inner surface of the container body through which floating bubbles can flow toward the bubble outlet 30. Further, the upper space 26 has a substantially circular planar shape. Therefore, the blood to be treated introduced from the upper space 26 and the liquid inlet 29 occupies the entire volume, forming a disk shape that can be used as a circulating flow. The volume of the upper space 26,
Each hole diameter of the liquid inlet 29 and the liquid outlet 31,
The area of the overbody 28 is appropriately determined in correlation with the amount of liquid to be treated so that the swirling flow of the blood to be treated is at a predetermined flow rate or less that does not prevent the increase in the buoyancy of air bubbles therein. Note that it is preferable to provide a bubble reservoir 42 in the upper part of the upper space 26, which can store a certain amount of bubbles. (-2) Effect The above-mentioned blood bubble removing device is preferably installed in the middle of the blood circuit connecting the oxygenator and the aorta in, for example, an artificial heart-lung machine. The blood bubble removing device is primed with a replacement fluid such as physiological saline or lactated Ringer's prior to introducing the blood to be processed. When the blood to be processed is introduced into the upper space 26 from the liquid inlet 29, the inside of the container body 25 is
The upper space 26 defined by
Since the blood to be treated occupies the entire volume of the upper space 26, it forms a swirling flow. Generally, when a liquid containing air bubbles in a closed container is subjected to a circulation flow, the difference in specific gravity between the liquid and air bubbles causes a difference in centrifugal force, and the air bubbles gather in the upper center part with the aid of buoyancy, causing the bubbles to self-destruct. to form a mass of air,
Therefore, the liquid flow contains fewer bubbles at the outer periphery of the circulating flow. However, in the blood bubble removing device of the present invention, the blood to be treated is introduced from the liquid inlet 29 into the upper space 26 in communication with the upper space 26, passes through the overbody 28, and flows out from the liquid outlet 31. The circulating flow contains many bubbles with no progress in bubble separation at its outer periphery, while the separation of blood and bubbles is accelerated toward the center. However, since the overbody 28 is located at the center of the lower layer of the swirling flow outside the outer periphery of the swirling flow, the overbody 28 is made of porous material with a pore diameter of 50μ or more to prevent invasion of blood. Even though the blood is made up of blood, only the blood for which bubble separation has been sufficiently promoted passes through the body 28 and flows into the lower space 27, where it flows into the liquid outlet 3.
It flows out from 1. On the other hand, the air bubbles in the blood to be processed introduced into the upper space 26 as a swirling flow are removed from the air bubble outlet 30 by opening the air bubble removal valve 32 every time a certain amount of air bubbles collects in the air bubble reservoir 42 . () Modifications of the present invention (-1) First modification In the blood bubble removal device shown in FIGS. 7 and 8, as the excess body 28 moves toward the center,
Unlike the above embodiment, the swirling speed of the separated air bubbles is unusually fast and the vortex of separated air bubbles extends in the direction of the blood outlet 31, so that the vortex of air bubbles is prevented from coming into contact with the overbody 28 as much as possible. This can be prevented, and the bubble separation function is the same as in the above embodiment. (-2) Second modification The blood bubble removal device shown in FIG.
The difference from the above embodiment is that 8 is provided in a spherical shape convex upward, but the bubble separation function is the same as in the above embodiment. (-3) Third modification The blood bubble removal device shown in FIG. The difference is that it slopes upward towards the center.
However, even if the upper surface portion 25a is horizontal toward the center, the bubbles can flow toward the bubble outlet 30 due to the centrifugal force that separates the blood and bubbles, so that the bubble separation function is different from that of the above embodiment. There is nothing to change. (-4) Fourth modification The blood bubble removal device shown in FIG.
8 is provided so as to define the circumference of the upper space 26, which is different from the above embodiment. In this case, the liquid inlet 29 is provided above the overbody 28 at a required distance so that the lower part of the outer periphery of the swirling blood flow in the upper space 26 is occupied by blood whose air bubbles have been sufficiently removed. The bubble separation function is the same as in the above embodiment. () Experimental results Figure 12 shows an experimental device for confirming the bubble removal ability of the blood bubble removal device of the present invention.
In Figure 2, 34 is a constant temperature bath whose water temperature is kept at 25°C, and 35 is a flask filled with a 35% glycerin solution, which has a viscosity of 2.5 centipoise, which corresponds to the hematocrit value (Hct) at 37°C. = blood cell volume/blood volume) corresponds to a blood viscosity of 35%. 36 is a filter that captures dust in the glycerin solution, and 37 is a roller pump that pumps the tube circuit to send the liquid at a rate of 4/min. 38 is a graduated syringe provided as a bubble injection means, 39 is an air trap for testing, 40
is an ultrasonic blood flow meter and the test air trap 3
It is installed immediately after 9. The ultrasonic blood flow meter 4
0 uses a 1935 model made by Sanei Sokki Co., Ltd. with a probe attached to a flat plate, a frequency of 5 MHz, a diagram can be recorded at a chart speed of 5 mm/s, and the sensitivity is such that it can detect bubbles with a diameter of about 20 μ. It's getting old. Reference numeral 41 denotes an observation air trap, which has a structure as shown in FIG. 42 is a cylinder
It has a capacity of 2,000 ml, and 43 and 44 are three-way stopcocks that have the function of changing the direction of the solution flowing in the circuit. 46 is an observation trap with a capacity of 1,000 ml, and a shielding plate 47 is provided inside. Due to the structure described above, the solution is instantaneously introduced into the cylinder 42 by operating the three-way stopcocks 43 and 44, and when the flow of the solution introduced into the cylinder 42 becomes stable, the rising speed of bubbles in the solution can be observed. The trap 46 collects air bubbles due to the retention effect, and the accumulated air bubbles can be measured at the graduated capillary section 48 at the upper end. This experiment not only confirmed the effectiveness of the present invention by comparing it with the conventional device mentioned at the beginning, but also confirmed that the device of the present invention can remove bubbles using a different method. This was done based on the recognition that even if the amount is small and the pore diameter of the superstructure is large, there is an excellent effect of increasing air removal ability. Therefore, the test air trap 3
9, the conventional apparatus shown in FIGS. 2, 3, and 4 and the apparatus of the present invention shown in FIG. 10 were replaced and used for experiments. Furthermore, with respect to the device of the present invention, a plurality of experiments were conducted by replacing the overbody with different hole diameters. The specific shape of each device and the dimensions that determine the priming capacity are shown in mm in the figure showing each device.
It is expressed only in numerical values.

【表】 第1表によつて本発明装置は従来装置に比べプ
ライミング容量を小さくするにもかかわらず中気
泡、小気泡も有効に捕捉できることが分る。また
本発明装置は過体の孔径を260μ内外にしても
中気泡、小気泡を有効に捕捉できることが分る。 第14図及び第15図は第12図に示す実験装
置において、被験用トラツプ39に第4図の従来
装置と第10図の本発明装置で過体のメツシユ
の大きさが109のものと取換え設置し、気泡注入
手段22による注入空気量を30mlとしてそれぞれ
について実験を行い超音波血流計40でそれぞれ
について得たダイヤグラフである。 両方のダイヤグラフは両装置とも空気の注入が
あると針が大きく振れ振幅の大きさは両装置とも
ほぼ同じであるが振幅の乱れの長さは従来の装置
の方が本発明装置よりもはるかに長いことを示し
ている。 なお、両方のダイヤグラフとも空気の注入前及
び振幅の乱れがおさまつた後に針の乱れがあるの
は実験において使用した溶液中の気泡や不純物に
よるノイズと考えられる。 両方のダイヤグラフから分ることは本発明装置
では血液中から気泡の分離除去が迅速に行われ従
来装置とは比較的長い時間に渡り気泡の流出がみ
られることである。このような相違は、本発明装
置にあつては血液が施回流となることによつて血
液中の気泡が遠心力の作用で能動的に気泡出口に
移行するのに対し従来装置では過体による気泡
の捕捉と過体を通る微小気泡の滞留捕捉によつ
て気泡除去を行つており、過体で捕捉される気
泡は上昇する時再び過体の上方部分を通つてし
まうことがあると共に過体を通つた微小気泡は
浮力がきわめて小さく気泡出口に向わず下向する
血流にのつて液出口にゆつくりと向う量が多くあ
り、いわば血液中の気泡が受動的に気泡出口に移
行するからと推測される。 第16図、第17図及び第18図は第12図に
示す実験装置において超音波血流計に積分測定器
を接続し超音波血流計での針の振れと、及び針の
振れに応じた積分値をそれぞれ記録したダイヤグ
ラフである。各図において下測のダイヤグラフが
超音波血流計の針の振れを記録したものであり、
上側のダイヤグラフが針の振れに応じた積分曲線
である。第16図は被験用エアトラツプ39を第
2図に示す従来装置とした場合であり、第17図
は第4図に示す従来装置とした場合であり、第1
8図は第10図に示す本発明装置とした場合であ
る。 この実験では第12図に示す実験装置において
超音波血流計のプローブは内径6mmのアクリル樹
脂でできたパイプの外側にステンレス板を巻付け
このステンレス板に接続してある。これは血流波
を消し気泡に対する波だけを観察できるようにす
るためである。 この実験の条件として被験溶液は抗凝固剤にヘ
パリン(5000単位/)、ACD液(50ml/)を
用いた牛血を生理食塩水で希釈してHct35%とし
たものを使用し37℃に保ち気泡注入手段38から
の空気注入量は10mlとした。 第16図、第17図及び第18図において、そ
れぞれの上側の積分曲線の各波の頂点より横軸座
標に垂線を下し、この垂線と積分曲線と横軸座標
とで囲まれる面積が第12図の実験装置の被験用
エアトラツプ39で捕捉することができず超音波
血流計40と接続した積分測定器で測定される気
泡量である。これら3つの実験では第18図の積
分曲線の波の高さが小さく波の収束が一番速いこ
とが分り、したがつて本発明にかかる第12図に
示す血液中気泡除去装置が第2図及び第4図にそ
れぞれ示す従来装置よりも気泡除去能力が高いこ
とが確認された。 () 効果 以上説明してきたように本発明の血液中気泡除
去装置は、容器本体内が過体により上部空間と
下部空間に分けられ上部空間の円周部に接線方向
に連通する液入口があると共に上部空間の上部中
央に気泡出口があり、また下部空間に連通して液
出口があるものにおいて、容器本体で画される上
部空間の水平中心を通る鉛直断面の上辺部分を中
央に向つて水平ないし上り勾配の扁平形状としか
つ円形な平面形状としたものである。 従つて、本発明の血液中気泡除去装置は被処理
血液を液入口より上部空間に過道程の最も長い
旋回流として導入でき、血液中の気泡を浮力浮上
作用と遠心分離作用により上部空間の上部中央に
能動的に集めて気泡出口より排出することができ
ると共に、上部空間を満たす被処理血液の過体
に近い下層部を積極的に気泡分離を促進すること
ができ、さらには、過体そのものの機能による
気泡の捕捉により過体を通過し下部空間を経て
液出口に至る処理血液を気泡が十分に除去された
血液となし得るという効果を有する。 この気泡除去の効果は本発明装置によれば旋回
流と浮力を利用して気泡を能動的に上部中央に集
めて捕捉除去するものであり、特に浮力がきわめ
て小さく血液の流れに容易に左右され易い微小気
泡をも有効に捕捉除去できることを内容としてい
ることは前述した実験によつて十分に確認され、
従来装置に比してより優れた気泡除去能力を有し
ているものである。しかして、本発明の血液中気
泡除去装置は被処理血液中から微小気泡まで有効
に除去することによつて気泡通過量をきわめて小
さくできるので装置の安全性・信頼性が向上す
る。 また本発明の血液中気泡除去装置は被処理血液
を施回流とすることにより気泡を能動的に上部中
央に集めて除去するものであるので過道程を実
質的に長くできることになり従来装置に比してプ
ライミング容量が小さくなるように装置の小形化
が可能であることが前述した実験によつて確認さ
れ、この為体外循環血液量及びプライミングのた
めの補液量を小さくすることができ、また本発明
装置を小型化せず従来装置と同じプライミング容
量となる大きさとすれば従来装置に比し処理能力
が向上すると共に小型化したときよりも一層微小
気泡の除去を促進できるという効果を有する。 さらに本発明の血液中気泡除去装置は、被処理
血液を旋回流として血液中の気泡を浮力と遠心分
離により上部中央に能動的に集めるものであり、
上部空間の血液旋回流の過体に近い下層部は十
分に気泡除去が促進された血液で占められること
になり従来装置のように過体により気泡を捕捉
する方式とは異なるもので50μないし260μ内外
の孔径の多孔質体から成る過体を用いても直径
0.1mm以下の微小気泡を十分有効に除去すること
ができ、装置の安全性・信頼性が損われずもつて
孔径260μ内径の過体を使用すれば血小板や赤
血球の破壊等の血液の侵襲の恐れがなく合せて
過体での圧力損失が従来に比して大幅に減少しひ
いては装置の能力向上となるという効果を有す
る。 また、本発明の実施態様として上記容器本体が
上部空間の円周部を上記過体で画されないよう
に上・下・外方より包み込む形状である場合に
は、過体が血液旋回流の気泡除去が十分促進し
た中央下層部に臨み微小気泡の過体通過が少な
く気泡除去能力が一層高くなりまた液入口を過
体に近づけて上部空間を一層薄形にできもつてプ
ライミング容量を小さく装置を小形化できるとい
う効果を有する。
[Table] Table 1 shows that the device of the present invention can effectively capture medium and small bubbles even though the priming capacity is smaller than that of the conventional device. It is also found that the device of the present invention can effectively capture medium and small bubbles even when the pore diameter of the overbody is around 260 μm. FIGS. 14 and 15 show the experimental apparatus shown in FIG. 12, the conventional device shown in FIG. 4 and the device of the present invention shown in FIG. The graphs are diagrams obtained using the ultrasonic blood flow meter 40 after experiments were conducted on each of the two, with the air volume injected by the bubble injection means 22 being 30 ml. Both diagrams show that when air is injected in both devices, the needle swings significantly, and the magnitude of the amplitude is almost the same for both devices, but the length of the amplitude disturbance is much greater in the conventional device than in the device of the present invention. It shows that it is a long time. Note that in both diagrams, the disturbance of the needle before air injection and after the amplitude disturbance has subsided is considered to be noise caused by air bubbles or impurities in the solution used in the experiment. It can be seen from both diagrams that the device of the present invention separates and removes air bubbles from the blood quickly, and the outflow of air bubbles is observed over a relatively long period of time compared to the conventional device. This difference is due to the fact that in the device of the present invention, air bubbles in the blood are actively transferred to the bubble outlet by the action of centrifugal force as the blood becomes a circulation flow, whereas in the conventional device, air bubbles in the blood are actively transferred to the bubble outlet due to the action of centrifugal force. Air bubbles are removed by trapping air bubbles and retaining and trapping microbubbles passing through the overbody, and when air bubbles are captured in the overbody, they may pass through the upper part of the overbody again and the air bubbles may pass through the upper part of the overbody again. The microbubbles passing through the liquid have extremely low buoyancy, and many of them do not head toward the bubble outlet, but slowly head toward the liquid outlet along with the downward blood flow, so to speak, the bubbles in the blood passively move toward the bubble outlet. It is assumed that. Figures 16, 17, and 18 show the experimental setup shown in Figure 12, in which an integral measuring device is connected to the ultrasonic blood flow meter, and the needle deflection of the ultrasonic blood flow meter is measured. This is a diagram recording the respective integral values. In each figure, the diagram below records the deflection of the needle of the ultrasonic blood flow meter.
The upper diagram is an integral curve corresponding to the deflection of the needle. 16 shows the case where the test air trap 39 is the conventional device shown in FIG. 2, FIG. 17 shows the case where the conventional device shown in FIG.
FIG. 8 shows a case where the apparatus of the present invention shown in FIG. 10 is used. In this experiment, in the experimental apparatus shown in FIG. 12, the probe of the ultrasonic blood flow meter was connected to a stainless steel plate wrapped around the outside of a pipe made of acrylic resin with an inner diameter of 6 mm. This is to eliminate blood flow waves so that only waves for air bubbles can be observed. The conditions for this experiment were as follows: The test solution used was bovine blood diluted with physiological saline to give an Hct of 35% using heparin (5000 units/) and ACD solution (50 ml/) as anticoagulants, and kept at 37°C. The amount of air injected from the air bubble injection means 38 was 10 ml. In Figures 16, 17, and 18, a perpendicular line is drawn from the apex of each wave of the upper integral curve to the horizontal axis coordinate, and the area surrounded by this perpendicular line, the integral curve, and the horizontal axis coordinate is This is the amount of bubbles that could not be captured by the test air trap 39 of the experimental apparatus shown in FIG. 12 and was measured by an integral measuring device connected to the ultrasonic blood flow meter 40. In these three experiments, it was found that the wave height of the integral curve in FIG. 18 was small and the wave convergence was the fastest. Therefore, the blood bubble removal device shown in FIG. 12 according to the present invention is the one shown in FIG. It was confirmed that the bubble removal ability was higher than that of the conventional device shown in FIG. 4 and FIG. () Effects As explained above, in the blood bubble removal device of the present invention, the inside of the container body is divided into an upper space and a lower space by the overfill, and there is a liquid inlet that communicates tangentially with the circumference of the upper space. In the case where there is a bubble outlet in the upper center of the upper space and a liquid outlet communicating with the lower space, the upper part of the vertical cross section passing through the horizontal center of the upper space defined by the container body is horizontally directed toward the center. It has a flat shape with an upward slope and a circular planar shape. Therefore, the device for removing bubbles in blood of the present invention can introduce the blood to be processed into the upper space from the liquid inlet as a swirling flow with the longest path, and the air bubbles in the blood can be removed from the upper part of the upper space by buoyancy and centrifugation. The bubbles can be actively collected in the center and discharged from the bubble outlet, and the lower layer of the blood to be processed near the superbodies filling the upper space can be actively promoted to bubble separation, and furthermore, the superbodies themselves can be The trapping of air bubbles by this function has the effect that the treated blood that passes through the body, passes through the lower space, and reaches the liquid outlet is blood from which air bubbles have been sufficiently removed. According to the device of the present invention, air bubbles are actively collected in the upper center using swirling flow and buoyancy to trap and remove them.In particular, the buoyancy is extremely small and is easily affected by the flow of blood. It has been fully confirmed by the above-mentioned experiment that it can effectively capture and remove even easily-prone microbubbles.
This device has better bubble removal ability than conventional devices. Therefore, the blood bubble removal device of the present invention can effectively remove even minute bubbles from the blood to be processed, thereby making it possible to extremely reduce the amount of bubbles passing through the blood, thereby improving the safety and reliability of the device. In addition, the device for removing air bubbles in blood of the present invention actively collects and removes air bubbles in the upper center by circulating the blood to be processed, so that the process can be substantially lengthened, compared to conventional devices. The experiment described above has confirmed that it is possible to downsize the device so that the priming volume is small. If the inventive device is made to have the same priming capacity as the conventional device without being downsized, the processing capacity will be improved compared to the conventional device, and the removal of microbubbles will be further promoted than when the device is downsized. Further, the blood bubble removal device of the present invention uses the blood to be treated as a swirling flow and actively collects the bubbles in the blood at the upper center by buoyancy and centrifugation.
The lower part of the swirling flow of blood in the upper space near the excess body is occupied by blood for which bubble removal has been sufficiently promoted. Even if you use an overbody consisting of a porous body with inner and outer pore diameters,
Microbubbles of 0.1 mm or less can be removed effectively, and the safety and reliability of the device will not be compromised, and if a pore diameter of 260μ is used, blood invasion such as destruction of platelets and red blood cells can be prevented. In addition, there is no fear, and the pressure loss in the overbody is significantly reduced compared to the conventional method, which has the effect of improving the performance of the device. In addition, as an embodiment of the present invention, when the container body has a shape that envelops the circumferential part of the upper space from above, below, and from the outside so that the circumferential part of the upper space is not defined by the overbody, the overbody is a bubble of blood swirling flow. Facing the central lower layer where removal has been sufficiently promoted, the passage of microbubbles through the body is reduced and the bubble removal ability is further increased.The liquid inlet is moved closer to the body to make the upper space even thinner, which reduces the priming capacity and reduces the device size. It has the effect of being able to be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来の過体方式
の血液中気泡除去装置の縦断正面図、第3図は従
来の血液滞留方式の血液気泡除去装置の縦断正面
図、第4図aは従来の過体方式と血液滞留方式
との組合せ方式の血液中気泡除去装置の縦断正面
図であり、第4図bは同上の装置の要部正面図、
第5図は本発明の好ましい実施例にかかる血液中
気泡除去装置の縦断正面図、第6図は同上の−
断面図、第7図は本発明の第1変形例にかかる
血液中気泡除去装置の縦断正面図、第8図は同上
の−断面図、第9図、第10図及び第11図
はそれぞれ本発明の第2、第3及び第4の変形例
にかかる血液中気泡除去装置の縦断正面図、第1
2図は本発明の技術的効果を確認するための実験
装置、第13図は同上の装置に使用するために試
作した観測用エアトラツプの縦断面図である。第
14図及び第15図は第12図の実験装置で従来
装置及び本発明装置について気泡除去効果の実験
を行ない超音波血流計で得られたダイヤグラフで
ある。第16図、第17図及び第18図は第12
図の実験装置の実験により従来装置及び本発明装
置について超音波血流計及びこれに接続した積分
測定器で得られたダイヤグラフである。 25……容器本体、26……上部空間、27…
…下部空間、28……過体、29……液入口、
30……気泡出口、31……液出口。
FIGS. 1 and 2 are longitudinal sectional front views of a conventional overbody type blood bubble removal device, FIG. 3 is a longitudinal sectional front view of a conventional blood retention type blood bubble removal device, and FIG. 4 a is a conventional blood bubble removal device. Fig. 4b is a longitudinal sectional front view of a blood bubble removal device of a combination type of overbody type and blood retention type;
FIG. 5 is a longitudinal sectional front view of a blood bubble removal device according to a preferred embodiment of the present invention, and FIG. 6 is the same as above.
7 is a longitudinal sectional front view of a blood bubble removal device according to a first modification of the present invention, FIG. 8 is a cross-sectional view of the same as above, and FIGS. FIG. 1 is a vertical front view of the blood bubble removal device according to the second, third and fourth modified examples of the invention;
FIG. 2 is an experimental device for confirming the technical effects of the present invention, and FIG. 13 is a vertical sectional view of an observation air trap prototyped for use in the same device. FIGS. 14 and 15 are diagrams obtained using an ultrasonic blood flow meter when experiments were conducted on the bubble removal effect using the conventional device and the device of the present invention using the experimental device shown in FIG. 12. Figures 16, 17 and 18 are 12
1 is a diagram obtained by an ultrasonic blood flow meter and an integral measuring device connected thereto for a conventional device and a device of the present invention in an experiment using the experimental device shown in the figure. 25... Container body, 26... Upper space, 27...
... lower space, 28 ... overbody, 29 ... liquid inlet,
30...bubble outlet, 31...liquid outlet.

Claims (1)

【特許請求の範囲】 1 容器本体と、前記容器本体内を上部空間と下
部空間に画するように設けられた多孔質体から成
る過体と、前記容器本体に前記上部空間と連通
するように設けられ被処理液を前記過体に対し
て前記上部空間に旋回流として導入できる液入口
と、前記容器本体に前記下部空間と連通するよう
に設けられ前記過体を通過する処理血液を送出
する液出口と、前記容器本体に前記上部空間の上
部中央と連通するように設けられ前記上部空間で
分離される気泡を抜くための気泡出口とから成る
血液中気泡除去装置において、 前記容器本体で形成される前記上部空間は該上
部空間の平面中央を通る鉛直断面形状の上辺部分
が中央に向つて水平ないし上り勾配である扁平形
状でありかつほぼ円形な平面形状であることを特
徴とする血液中気泡除去装置。 2 上記容器本体は、上記上部空間の円周部が上
記過体によつて画されないように上記上部空間
の円周部を上・下・外方より包み込む形状である
特許請求の範囲第1項記載の血液中気泡除去装
置。
[Claims] 1. A container body, a porous body provided to divide the container body into an upper space and a lower space, and a container body configured to communicate with the upper space. A liquid inlet is provided to introduce the liquid to be treated into the upper space as a swirling flow with respect to the overbody, and a liquid inlet is provided in the container body so as to communicate with the lower space and sends out the treated blood passing through the overbody. A blood bubble removal device comprising a liquid outlet and a bubble outlet provided in the container body so as to communicate with the upper center of the upper space and for removing air bubbles separated in the upper space, The upper space in which the blood is stored has a flat shape in which an upper side portion of a vertical cross-sectional shape passing through the center of the plane of the upper space is horizontal or slopes upward toward the center, and has a substantially circular planar shape. Air bubble remover. 2. Claim 1, wherein the container body has a shape that wraps around the circumferential portion of the upper space from above, below, and from the outside so that the circumferential portion of the upper space is not defined by the overbody. The blood bubble removal device described.
JP57045674A 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood Granted JPS58163372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045674A JPS58163372A (en) 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045674A JPS58163372A (en) 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood

Publications (2)

Publication Number Publication Date
JPS58163372A JPS58163372A (en) 1983-09-28
JPS6144031B2 true JPS6144031B2 (en) 1986-10-01

Family

ID=12725931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045674A Granted JPS58163372A (en) 1982-03-24 1982-03-24 Apparatus for removing gas bubble in blood

Country Status (1)

Country Link
JP (1) JPS58163372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099766A1 (en) * 2006-03-01 2007-09-07 Toray Engineering Co., Ltd. Coating liquid feeding unit
JP2016119949A (en) * 2014-12-24 2016-07-07 成吾 村川 Liquid level confirmation device, holder, and air trap chamber

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228849A (en) * 1983-06-10 1984-12-22 テルモ株式会社 Apparatus for removing air bubbles in liquid
JPS6058142U (en) * 1983-09-29 1985-04-23 株式会社ウベ循研 blood filter
JPS60246763A (en) * 1984-05-23 1985-12-06 テルモ株式会社 Blood storage tank
DE8436477U1 (en) * 1984-12-13 1986-01-23 Sartorius GmbH, 3400 Göttingen A disposable filter made of a plastic housing suitable as a blood level barrier
JPS61133046U (en) * 1985-02-07 1986-08-19
JPH0225408Y2 (en) * 1985-06-24 1990-07-12
JPH0239466Y2 (en) * 1985-08-31 1990-10-23
US7588723B2 (en) * 2004-05-24 2009-09-15 Terumo Cardiovascular Systems Corporation Air removal device with float valve for blood perfusion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099766A1 (en) * 2006-03-01 2007-09-07 Toray Engineering Co., Ltd. Coating liquid feeding unit
JP2016119949A (en) * 2014-12-24 2016-07-07 成吾 村川 Liquid level confirmation device, holder, and air trap chamber

Also Published As

Publication number Publication date
JPS58163372A (en) 1983-09-28

Similar Documents

Publication Publication Date Title
JPS59228849A (en) Apparatus for removing air bubbles in liquid
JPH01148266A (en) Blood filter
CN1878582B (en) Degassing device and end-cap assembly for a filter including such a degassing device
CN102014985B (en) Degassing device
US5744047A (en) Leucocyte depleting filter device and method of use
KR101099962B1 (en) Fluid distribution module and extracorporeal blood circuit including such a module
JP2881305B2 (en) Blood cell cleaning system and method
JPS6144031B2 (en)
JP3252402B2 (en) Leukocyte removal filter device
JP3938557B2 (en) Bubble removal chamber having a function of preventing deformation of blood cell components
JPS6133251A (en) Extractor for liquid phase of suspension
JP5529710B2 (en) Air trap chamber
JP3250833B2 (en) Leukocyte selective capture filter material
JP2918595B2 (en) White blood cell separator
JPH1043293A (en) Device for removing bubble in liquid
US11464893B2 (en) Blood reservoir with blood-handling assembly
JP2000060967A (en) Blood filter
RU2815528C1 (en) Air separator for extracorporeal circulation system
JP3635654B2 (en) Blood component collection device
WO2022158465A1 (en) Blood storage reservoir
JPH06114103A (en) Chamber for blood circuit
JPH01148265A (en) Blood filter
JP3758012B2 (en) Blood component collection method and collection device
RU1774873C (en) Bottle for system of intravenous infusion of blood and liquid drugs
SU1123710A1 (en) Filtering device